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ABSTRACT

In this study, we investigate the feasibility of using LLMs
as autograders by evaluating multiple models—OpenAT’s
GPT-40, GPT-4.1-mini, and GPT-4.1-nano—on a manually
graded open-source dataset of college algebra worked solu-
tion responses. For each model, we assess performance both
with and without a self-consistency grading approach. We
compare LLM-generated correctness labels to human anno-
tations across 18,000 responses. Results show that GPT-
4.1-mini achieves the highest accuracy (94.47% with self-
consistency), followed by GPT-4.1-nano (93.07%) and GPT-
40 (91.93%). These findings suggest that self-consistency
can slightly improve grading reliability, and that even com-
pact models like GPT-4.1-mini and GPT-4.1-nano can ap-
proach human-level agreement in algebra autograding.
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1. INTRODUCTION

Grading constitutes a significant portion of teachers’ overall
workload. For example, the TALIS 2013 report highlights
that teachers spend approximately 6 hours per week marking
and correcting students’ work, while the Teacher Workload
Survey 2016 reports that secondary teachers spend around
8 hours on grading [6]. Prior to large-scale advancements
in large language models, auto-scorers were developed us-
ing pattern matching to compare student responses against
predefined answers or by parsing responses to detect specific
phrases to infer correctness [17, 18]. However, these meth-
ods face several limitations, such as the inability to recog-
nize equivalent variations of a response and the challenge
of identifying the exact position where the correct answer
appears within the student’s response. Since large language
models (LLMs) can generate and process text in a manner
more akin to natural language than past mechanical meth-
ods, have proved effective in various aspects of educational
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content production (e.g., hints, items, skill-tagging), and can
broadly support mathematics instruction in higher educa-
tion, the rise of generative Al and LLMs has sparked inter-
est in their potential to automate grading processes [15, 11,
10, 13].

Researchers have conducted studies on the efficacy of us-
ing LLMs as autograders, yielding mixed results, with most
research focusing on applications in open-ended non-STEM
subjects (e.g., humanities) [9, 2, 4] and open-ended STEM
subjects (e.g., computer science and engineering) [12, 14,
1, 3]. Historically, it has been assumed that STEM subjects
with closed-ended responses do not require sophisticated au-
tograding because answers can be checked verbatim. Pop-
ular mastery-based learning platforms like Cognitive Tutor
[8], ASSISTments [5], and OATutor [16] have leveraged this
approach, relying on exact answer matching to assess stu-
dent responses. However, when students show their work,
grading becomes more complex. Research has shown that
requiring students to show their work is an effective learning
strategy [7], but existing tutoring systems often do not sup-
port such responses because they are not trivially scorable.
Evaluating shown work requires parsing the student’s solu-
tion and determining whether it contains the correct answer.
This raises the question: now that LLMs exist, can they be
leveraged to grade responses where students demonstrate
their reasoning? In this work, we focus on the use case of
closed-ended autograding for responses that include shown
work.

Despite LLMs demonstrating average performance in solv-
ing algebraic problems [11], we argue that grading algebraic
responses should be a significantly easier task than actu-
ally solving the problems, as it primarily involves an equiv-
alency check rather than problem-solving. To evaluate the
feasibility of LLM-based autograding, we compare the grad-
ing outputs of OpenAI’'s GPT-40 against a manually graded
open-source dataset. If the LLM-generated correctness la-
bels closely align with human annotations, this would sup-
port the viability of using LLMs as scalable autograders, re-
ducing the need for manual grading while maintaining relia-
bility. In this work, we extend previous research in two ways:
(1) by evaluating three OpenAl models—GPT-40, GPT-4.1-
mini, and GPT-4.1-nano—on a shared algebra dataset and
(2) by testing the effect of an error mitigation technique
called self-consistency [19], where each response is graded
across multiple completions (10 iterations) and the modal
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result is returned.

Research Question:

e RQ: How closely do LLM-based autograders (GPT-4o,
GPT-4.1-mini, GPT-4.1-nano, with and without self-
consistency) agree with human-labeled correctness of
algebra worked solution responses?

