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ABSTRACT

The application of machine learning techniques to educa-
tional datasets has great potential to improve our under-
standing of learning processes. However, there are privacy
concerns in the community about the datasets and models
that are being developed using student interactions. This
limits the development of Al in education. Differential pri-
vacy provides a mathematical framework that limits what
can be inferred about an individual in a data set. In this
study, we apply differential privacy techniques to knowl-
edge tracing models and analyze the privacy-utility trade-off
across three distinct privacy accounting methods. Our as-
sessment offers insights into the practical challenges of im-
plementing privacy-preserving knowledge tracing. We de-
fine differential privacy at the user level, where protection
extends to a student’s entire sequence of interactions. Our
study shows that knowledge tracing models respond differ-
ently to privacy constraints, with deep knowledge tracing
models maintaining competitive performance under differen-
tial privacy. We address important considerations for appli-
cation of differential privacy, including optimal hyperparam-
eter selection and evaluation of privacy accounting methods
that balance strong privacy guarantees with model perfor-
mance.

Keywords
Differential Privacy Knowledge Tracing Moments Accoun-
tant Sequential Composition

1. INTRODUCTION

Working with educational data requires protecting the pri-
vacy of the student. The simplest approach is to anonymize
the data by removing names, social security numbers, or
other direct identifiers. However, such data may still be
vulnerable to reidentification methods, which leverage cor-
relations, summary statistics, or other knowledge to infer
personal information from anonymized datal[5, 17]. For ex-
ample, in an anonymized dataset of test scores on multiple
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subjects, someone who knows a student’s score in one sub-
ject could use that knowledge to determine their scores in
the other subjects. Differential privacy (DP) goes beyond
anonymization to provide strong, statistical guarantees for
privacy via randomization [4].

DP is widely used in a growing number of industries. Apple
leverages local differential privacy to enhance user-level pri-
vacy in personalized services such as suggestions and health
analytics applications. Microsoft incorporates DP in its
Azure platform, which enables privacy-preserving data anal-
ysis for cloud-based services. The US Census Bureau also
uses DP techniques to protect the confidentiality of respon-
dents, as part of the new Disclosure Avoidance system. The
implementation adds controlled noise at different geographic
levels and demonstrates how privacy protection can be ap-
plied while maintaining the utility of demographic analy-
sis [18].

In this paper, we investigate the application of DP to ed-
ucational data mining, focusing specifically on knowledge
tracing. Knowledge tracing is the task of modeling student
knowledge states from their interaction history to predict
performance on future questions. This is a core task in ed-
ucational data mining with applications in adaptive learn-
ing systems, personalized feedback, and educational resource
optimization.

Numerous studies investigate potential threat scenarios in
learning analytics, including risks of re-identifying individ-
uals in educational datasets [26, 22, 24, 14, 21, 10, 23].
Others explore various perturbation approaches in differen-
tial privacy [13]. However, very little of this work focuses
on specific applications, such as knowledge tracing, or the
unique challenges of applying differential privacy to deep
learning in education. Knowledge tracing is different from
other differential privacy settings because of the dynamic,
sequential nature of knowledge tracing tasks, where each
interaction potentially reveals sensitive information about a
student’s learning progress and cognitive states. We address
this gap by examining the unique challenges of applying dif-
ferential privacy to knowledge tracing tasks by examining a
broader spectrum of differential privacy theories and tech-
niques. Our research makes several distinct contributions.

e We discuss how differential privacy can be applied to
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the knowledge tracing setting, including defining the
problem formally.

e We use existing tools to implement differentially pri-
vate versions of three knowledge tracing methods: (1)
BKT [25], a well-established probabilistic learner mod-
eling approach; (2) DKT [19], which uses recurrent
neural networks to capture complex patterns in stu-
dent interaction sequences; and (3) MonaCoBERT [11],
a transformer-based approach that leverages contex-
tual representations for knowledge tracing.

e We evaluate private knowledge tracing methods on
six datasets in order to (1) determine which private
method is most accurate; (2) compare the performance
of private and non-private methods; (3) explore the
tradeoff between greater privacy (smaller epsilon) and
greater accuracy (higher AUC); (4) compare the guar-
antees offered by different DP accounting methods,
namely Privacy Random Variable, Rényi Differential
Privacy, and Gaussian Differential Privacy(GDP).

Overall, our findings show that we can offer DP guarantees
for knowledge tracing, with DKT offering the strongest per-
formance overall and performing nearly as well in the private
setting as in the non-private setting (for € < 8).

