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ABSTRACT
Knowledge tracing models have enabled a range of intelligent
tutoring systems to provide feedback to students. However,
existing methods for knowledge tracing in learning sciences
are predominantly reliant on statistical data and instructor-
defined knowledge components, making it challenging to in-
tegrate AI-generated educational content with traditional
established methods. We propose a method for automat-
ically extracting knowledge components from educational
content using instruction-tuned large multimodal models.
We validate this approach by comprehensively evaluating it
against knowledge tracing benchmarks in five domains. Our
results indicate that the automatically extracted knowledge
components can effectively replace human-tagged labels, of-
fering a promising direction for enhancing intelligent tutor-
ing systems in limited-data scenarios, achieving more ex-
plainable assessments in educational settings, and laying the
groundwork for automated assessment. 1

Keywords
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1. INTRODUCTION
Intelligent Tutoring Systems (ITS) are advanced computer
programs that provide personalized and adaptive educational
instruction to learners. For over half a century, they have
been a subject of active research and discussion in the in-
terdisciplinary field of education and artificial intelligence
[28]. These systems integrate techniques from artificial intel-
ligence to deliver tailored instruction, dynamically adjusting

1Codes are available at https://github.com/DoniMoon/
LLMKT
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Figure 1: Overview of our experiment. We evaluate the
quality of extracted knowledge components by utilizing
them in two validation tasks, Knowledge Tracing (KT) and
Additive Factor Model (AFM).

to the needs and progress of individual students. By sim-
ulating one-on-one tutoring, ITS offer immediate and spe-
cific feedback, enhancing student engagement and improving
learning outcomes. This combination of real-time adapt-
ability and personalized feedback makes ITS a valuable tool
in modern education, bridging the gap between traditional
classroom methods and individualized learning approaches
[31].

Knowledge Tracing (KT) is a foundational task in Intelligent
Tutoring Systems (ITS), aiming to model a student’s knowl-
edge state and predict future performance on educational
tasks. Traditional KT models rely heavily on statistical
techniques to analyze historical problem-solving data. Early
approaches, such as Bayesian Knowledge Tracing (BKT),
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used hidden Markov models to estimate the probability of a
student knowing a particular skill at any given time [7].

More recent models have leveraged advancements in ma-
chine learning, particularly deep learning, to enhance pre-
dictive accuracy [1]. Deep Knowledge Tracing (DKT) was
one of the first models to apply recurrent neural networks
(RNNs) to KT, demonstrating significant improvements over
BKT by capturing the sequential nature of students’ learn-
ing processes. Subsequent models such as Self-Attentive
Knowledge Tracing (SAKT) and Separated Self-AttentIve
Neural Knowledge Tracing (SAINT) have further refined
these approaches [5, 32].

Knowledge Components (KCs) are defined within the Knowledge-
Learning-Instruction framework as acquired units of cogni-
tive function or structure that can be inferred from perfor-
mance on a set of related tasks [19]. While we cannot di-
rectly observe the changes in a student’s KCs, we infer them
through interactions during assessment and instruction. In
Knowledge Tracing, each problem is often labeled with its
corresponding KCs, which are typically assigned by human
experts based on their expected relevance to the problem
and statistically validated for their ability to explain stu-
dent performance.

There are several methods to define these KCs. [35] in-
troduces four categories of domain modeling: ‘KCs as dis-
joint sets’, ‘Multiple KCs per item’, ‘Hierarchy of KCs’, and
‘KCs with prerequisites’. In the KT domain, the most com-
mon approaches are modeling KCs as disjoint sets or map-
ping multiple KCs to an item. The simplest approach is
to map each question to a single KC, as used in Bayesian
KT, SAKT, and SAINT. When mapping multiple KCs, the
relationship between KCs and items is represented in a Q-
matrix, where rows represent questions and columns repre-
sent KCs. Cognitive Diagnosis Models (CDM) like DINA,
NIDA, and generalized DINA use this Q-matrix for KT [10],
thus supporting multiple KCs labeled for each question.

Well-defined KCs are essential for accurately predicting learner
performance, building effective adaptive learning systems,
and providing efficient learning support and improvement.
Due to this importance, research has been conducted to
improve KC models through Difficulty Factors Assessment
(DFA) and to evaluate the improvements using the Additive
Factors Model (AFM), ultimately creating better learner
models [23, 18].

