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ABSTRACT
In this paper, we introduce a novel approach to automate
course equivalency evaluation across multiple colleges using
publicly available data, deep embedding models, and tradi-
tional machine learning. The current process of determin-
ing course equivalency is labor-intensive, requiring manual
assessment of course descriptions or syllabi, which is ineffi-
cient and could cause delays for students matriculating into a
school. We leverage deep learning to generate semantic em-
beddings from raw course descriptions retrieved from school
websites and then apply traditional machine learning to clas-
sify course equivalence. Our findings demonstrate that this
automated approach can significantly improve upon exist-
ing manual processes, achieving an F1-score between 0.971
and 0.996. Moreover, the flexibility of embeddings permits
expanded applications such as semantic search and retrieval-
augmented generation while reducing computational cost.
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1. INTRODUCTION
Matriculating students between institutions requires a labor-
intensive evaluation from advisors who are well versed in the
nuances of course learning outcomes. This process involves
the manual assessment of course descriptions and/or syllabi
to determine whether a particular course from one college
may be directly transferable to another course that is offered
at the receiving college. These challenges are compounded
by varying accreditation standards across disparate entities
and the diverse program objectives that make it difficult
to match equivalent courses [15]. Furthermore, educational
standards and curricula outside of the U.S. introduce yet
another layer of complexity to this already demanding task.

The consequences of incorrect execution of course equiva-
lency evaluations can be substantial, potentially delaying
student progress and even forcing them to retake courses al-
ready completed. This challenge is particularly acute given
the State of California’s especially complex public higher
education system, which consists of three public school sys-
tems: University of California (UC), California State Uni-
versity ( CSU), and California Community Colleges (CCC) [6].
In 2023, these three systems served nearly 2.9 million stu-
dents [20, 4, 3] and nearly 588,000 students enrolled in Cali-
fornia community colleges transferred into four-year univer-
sity programs within six years [6].

The process of matriculating students transferring from one
California college to another consists of consulting articula-
tion agreements through Assist.org, the official course trans-
fer and articulation system for California’s public colleges
and universities [1]. This system relies on manual updates by
college administrators who must evaluate individual courses,
making it an inefficient and slow process. Because all 149
colleges and universities within the California higher edu-
cation system have to handle the course pairings for every
discipline from every other possible originating campus, the
current process often leads to delays and may result in in-
accurate or outdated information for students.

While this problem has seen some attention in prior work,
a comprehensive and scalable solution remains elusive. Pre-
vious efforts have relied on using private data and custom
algorithms. In our previous work, we have explored the ap-
plication of prompt engineering and in-context learning with
large language models to determine course equivalency by
using publicly available course descriptions [12]. While the
results were promising, the alternative solution proposed in
this paper offers increased flexibility, reduced computational
costs, and significantly improved accuracy. For example, the
embedding-based k-NN algorithm achieves an F1-score be-
tween 0.971 and 0.996.

The following sections will outline related research and our
own efforts, provide an overview of our data, methodologies,
and evaluation metrics, discuss our preliminary findings and
analysis, and conclude by considering future research possi-
bilities and potential applications of our work.

2. RELATED WORK
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Table 1: Initial Embedding Model Review

Model Name Rank∗ Params† Dims Acc

GIST-small-Embedding-v0 41 33 384 0.9759
bge-small-en-v1.5 47 33 384 0.9670
GIST-Embedding-v0 33 109 768 0.9768
bge-base-en-v1.5 35 109 768 0.9732
gte-base-en-v1.5 31 137 768 0.9732
mxbai-embed-large-v1 24 335 1024 0.9759
gte-large-en-v1.5 21 434 1024 0.9777
multilingual-e5-large-inst 34 560 514 0.9670
stella en 1.5B v5 3 1543 8192 0.9857
SFR-Embedding-2 R 4 7111 4096 0.9839
Agte-Qwen2-7B-instruct 5 7613 3584 0.9804
nvidia/NV-Embed-v2 1 7851 4096 0.9831
∗ Huggingface Overall Leaderboard Rank
† in Millions

2.1 Applications of Semantic Embeddings
The emergence of Large Language Models (LLMs) and their
ability to process free-form text has brought substantial growth
in the automation of tasks involving text analysis and un-
derstanding, but requires significant compute and energy re-
sources [27]. Despite finding increased popularity in applica-
tions such as semantic retrieval [11], similarity search [13],
and various other tasks [14], the alternative case of using
semantic vector representations has remained relatively un-
derstudied [22].

2.2 Traditional Machine Learning
Traditional machine learning (ML) consists of a vast set of
tools to understand data that dates back to 1936 [9]. Ap-
plying ML techniques such as regression, support vector ma-
chines, and random forests to semantic embeddings as fea-
tures may lead to improved performance in tasks such as
text classification and similarity analysis. Since deep em-
beddings have been found to be dimensionally robust, ML
performance may remain strong even when evaluating high-
dimensional data [22]. With the vast diversity of course
subject matter, deep embeddings have a great potential to
maintain the context of course descriptions beyond what is
possible with traditional representations.