2. DP KNOWLEDGE TRACING

We now provide brief background on differential privacy
(DP), while explaining how these concepts can be applied
to the knowledge tracing setting.

2.1 Differential Privacy

The definition of differential privacy [4] centers around the
notion of neighboring datasets, where D and D’ belong to
the set S of all Datasets. The probability of a specific event
resulting from a query on the dataset D is compared to the
outcome for a query on dataset D’. Differential privacy en-
sures that these probabilities differ by at most a factor of e®,
making it infeasible to distinguish whether an individual’s
data was included or excluded based solely on the query
results. Therefore, the privacy level is quantified by the ex-
ponential privacy parameter €, a non-negative real number
that measures the degree of privacy protection.

Definition 1. A mechanism M is (g, d)-differentially pri-
vate if for all pairs of adjacent datasets D and D’, where
D’ differs from D by one data point z, and for all subsets
S C Range(M), the following inequality holds:

Pr[M(D) € S] < e - PriM(D’) € S] + 4. (1)

The ¢ term accounts for privacy failures in ways that cannot
be accounted for in e — DP . The § represents a small prob-
ability of exceeding the privacy loss bound set by e.[1][16].

This definition turns out to have many nice mathematical
properties, which has made it a popular framework for ana-
lyzing privacy. One of those properties is sequential compo-
sition:
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THEOREM 1  (SEQUENTIAL COMPOSITION). If Fi(z) sat-
isfies e1-differential privacy, and Fa(x) satisfies e2-differential
privacy, then the mechanism G(z) = (Fi(x), F»(x)) satisfies
(e1 + e2)-differential privacy [4].

This means that when multiple queries are performed on
the same dataset, the total privacy budget is the sum of the
individual budgets.

2.2 Problem Definition

We now discuss how DP can be applied to knowledge trac-
ing. The knowledge tracing task aims to model a student’s
evolving knowledge state from their interaction history. The
knowledge tracing task can be formalized as follows: given a
sequence of observed student interaction consisting of ques-
tions ¢; and responses r;, the objective is to estimate the stu-
dent’s latent knowledge state to predict their correct/incorrect
answers on subsequent questions. Specifically, given a test-
set of users’ question and response sequences ys,q4 € {0,1}
and predictions ps,q from the model, the task is to predict
the probability of a correct response for the next question
in the sequence based on previous performance.

Model performance is evaluated through binary classifica-
tion metrics, where Area Under the ROC Curve (AUC)
quantifies the model’s ability to discriminate between correct
and incorrect responses. Root Mean Square Error (RMSE)
is used to measure the magnitude of the prediction error on
the test set. The key difference in making knowledge tracing
private is to precisely define the guarantee we’re seeking to
enforce. For standard DP definitions, the two datasets D
and D’ being compared differ in a single element z; for DP
knowledge tracing, we consider two datasets that differ in a
single user, including all of their answers:

Definition 2. A knowledge tracing mechanism M is (g, §)-
differentially private if for all pairs of adjacent datasets D
and D’, where D’ differs from D by the addition or removal
of one user’s entire sequence of interactions (q1,71) ... (¢i,7:),
and for all subsets S C Range(M), the following inequality
holds:

Pr[M(D) € S] < e - PrIM(D’) € S] + 4. (2)

Therefore, knowledge tracing can be defined as a randomized
mechanism that adheres to (g, d) -differential privacy.

This turns out to be a very strong definition of privacy, one
that works even against an attacker who knows every single
student in the dataset D and the hypothetical student that
might or might not be in the dataset D’.

2.3 Moments Accountant

We now briefly describe the moments accountant method, a
foundational privacy accounting technique, that yields bet-
ter bounds for deep learning [2].

The privacy loss random variable (3) quantifies how output
probabilities of mechanisms differ between adjacent datasets
d and d'.



Definition 3. For neighboring datasets d, d’, a mechanism
M, auxiliary input auz, and outcome o, the privacy loss is
defined as:

Pr[M(aux, d) = o]

. " A
¢(0; M, aux, d, d’) = log PriM(aux,d’) = o]

®3)

am(Naux,d,d) £ log Eon mM(aux,a) [€xp(Ac(o; M, aux, d, d")]

(4)
The Ath moment (4) of the privacy loss for a mechanism M,
denoted as an(A;aux,d,d’), is defined as the logarithm of
the moment generating function evaluated at A [2]. Track-
ing log moments of this random variable allows composition
across training steps, providing the foundation for privacy
accounting and enabling us to report precise budgets. In the
formal expression, c(0; M, aux, d,d’) represents the privacy
loss for output o, aux is auxiliary input, and d and d’ are
neighboring databases.