Our research proposes a novel approach leveraging the instruction-
tuned Large Multimodal Model (LMM) to extract and uti-
lize Knowledge Components (KCs) from educational con-
tent. Figure 1 illustrates the overall architecture of our ap-
proach. Our method involves parsing educational materials
to extract text and images, using the GPT-4o API to iden-
tify and describe inherent KCs, and clustering similar com-
ponents based on sentence embeddings. This automation
not only improves KC extraction but also enhances the pre-
diction of student performance on new and unseen content.

We observed performance improvements when using LMM-
generated KCs as additional features in various KT meth-
ods. For example, in the Performance Factors Analysis

(PFA) method, LMM-generated KCs resulted in greater per-
formance increases compared to human-generated KCs. Other
KT methods also showed comparable performance improve-
ments. Additionally, we analyzed the performance factors
of generated KCs using the AFM.

We compared LMM-generated KCs to human-generated KCs
by using them in four different knowledge tracing models
across six datasets. Overall, when using LMM-generated
KCs, we demonstrated comparable or superior performance
to human-generated KCs. To encourage further research in
this area, we have refined and publicly released KT bench-
marks with content data across five domains. By providing
these benchmarks, we aim to facilitate the development of
more advanced KT methodologies that can fully utilize the
potential of LMM-generated KCs.

In summary, our contributions are three-fold:

1. Introducing a novel zero-shot KC generation method-
ology that can be applied to general domains and di-
verse modalities supported by LMMs.

2. Our automatically generated KCs model students’ prob-
lem-solving data as effectively as human-created KCs
in both KT and AFM.

3. We publish a reproducible KT benchmark with parsed
content data, advancing content-aware Knowledge Trac-
ing methods.

2. RELATED WORK
2.1 Utilizing LLMs to improve ITS and Knowl-

edge Tracing
The emergence of advanced NLP tools in recent years, es-
pecially instruction-tuned LLMs like ChatGPT, has signifi-
cantly enhanced ITS by providing natural, human-like inter-
actions [22, 13]. Large language models (LLMs) have been
shown to provide support in a range of areas, including, but
not limited to, planning learning instruction [16], scaffold-
ing [12, 25], and helping students solve math word problems
[15]. They assist learners in multiple ways, such as partici-
pating in back-and-forth instructional conversations [21, 38]
or providing feedback to students [9, 14].

Moreover, LLMs have also been used to improve the accu-
racy and performance of the KT models in the backbone of
ITS. LM-KT was proposed to perform KT even when there
is no prior problem-solving data from the student. The LM-
KT model trains GPT-2 to perform Knowledge Tracing on
content without any prior student interaction records [41].
In a basic second-language acquisition problem space, LM-
KT models student success rates based on the input of nat-
ural language sentences as questions. Following LM-KT,
other work has shown that leveraging the generalizability
of LLMs can enhance the performance of Knowledge Trac-
ing [29, 45] and address cold-start problems [20]. However,
their applicability to other domains is limited, as the lan-
guage model needs to be fine-tuned on the specific domain.

LLMs have the ability to digest information from source
documents which can help with extracting information from
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Figure 2: Overall procedure of extracting knowledge components. First, we extract knowledge components using GPT-4o
API from the parsed question content. Then, we calculate sentence embedding for all descriptions of the generated knowledge
components. At last, we group each knowledge components into similar semantic group using a clustering approach.

large-scale educational data; for example, they have been
used for summarize content by intention [40] or extracting
key points out of educational data [8]. However, the appli-
cation of LLMs to improve the performance of KT models,
specifically by assisting in the process of KC extraction, has
been rare in the literature. We address this gap by provid-
ing and evaluating a structured KC extraction method using
LLMs in the loop, with the goal of improving the accuracy
of KC models while reducing the need for human labeling
labor.

2.2 Extracting Knowledge Components
Commonly, the assignment of KCs to questions is done by
human experts, e.g., instructors [42]; however, this requires
manual labor, making it less suitable for course offerings
with a high number of questions. As a result, previous
researchers have explored methods to move from expert-
annotated KCs towards extracting KCs from the problem
information automatically, which can aid in developing more
accurate KT models. For example, a methodology to extract
KCs from documents using classical NLP techniques and an-
notate these documents for application in adaptive online
textbooks has been proposed [43]. Additionally, there is a
study that validated the accuracy of a method for automati-
cally generating skills for problems by fine-tuning a language
model on problem and skill label data to enable computer
adaptive tests [42].