2. METHODS

To evaluate the feasibility of using LLMs as autograders, we
compare Al-graded and human-graded correctness labels on
a large dataset of college algebra worked solution responses.
Our methodology has two key components: (1) producing a
ground truth dataset to utilize, where correctness labels are
evaluated by hand, and (2) implementing a grading pipeline
using three different LLMs, each evaluated using standard
prompting and self-consistency prompting.

2.1 Dataset Generation

To produce the dataset of worked solution responses to the
questions—originally introduced by Liu et al. [11] and avail-
able online!—a variety of LLMs were utilized to simulate
the human learner’s answer to 20 college algebra questions.
Given LLMs’ natural verbosity, prompting LLMs to an-
swer these questions resulted in not only the attempted an-
swer but also the steps taken to arrive at the answer (i.e.,
a worked solution). The dataset consisted of 21 columns:
the first column, Generating Model, specified the model or
source that generated the responses, while the remaining 20
columns (Q1 to Q20) indicated the correctness of answers to
the 20 questions. The dataset included responses from dif-
ferent generating models: 150 each per question from GPT-
4, GPT-3.5, Llama 3, Llama 2, Gemini, and Cohere. The
temperature setting for the LLMs was non-zero, allowing
for variability in the responses. A sample response to be
auto-graded is provided below:

Example input to autograder:

Given that m = 4 and the point (2,5), the equa-
tion of the line in slope-intercept form can be
found using the point-slope formula:

Y=y =mx— )

y—5=4(z—2)

y—5H=4r—8

y=4x -3

Therefore, the equation of the line passing through
the point (2,5) with slope 4 is y = 4z — 3.

The LLM-generated worked solution responses were all hand-
graded. The 150 responses per question across six models
led to a total dataset size of 18,000 hand-graded responses
(150 x 6 x 20).

"https://figshare.com/articles/dataset/
Leveraging_LLM-Respondents_for_Item_Evaluation_
a_Psychometric_Analysis/272634967file=49883421
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2.2 LLM-Based Autograder

We introduce an LLM-based autograder that evaluates cor-
rectness by comparing worked solution responses against a
predefined answer key. The autograder is designed to as-
sess equivalence in answers while maintaining strict accu-
racy. We define equivalence as algebraic equivalence; thus,
any response that simplifies algebraically to the provided
answer is considered correct. We use three OpenAl models:
GPT-40, GPT-4.1-mini, and GPT-4.1-nano. Each model is
evaluated using two prompting strategies:

1. Standard (Single) Prompting: A deterministic grading
prompt at default temperature.

2. Self-Consistency Prompting: The same prompt run 10
times at default temperature; the modal output ("True”
or "False”) is selected as the final grade.

Leveraging OpenAl’s structured schema response format to
ensure structured JSON-based outputs, we send a structured
prompt to the model, instructing it to compare a given re-
sponse against the corresponding correct answer. Specifi-
cally, we use the following system and user prompts:

System Prompt: You are an Al grader that evaluates
student responses for correctness. Equivalent answers
should be considered correct.

User Prompt: Check if the student’s response 'response’
matches the correct answer ’answer’. Output strictly
"True’ or ’False’.

Each model independently grades all 18,000 responses using
both prompting strategies. For the standard approach, the
model returns a single binary decision ("True” or "False”)
per response. For the self-consistency approach, we generate
10 completions at the model’s default temperature, allowing
variability in responses across the 10 completions, and select
the majority vote as the final grade.

To evaluate the accuracy of the autograder, we calculate the
percentage overlap between the correctness of the 18,000
autograded responses and the 18,000 manually graded re-
sponses, providing a quantitative measure of agreement be-
tween the Al-based and human grading approaches.

To ensure transparency and reproducibility, we provide all
source code along with all question text 2.

3. RESULTS AND DISCUSSION

We compute the agreement of the LLM with the human cor-
rectness labels. Table 1 summarizes the agreement scores
across three OpenAl models—GPT-40, GPT-4.1-mini, and

GPT-4.1-nano—each evaluated with and without self-consistency.