2.4 Renyi Differential Privacy

Rényi Differential Privacy(RDP) [15] provides a theoretical
framework for privacy accounting, formalizing the concept
of moments accountant method. RDP measures privacy loss
using Rényi divergence between output distributions.

Definition 4. For probability distributions P and @, the
Rényi divergence of order o > 1 is defined as:

1 P(x)

logE.~
a_1°% @ |:<Q(CU)

A randomized mechanism f satisfies (o, e)-RDP if for any

adjacent datasets D, D’

Da(f(D) || f(D)) < ¢

Da(P Q) = (5)

(6)

This approach provides tight composition bounds and allows
tracking privacy budget during training.

3. EMPIRICAL EVALUATION
3.1 Datasets

Six benchmark datasets were used in training knowledge
tracing tasks. The ASSISTments datasets are an exten-
sive collection of anonymized student data from the AS-
SISTments learning platform [7], for selected school years *.
The datasets adhere to privacy protocols, with the person-
ally identifiable information removed. The Algebra datasets
were a part of the 2010 KDD Cup Educational Data Mining
Challenge 2. The competition included two Algebra devel-
opmental datasets for two separate academic years. EANET
consists of large scale student interaction logs collected from
Scala, an intelligent tutoring system [3]. Knowledge tracing
datasets typically contain fields that capture various aspects
of student interactions with educational platforms. These
generally include student identifiers and unique IDs for ques-
tions or exercises attempted. An important field is skill or
knowledge component, which links each problem to specific
concepts or topics. Each interaction may have specific time
stamps and correctness indicating performance.

"https://sites.google.com /site/assistmentsdata/home/2009-
2010-assistment-data
2https://psledatashop.web.cmu.edu/KDDCup
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3.2 Procedure

We evaluate a standard BK'T model on the six datasets. The
evaluation uses procedures described in the literature[19] [9],
using five-fold cross-validation and computing single AUC
values from accumulated predictions. The parameters of
the Bayesian Knowledge Tracing model, an instance of Hid-
den Markov Model, used in Yudelson, Koedinger, and Gor-
don [25] are A = {II, A, B} where II is the Priors matrix, A is
the Transitions matrix, and B is the Emissions matrix. The
model is defined by two key probability distributions that de-
scribe the probability of transitioning between states and the
probability of observations from states. These parameters
are optimized to maximize the likelihood of observed student
performance data, enabling the model to track students’
knowledge states and predict performance. We train BKT
on a per-skill basis, treating each skill’s data as an inde-
pendent set. If we have K disjoint datasets D1, Ds, ..., Dk,
where each dataset D, contains distinct and non-overlapping
data, and each dataset Dy is independently analyzed with
a mechanism satisfying ej-differential privacy, then the pri-
vacy budget for the overall dataset D = U,ﬁil D), remains
the same as the privacy budget for each individual dataset.
That is,

ep =max{er : k€ {1,2,...,K}}.

If all mechanisms are run with the same privacy parameter
€, then:

ED = €.

We employed the Opacus library, a framework for privacy-
preserving deep learning. The experiments closely followed
the best practices described in [20] [8]. For MonacoBERT,
a batch size of 2048 was used. For the Deep Knowledge
Tracing model, a smaller batch size of 1024 was sufficient
for achieving good AUC. Since higher batch sizes reduce the
noise scale in gradient estimates and directly improve model
utility while maintaining robust, these batch size choices
were critical to achieving good performance under differen-
tial privacy constraints. The clipping norms were chosen to
match the distribution of per-example gradient magnitudes
[12].

3.3 Results and Discussion

We evaluated four models across six datasets, comparing
their performance in private and non-private settings. Re-
sults for all datasets are shown in Table 1. Deep Knowledge
Tracing (DKT) emerged as the best performer across most
datasets. The model was trained for 600 epochs with a gra-
dient clipping threshold of 0.5 and a noise multiplier of 6.0,
consistently achieving privacy budgets around 7. Both DKT
and DKT+ exhibit minimal degradation under differentially
private settings.