2.3 Educational Data Mining (EDM)
Within the domain of Educational Data Mining (EDM),
technological advancements spurred the use of technology
and data collection in education [2]. Machine learning is
regularly applied to address issues such as student dropout
and graduation prediction [26], course recommendation [16,
7, 18, 10], and curricular design [19, 25]. This study comple-
ments content-based course recommendation by preventing
redundant course selections, thus facilitating personalized
academic planning.

3. METHODS AND ALGORITHMS
An initial analysis of various open-source deep-learning em-
bedding models was completed to discern whether there was
a significant difference between models. See Table 1 for this
list of models and their respective characteristics. Next, we
selected a dataset of equivalent and non-equivalent courses
from 63 college campuses throughout California with a total
of 228 courses. A labeled dataset of equivalent and non-
equivalent course pairs was then generated. It was with

Figure 1: Methods Applied

this data that we then used the deep-learning embedding
models to generate semantic vector embeddings. Finally, a
difference vector was created from each pair, which provided
us with the feature vectors that were subsequently used to
train a host of traditional machine learning classifiers. See
Figure 2 for a diagram illustrating the methods applied.

3.1 Data Overview
Five required lower-division courses for the Computer Sci-
ence major (Calculus I, Discrete Math, Machine Structures,
Intro to Programming, and Data Structures) were selected
from San Francisco State University (SFSU). These courses
were chosen to provide a sufficiently difficult evaluation set.
Using Assist.org, articulation agreements mapping these
courses to SFSU from other California colleges and univer-
sities were gathered.

Course descriptions were manually collected from their cor-
responding college websites. This course data was copied
completely and included: department codes; course codes;
titles; descriptions; metadata (e.g. prerequisite requirements,
unit count, and grading options); and special characters
(e.g. punctuation and line breaks). Assuming symmetry and
transitivity for equivalent courses, course descriptions were
then paired up with equivalent and non-equivalent courses,
with a final set of 5660 equivalent and 5660 non-equivalent
course pairs.

3.2 Distance Metric
Although cosine similarity is often used on embeddings to
distinguish and rank texts according to semantic similar-
ity [21], finding an appropriate decision boundary and thresh-
old for equivalency is not feasible. A ranked cosine similar-
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ity search only produces relative similarities, and does not
provide enough insight to make an informed decision about
whether two courses are interchangeable. This method could
work for courses that are highly dissimilar, but would not
be suitable for nuanced decisions for courses that may be
similar, but not equivalent.

Because of this major disadvantage, we propose a simple,
yet powerful distance measure that captures local and global
disparities in course embedding spaces. Our distance mea-
sure ∆ = f (A,B), with A,B ∈ Rk as embedded features
of course texts of dimension k, captures local and global dif-
ferences. We then construct our distance vector by concate-
nating the elementwise differences to the cosine similarity as
follows:

∆c =

(
a1 − b1, . . . , ak − bk, A ·B

∥ A ∥∥ B ∥

)
, (1)

where A = (a1, . . . , ak) and B = (b1, . . . , bk). This measure
was chosen for its simplicity and effectiveness at improv-
ing the results of linear classifiers (Figure 2). Each of these
feature vectors were then labeled with respect to their equiv-
alency. An ablation study was also performed to determine
the effect of omitting cosine similarity, which we denote as
∆l. Various dimensionality reduction techniques were also
employed for both exploratory data analysis and equivalency
evaluation.

With the distance measures calculated, an 80/20 training
and validation split was applied and a hyperparameter grid
search using 5-fold cross-validation (CV) of the training set
for all the models was completed.

3.3 Models
Our approach began with a preliminary analysis of a variety
of open-source deep-learning embedding models as shown
in Table 1. This analysis was completed by evaluating the
similarity between positive (i.e. equivalent) and negative
(i.e. non-equivalent) pairs; the model is correct if the sim-
ilarity between the anchor and an equivalent course text
was greater than the similarity between the anchor and a
non-equivalent course text. This evaluation was sufficient
enough to help narrow down the list of models for further
study. With preliminary results showing relatively close
scores across all the embedding models under consideration
(sample accuracy x = 0.9767 and sx = 0.00605), we selected
“bge-small-en-v1.5” (BGE), “GIST-Embedding-v0” (GIST),
and “NV-Embed-v2” (NVE), representing small, medium,
and large parameter size categories, respectively (see Table 2
for details).

Within the domain of machine learning the “curse of dimen-
sionality” has been well documented [17, 23, 5]. Our dataset
of 11,320 observations should be sufficient for both of the
smaller embedding models, but could pose a problem when
using NVE, which uses 4096 dimensions. To empirically
verify how dimensionality reduction may affect the classifica-
tion results, we applied principal component analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE), and
Pairwise Controlled Manifold Approximation (PaCMAP),
to the embeddings [24].