Unlike previous studies, we perform the task of tagging the
Knowledge Components (KCs) required by questions with-
out using pre-trained problem data or provided schemas of
knowledge components. Additionally, we focus on generat-
ing entities that clearly correspond to the previous concept
of ‘knowledge component’, rather than simply using terms
like skill, knowledge, or tag, and we conduct validation for

the KCs. The study most closely related to ours analyzed
the relation of questions and KCs using LLMs [27]. This
study uses pre-trained LLMs to verify that if a problem
generated from a single KC is a good one, there is a strong
dependency on that KC, for the purpose of evaluating au-
tomatically generated questions. Conversely, we aim to ex-
tract KCs directly from the questions, under the assumption
that each question is designed to test specific knowledge.

3. METHODOLOGY
As illustrated in Figure 2, our overall pipeline involves pre-
processing student interaction data enriched with content
information, extracting KCs, evaluating the quality of the
extracted KCs, and analyzing their utility across various KT
methods.

3.1 Dataset
We chose to process the OLI datasets from CMU Datashop2

since the OLI Statics2011 dataset is a well-known bench-
mark for knowledge tracing which has publicly available con-
tent data[18, 1]. The Open Learning Initiative (OLI) project
provides research-based courseware suitable for various class
formats and supports advanced research. We gained ac-
cess to several domains of OLI learning content from CMU
Datashop. The preprocessing code for the datasets is pub-
licly available, and to facilitate reproduction while protect-
ing the content data, the parsed files for each dataset have
been uploaded to the corresponding entries in Datashop.

From CMU Datashop, all transaction data was extracted by
selecting “all data” in the “Export” tab and choosing “By
Transaction” in the detailed options. The content data was
collectively downloaded by clicking the “Download Problem

2https://pslcdatashop.web.cmu.edu/
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Figure 3: Clustering Scores used to determine the number of clusters in oli statics. The left graph (Elbow Method) shows the
WCSS (y-axis) values for different numbers of clusters (x-axis), indicating that WCSS gradually decreases as the number of
clusters increases. The right graph (Silhouette Score) presents the silhouette scores measured over the same range of cluster
numbers, generally showing that the score tends to rise and fluctuate as the number of clusters increases.

Content”button in the“Dataset Info/Problem List”tab. We
used the swftools package 3 in the Windows OS environment
to extract images from the SWF file, which is not supported
anymore due to the deprecation of Flash support.

all mp3 files are converted into text files, using whisper-
large-v2 [36].

3.1.1 OLI Engineering Statics
For the Statics dataset, we used the Fall 2011 version4.
While other versions included a wider variety of KC mod-
els, the number of users and transactions was smaller com-
pared to other statics benchmarks. Therefore, we considered
the Fall 2011 version to be the superset and used it. The
KC model named F2011 was used as the human tag. The
original 361,092 transactions were reduced by about half to
189,047.

3.1.2 OLI Principles of Computing
The content of the OLI computing dataset 5 was different
from other subjects, as it contained content from multiple
subjects under the root directory. To maintain consistency
with the method used for processing other datasets, only
the content from Principles of Computing v 1 10, which in-
cludes the version in the subject name, was used. The
KC models principles_of_computing_1_13 and princi-

ples_of_computing_1_10 were used to calculate AFM scores.
The transaction data was filtered to include only those con-
taining this content. As a result, the original transaction
dataset, which had 37,233 rows, was reduced to 16,951 rows.

3.1.3 OLI French
We used the ‘French1 - Spring 2014’ dataset for the French
dataset6. Since it included various KC models, we used Bon-
nie’s Model, which had the best AFM performance. To train

3http://www.swftools.org/
4https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=507
5https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=1806
6https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=918

AFM, Level4 KC model, which also reports good AFM per-
formance, is used. This dataset contained many items with
voice mp3 files, so we converted these files to text using
the whisper-large-v2 model and inserted the transcriptions
into the question text. At the position in the HTML where
the mp3 execution was embedded, we prefixed the converted
text with ‘[transcription of embedded mp3 file]:’. Out of the
total 278,489 rows of transactions, the final remaining data
consisted of 53,255 rows.

3.1.4 OLI Biology
We used the ‘Oli biology’ dataset from the ‘Bridge to Suc-
cess’ project for the Biology data7. The KC model named
intro biology-1 0 was used as the human label. After pro-
cessing, 3,285,685 rows remained out of the original 5,852,795
rows of transactions.