In the non-private setting, the deep learning methods demon-
strate strong predictive performance. For the Assistments2009
dataset, DKT achieved an AUC of 0.80 in the non-private
setting and maintained a competitive AUC of 0.79 when
privacy-preserving constraints were applied. Similar trends
were observed for Assistments 2017 and Assistments 2017,



Table 1: Results for different datasets under Private and non-Private settings

(a) Assistments 2009

(b) Assistments 2012

KT Models Non-private Private KT Models Non-private Private

AUC RMSE AUC RMSE € AUC RMSE AUC RMSE €
BKT 0.71 04147 0.69 0.5761 7.15 BKT 0.62 0.6145 0.57 0.5935 8.25
DKT 0.80 0.4073 0.79 0.4527 6.46 DKT 0.71 0.5558 0.70 0.5748 7.12
DKT+ 0.80 0.4195 0.78 0.4928 6.23 DKT+ 0.70  0.5476 0.70 0.5621 6.74
MonaCoBERT 0.79 0.4136 0.75 0.4453 6.81 MonaCoBERT  0.77 0.4532 0.71 0.4872 6.81

(c) Assistments 2017 (d) EdNet
KT models Non-private Private KT models Non-private Private

AUC RMSE AUC RMSE € AUC RMSE AUC RMSE €
BKT 0.59 0.6236 054 0.6672 8.14 BKT 0.64 05715 0.59 0.5927 7.95
DKT 0.72 0.4765 0.70 0.4784 7.15 DKT 0.72 0.5754 0.69 0.6012 7.22
DKT+ 0.72 0.4462 0.71  0.4622 6.95 DKT+ 0.73 0.5681 0.69 0.6125 7.55
MonaCoBERT 0.71 0.4340 0.68 0.4776 7.85 MonaCoBERT  0.81 0.5449 0.68 0.5421 7.18

(e) Algebra 2006 (f) Algebra2005

KT models Non-private Private KT models Non-private Private

AUC RMSE AUC RMSE € AUC RMSE AUC RMSE €
BKT 0.70  0.4285 0.69 0.5065 6.99 BKT 0.71 0.5105 0.68 0.5467 6.99
DKT 0.80 0.4634 0.78 0.4865 7.45 DKT 0.81 0.4552 0.79 0.3932 6.21
DKT+ 0.80 0.4372 0.78 0.4741 6.96 DKT+ 0.80 0.4671 0.78 0.4210 7.62
MonaCoBERT 0.80 0.4382 0.74 0.4886 6.72 MonaCoBERT 0.81 0.3928 0.75 0.3425 6.20
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Figure 1: Predictive performance (AUC) of differentially pri-
vate knowledge tracing models on Assistments 2009 under
different privacy budgets (g). A smaller budget corresponds
to a stronger privacy guarantee but a less accurate model.

where DKT achieved an AUC of 0.75 in both private and
non-private settings. The model also showed promising re-
sults on EdNet, achieving an AUC of 0.72 non-private and
0.69 in private setting. The results demonstrate that Deep
Knowledge Tracing, which leverages recurrent neural net-
works to model student performance, can maintain strong
predictive capability under differential privacy. Differen-
tially private DKT-plus shows performance comparable to
DKT. In the Assistments2009 dataset, it achieves the same
AUC of 0.80 in non-private settings and 0.78 under privacy
constraints. For experiments under non-private settings,

MonaCoBERT shows consistent performance with AUC scores

ranging from 0.71 to 0.81 and 0.68 to 0.75 in private settings.
Therefore, the results indicate that DKT and DKT+ are re-
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Figure 2: Impact of Privacy constraints on Knowledge Trac-
ing models for Assistments 2009

silient to differential privacy constraints. MonaCoBERT, de-
spite achieving strong performance in non-private settings,
experiences a large decline in AUC.

Figure 1 demonstrates the performance of the models under
privacy constraints, € = 1.0 through 10.0. In this method,
a target privacy budget ¢ is specified, and Opacus adjusts
the noise multiplier ¢ during training to achieve the de-
sired privacy level. The relationship between epsilon € and
model performance using three different privacy accounting
methods: Rényi Differential Privacy, Gaussian Differential
Privacy, and Privacy Random Variable are shown in Fig-
ure 2. The graph tracks the three accounting mechanisms
over 600 training epochs, revealing different relative bud-



gets. Previous literature [6] has shown that GDP tends to
underestimate privacy budgets and the graph shows that
GDP reports lower epsilon values overall compared to RDP
to achieve the same AUC. Although RDP exhibits slightly
conservative privacy budget estimates, it provides a more
reliable option to calculate the privacy guarantee through
its tighter composition bounds.

4. CONCLUSION

In this work, we implement differential privacy with a focus
on user-level sequence protection. We demonstrated that
good privacy guarantees can coexist with utility. We employ
several privacy accounting techniques to compare cumula-
tive privacy losses. Empirical results in educational datasets
demonstrated a reasonable trade-off in AUC and privacy

budgets. This study provides a foundation for privacy-preserving

knowledge tracing. This paves the way for a wider applica-
tion of privacy-preserving Al in education.
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