GPT-4.1-mini achieves the highest agreement at 94.47% when

using self-consistency, followed closely by GPT-4.1-nano (93.07%)

and GPT-40 (91.93%). Without self-consistency, perfor-
mance drops slightly for all models. Across all models, self-
consistency yields marginal accuracy improvements. No-

*https://github.com/CAHLR/Autograder



Table 1: Model-wise Agreement with Human Grading Labels (Across 18,000 Responses)

Model and Grading Method

Overall Accuracy (Agreement)

GPT-4.1-mini (Standard)

GPT-4.1-nano (Standard)
GPT-4o (Self-Consistency)
GPT-40 (Standard)

GPT-4.1-mini (Self-Consistency)

GPT-4.1-nano (Self-Consistency)

94.47%
94.42%
93.07%
92.26%
91.93%
90.64%

tably, GPT-4.1-mini outperforms both GPT-40 and GPT-
4.1-nano, even in its standard mode, suggesting that these
models can offer both efficiency and high grading reliability.
Although the gains from self-consistency are modest (less
than 1%), they appear consistent across all models.

Interestingly, previous studies have reported GPT-40 achiev-
ing approximately 92% accuracy in algebra problem-solving
tasks [20], making our observed grading accuracy (91.93%)
notably close to these prior findings. It is somewhat sur-
prising that the accuracy is not closer to 100% given that
the ground truth correct answer was known by the auto-
grader. Table 2 provides a detailed breakdown of agreement
percentages for each of the 20 questions. While most ques-
tions exhibit high overlap (>90%), a few questions, such
as Q6, Q13, and Q14, show lower agreement. Questions
with notably lower agreement may involve more complex
algebraic steps, notation inconsistencies, or multiple equiva-
lently correct forms, making grading decisions more subjec-
tive. Table 3 compares LLM-assigned correctness percent-
ages to human-graded values across all 20 questions.

There are several limitations and areas for future research.
While our results show promising agreement across models,

future work should examine misclassified responses—especially

for questions with lower agreement scores such as Q6 and
Q16—to identify specific error patterns. Although we ex-
plored self-consistency as a strategy to improve reliability,

further investigations could assess whether alternative prompt-

ing methods (e.g., prompt engineering or fine-tuning) could
improve the autograder’s reliability. Another major limita-
tion is that the evaluated responses were generated by LLMs
themselves, not by real students. Thus, further studies using
authentic student-generated worked solutions should vali-
date these findings. Third, our subject scope is fairly limited
since we focus exclusively on college algebra. Future work
should explore other mathematical topics or entirely differ-
ent disciplines (e.g., physics, chemistry) to assess the gen-
eralizability of LLM-based autograding. Additionally, due
to variability in LLM-generated responses, particularly in
structure and notation, there were formatting inconsisten-
cies. This may have an impact on grading consistency. Fi-
nally, while this study compares three LLMs from OpenAl,
broader evaluations that include models from other families
(e.g., Claude, Gemini, or Llama) could yield further insight
into which models are best suited for educational autograd-
ing tasks.

4. CONCLUSION

In this study, we leverage an existing dataset with manually
graded worked solution responses to 20 college algebra ques-
tions as the ground truth for evaluating LLM-based auto-
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grading. We develop a grading pipeline using three OpenAl
models—GPT-40, GPT-4.1-mini, and GPT-4.1-nano—and
compare their output correctness labels to human-provided
labels. Each model is evaluated under two conditions: stan-
dard prompting and self-consistency. Results show that
GPT-4.1-mini with self-consistency achieves the highest agree-
ment with human grading (94.47%), followed by GPT-4.1-
nano (93.07%) and GPT-40 (91.93%). Accuracy modestly
improves with self-consistency across all models. While this
accuracy approaches that which would be usable in real-
world scenarios, it is notable that these accuracy rates closely
align with GPT-40’s previously reported performance on
algebra tasks, especially given the autograder is told the
ground truth correct answer. Further methods to mitigate
grading inaccuracies should be explored, such as prompt
iteration, model selection, and post-processing techniques.
Since perfect agreement is not achieved, educators and re-
searchers should exercise caution when relying solely on LLM-
based autograder outputs until a method for perfect accu-
racy has been introduced.
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