3.1.5 OLI Psychology
We used the ‘Psychology MOOC GT - Spring 2013’ dataset
for the Psychology data8 and utilized the KC model named
psychology-1-4. After processing, 1,935,496 rows remained
out of the original 2,493,609 rows of transactions.

3.2 Knowledge Component Extraction
To leverage the capabilities of instruction-tuned LLMs for
educational purposes, we first focus on extracting knowl-
edge components from educational content. Our approach
involves the following steps:

3.2.1 Content Processing
The content data available from the CMU DataShop con-
sists of HTML pages representing the learning materials
that students interact with [18]. We parsed this data, ex-
tracting text and images from Flash files embedded within
the content, and converted MP3 files into text data using
the whisper-large-v2 model [36]. We processed the image
files to embed them in the Chat Template for the OpenAI

7https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=1148
8https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=863
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Understanding how to calculate the x and y components of forces.
Applying trigonometric functions to resolve forces into perpendicular components.
Understand how to decompose a force into its perpendicular components.
Calculate the position vector from point O to the point of application of each force.
Learn how to represent forces using vectors.
Decomposing a given force into its x and y components based on angles provided.
Decompose a force into its components.
Using trigonometric functions to resolve forces into components.
Calculate the x and y components of a vector given its magnitude and direction.
Use sine and cosine functions to resolve forces into their components.

Understand how to determine sense and direction of a force.
Assigning labels to the identified forces based on their origin and point of interaction.
The direction and point of application of a force determine how it contributes to the equilibrium conditions.
Recognize that forces can act in multiple directions.
Understanding the appropriate direction of force at a given point.
Determine the resultant direction of the applied force from one body to another.
Determine the force labels in the context of the question.
Understanding the direction and magnitude of vertical forces in a system.
The vector represents the magnitude and direction of a force.
Predicting the directions of forces exerted at a joint based on given resultant forces.

Figure 4: Example of the knowledge components belonging to the cluster Trigonometric Relationships (above) and Moment
Calculation (below) in Statics dataset.

API 9, preserving their positions and order from the original
HTML content where the images were located. Each prob-
lem was matched with the corresponding steps in the CMU
DataShop transaction data, creating datasets for five sub-
jects: Statics, Psychology, Biology, Computing, and French.

3.2.2 Knowledge Component Extraction Prompt
Using the OpenAI API for the GPT-4o model, we extracted
the knowledge components for each problem as shown in Fig-
ure 2. Each problem can have multiple knowledge compo-
nents, with each component consisting of a name field (1–3
words) and a description field (1–2 sentences). We applied
this basic zero-shot prompt from Fig. 2 only once and, being
satisfied with the qualitative output, did not undertake any
further prompt tuning.

3.2.3 Clustering Knowledge Components
The extracted KCs consisted of natural language sentences,
which occasionally referred to the same topic but with differ-
ent sets of words. To utilize these components for problem
correlation and be able to assign the same identifiers to se-
mantically similar KCs, we needed to group them together.
To do this, we computed sentence embeddings for each com-
ponent and performed clustering based on similarity. The
optimal number of clusters was determined by maximizing
the silhouette score of the clustering [37]. We compared the
performance of the Sentence-T5-XXL model [30] and Ope-
nAI’s text-embedding-3-large model for this task 10.

Figure 3 shows the WCSS and Silhouette Score of the K-
means clustering method as the number of clusters varies
from 2 to 200 in the oli statics dataset. Due to the insta-
bility of the Silhouette Score when the number of clusters

9https://platform.openai.com/docs/guides/vision
10https://openai.com/index/
new-embedding-models-and-api-updates/

is very small, we analyzed cases where the number of clus-
ters is greater than 10. Each point in Figure 6 represents the
local maximum Silhouette Score within one of the 10 bins di-
vided between the range of 10 to 200 clusters, and the AFM
performance was measured using these cluster numbers.

Meanwhile, for zero-shot implementation, using more than
100 KCs, which maximizes the Silhouette Score, made it im-
possible to have at least one problem with each KC in both
the train and test splits. Therefore, we used the number of
clusters at the local maximum of the third bin, where such
splits were feasible for all datasets. The selected numbers of
clusters were 52, 63, 52, 61, and 49 for computing, statics,
French, psychology, and biology, respectively.