Towards this end, we first applied PCA and calculated the

the number of principal components that had 70%, 80%, and
90% explained variance for each embedding model. Using
these values along with 4 and 7 dimensions, we trained each
model and tested each of the 8 classification models with the
transformed vectors.

Armed with our ∆c and ∆l distance vectors, we proceeded to
apply a brute-force hyperparameter grid search using 5-fold
CV during training using the following classification mod-
els: Logistic Regression (LR), Ridge Regression (Ridge),
Lasso, K-Nearest Neighbors (k-NN), Support Vector Ma-
chine (SVM), Random Forest (RF), Linear Discriminant
Analysis (LDA), and Quadratic Discriminant Analysis (QDA).

4. RESULTS
We begin by reviewing the performance of linear models.
In Figure 2, we show that all linear models (LR, Ridge,
Lasso, and LDA) benefitted significantly from the inclu-
sion of cosine similarity in the distance metrics (p-val ∈
[7.71×10−16, 6.92×10−15]). Whether dimensionality reduc-
tion made a significant difference depends on your choice of
p-val threshold (p-val ∈ [0.062, 0.096]), but the models suf-
fered an overall reduction in performance when t-SNE was
applied (p-val ∈ [1.63× 10−12, 1.63× 10−12]).

Non-linear models (k-NN, SVM, RF, and QDA), on the
other hand, generally fared better than the linear models
(p-val ∈ [1.11 × 10−5, 0.053]), and were not significantly in-
fluenced by the inclusion or omission of cosine similarity
(p-val ∈ [0.315, 0.962]). Unlike the linear models, dimen-
sionality reduction generally impacted performance nega-
tively (p-val ∈ [0.0014, 0.012]), with QDA clearly being pos-
itively impacted by dimensionality reduction. Nevertheless,
the QDA results look suspicious and warrant further exam-
ination.

Out of all the traditional machine learning classification
models, we found the most success with k-NN, SVM, and
RF. These three models boasted F1-scores ranging between
0.916 at the worst to 0.999 at the best, with SVM yielding
the most impressive classification performance of the three
(Figure 2). There are computation, memory, outlier sensi-
tivity, dimensionality, and training factors to consider for
each model [8], but the balance afforded by k-NN and RF
suggests that they are the most suitable choices for future
research in this application.

5. LIMITATIONS & FUTURE WORK
Despite promising results, the dataset used is limited and
only contains a small set of courses articulated to SFSU.
In addition, the assumption of symmetry and transitivity
likely does not hold in the real world. For example, a busi-
ness Calculus course will likely not be sufficient to satisfy an
engineering-focused Calculus course, but the reverse would.
Another set of cases that were omitted from this dataset
were many-to-many and many-to-one course equivalency re-
lations. We have obtained an expanded dataset that in-
cludes many more campuses and disciplines, so the dataset
limitation will be addressed soon. Another area to explore
would be various distance measures beyond our chosen one;
the effectiveness at simply concatenating cosine similarity
to the embeddings produced significant improvements with
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Table 2: Embedding Models & PCA Explained Variance

Explained Variance
# of

Parameters
Embedding (# of PCs)

Model Name (in Millions) Dimensions 70% 80% 90%

BAAI/bge-small-en-v1.5 33 384 28 45 76
avsolatorio/GIST-Embedding-v0 109 768 23 40 73
nvidia/NV-Embed-v2 7851 4096 20 37 73

Figure 2: F1-score test results from best hyperparameters in search

linear classifiers, so exploring other methods of measuring
differences between embeddings could prove fruitful. One
final area of investigation to be completed is exploring task-
optimized fine-tuning of embedding models to evaluate whether
such optimized models may produce even better results than
those produced so far.

6. DISCUSSION
Applying traditional machine learning techniques with se-
mantic embeddings as feature sets may provide an alterna-
tive to computationally expensive foundation models. In
addition, embeddings can be stored, reducing the redun-
dancy of repeated computation, which facilitates more ef-
ficient last-mile classification. Beyond just pairwise course
equivalency evaluation, the flexibility of embeddings pro-
motes other applications such as semantic search and re-
trieval augmented generation. Thus, finding courses by sub-
ject matter, general education requirement attributes, and
many more applications could be unlocked with the use of
semantic embeddings.

Small task-optimized embedding models could perform as

well as (or better than) the larger embedding models used
in this study. For example, as shown in Figure 1, the small-
est embedding model (BGE) exhibits similar and sometimes
better performance when compared with the two larger mod-
els. Although large language models are extremely powerful
and have been shown to exhibit surprising reasoning capabil-
ities, it is important to select and use the right model for the
right task. Applying such models arbitrarily require tremen-
dous amounts of compute and energy to run it. By carefully
choosing our methods, we can benefit from the state-of-the-
art discoveries without brute-forcing technologies best suited
for more complicated tasks.
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