3.3 Knowledge Component Quality Evaluation
To validate the effectiveness of our knowledge component
extraction method, we conducted a comprehensive quality
evaluation across five different datasets. Using the Additive
Factors Model (AFM), we measured the Root Mean Square
Error (RMSE) and compared it with the RMSE of human-
generated KC mappings for each dataset. This evaluation
provided a robust assessment of the accuracy and reliability
of the LLM-extracted knowledge components.

The KCs used in this validation were evaluated by measuring
the silhouette score of K-means clustering from 2 to 200
clusters. We automatically determined the optimal number
of clusters by detecting the knee point of the silhouette score
change [37, 39]. To further verify the quality of KCs based on
the level of clustering, we divided the entire range of 2 to 200
clusters into ten sections. For each section, we identified the
point where the silhouette score was at its local maximum
and observed the performance change of the AFM when KCs
were generated with the corresponding number of clusters.

RMSE was measured not only for the entire dataset but also
in environments where student ID information and item ID
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information were masked, respectively. This ablation ex-
periment was done to identify which biases the model was
utilized to demonstrate performance. For performance mea-
surement, we utilized PyAFM, a Python implementation of
the AFM [26].

To better understand the Knowledge Components (KCs)
categorized through clustering, the most frequent name within
each cluster was selected as the representative name for that
cluster, alongside the descriptions included in that cluster.
As illustrated in Figure 4, these names typically consist of
2-3 words, such as Trigonometric Relationships or Moment
Calculation. In most clusters, approximately one-third of the
items shared the same name, which was then chosen as the
mode and designated as the cluster’s representative name.

3.4 Knowledge Tracing Baselines Using KCs
Using the extracted knowledge components, we used code
from prior work [11] to conduct KT with IRT, PFA, DAS3H,
SAKT, and DKT. In our implementation of PFA, we also
considered incorporating a student-specific intercept—an en-
hancement reported to boost performance in recent work
[6]—but observed degraded results across all configurations;
consequently, we omitted student intercept encoding in our
final PFA setup.

In the experiments of the previous section, the performance
of the OpenAI embedding model was superior to that of the
T5-XXL model, so we evaluated the KCs generated using the
OpenAI text-embedding-3-large model. Among these, IRT is
an algorithm that does not use KCs, while PFA and DAS3H
use a Q-matrix. SAKT and DKT operate in environments
with disjoint KCs, so we used joint skill assignments. Joint
skill considers the combination of KCs assigned to each ques-
tion as a single KC [44]. For example, a problem with KC 1
and KC 2 is treated as having a distinct KC different from
a problem with only KC 1.

To compare the impact of the KCs generated by our algo-
rithm, we prepared four types of baselines. The Random
setting assigns all KCs randomly as a baseline. The Human
setting uses the highest-performing human-generated KCs
tagged in each dataset from CMU Datashop.

In addition, we also measured the zero-shot KT performance
on completely unseen items. To achieve this, we created a
train-test split where no items overlap between the train and
test sets, but the KCs of the items in the test set appear at
least once in the train set. Then, we applied logistic regres-
sion to the KCs-aware features to determine the zero-shot
performance across each domain. By splitting the dataset
in this manner, we ensured that the model’s ability to gen-
eralize to new items was rigorously tested. This approach
allowed us to evaluate the robustness and adaptability of
our LLM-generated KCs in handling novel content.

3.5 Detailed Experiment Settings
3.5.1 LMM Inference

Figure 5 shows the prompt used as the system role. The
random seed for the API was set to 42, and the problem
was provided in the user role. The problem was appended
with the postfix ‘Content:\n\n’. Images were uploaded and

Prompt

Extract the knowledge components required to solve
this question. Each knowledge component has two
fields:

• Name: 2 to 4 words

• Description: 1 sentence

Output is in JSON format, like:

{

"knowledge_components": [

{

"name": "knowledge component 1",

"description": "understand

how to apply kc 1"

}

]

}

Figure 5: GPT-4o prompt used for knowledge components
extraction

encoded in base64, and the prompt was generated to place
the images between the text, preserving their positions as
closely as possible to their actual locations in the problem.

3.5.2 Zero-Shot Knowledge Tracing
We implemented zero-shot knowledge tracing using the same
codebase11 that was used for KT implementation[11]. The
logistic regression setup was configured to experiment with
various combinations of features, specifically utilizing the s,
sc, tc, tw, w, and a tags. These options allow us to use fea-
tures that record which KCs are present, how many times
each KC appears in the user’s history, the total number of
problems the user has solved, the total number of problems
the user has correctly solved, and how many attempts were
made for each problem within a time window. When se-
lecting these options, we understood the code and chose all
relevant options, but did not compare with other options
due to the absence of a validation set.

3.6 Quality of the Generated Knowledge Com-
ponents

3.6.1 AFM Analysis
For AFM inference, we used the Python implementation
compatible with the CMU DataShop format12. The mapped
KCs were post-processed in the same scheme as when trans-
actions are exported with the ‘By Transaction’ option from
CMU DataShop, and the inference was performed using this
code. We were unable to conduct AFM analysis on the
Psychology and Biology datasets because the memory us-
age of the code increases proportionally with the transac-
tion length. The required memory exceeded 40GB, which
could not be handled by the computational resources used
in this study, specifically a MacBook M3 Pro with 36GB of

11https://github.com/theophilegervet/
learner-performance-prediction

12https://github.com/cmaclell/pyAFM
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Table 1: Examples of assigned Knowledge Components and the descriptions
(a) oli statics

Generated Name Description KC Name
Item ID: 1273
Reading comprehension Understand the text of the question and the op-

tions provided.
identifying correct option

Multiple choice format Recognize the structure of a multiple choice ques-
tion and how to select an answer.

understanding question
format

Decision making Decide between the given options based on the
question’s requirements.

identifying correct option

Item ID: 1097
Summation of Forces Understand that ΣF y = 0 denotes the summation

of all forces in the y-direction equaling zero.
Force Equilibrium

Force Equilibrium Recognize that the condition ΣF y = 0 implies a
state of force equilibrium in the vertical direction.

Force Equilibrium

Multiple Choice Questions Know how to interpret and answer multiple-choice
questions.

multiple choice format

Selecting Correct Answer Identify the correct option based on given condi-
tions and context.

identifying correct option

(b) oli psychology

Generated Name Description KC Name
Item ID: 2066
Human Eye Anatomy Understanding the different parts of the human

eye and their functions.
Young-Helmholtz theory

Iris Location The iris is positioned between the cornea and lens,
controlling the amount of light that enters the eye.

Young-Helmholtz theory

Item ID: 709
Reasonable Mind Concept Understanding that the decision involves logical

planning and time management.
True or False Questions

Wise Mind Concept Recognizing the balance between emotional and
reasonable mindsets, though not applicable here.

Identifying emotions

Emotional Mind Concept Understanding that decisions driven purely by
emotions are not being considered in this scenario.

Identifying emotions

Time Management Skills The ability to plan and allocate time effectively
for various activities including work, study, and
social events.

True or False Questions

shared memory. We used 3-fold cross-validation, adopting
the default hyperparameters from the original AFM imple-
mentation [26].

4. RESULTS
Figure 4 provides an example of generated KCs descriptions
classified into the same cluster, represented as Trigonomet-
ric Relationships. Figure 6 shows the performance change of
AFM with varying cluster numbers. When item information
is masked, performance relies solely on the general ability
of each student and KCs information, making it highly de-
pendent on KCs quality. While overall and student-masked
performance improved with more clusters, item-masked per-
formance deteriorated, indicating that more clusters do not
necessarily mean better KCs and suggesting room for im-
provement in verifying KCs consistency.

Table 3 compares the AFM performance of KCs selected
using OpenAI’s embedding API, Sentence-T5-XXL embed-
dings, and human experts in the statics, french, and comput-
ing domains. The results using OpenAI’s embeddings con-
sistently outperformed Sentence-T5-XXL. Given that pre-
vious research has shown the superior performance of Ope-
nAI’s embedding models [3], it can be concluded that as em-

bedding models improve, the performance of KCs is likely to
improve as well. However, both methods still showed com-
parable or better overall performance than human-created
KCs, while item-blocked cross-validation performance was
worse.

In the context of automatically generated KCs, the item-
blocked performance of the AFM tends to be somewhat
lower compared to that observed with human-defined KCs.
We attribute this phenomenon to the AFM’s reliance on
the Opportunity Count feature. As the number of tags in-
creases, the opportunity count values input for each predic-
tion converge toward zero, leading to a sparsity of informa-
tion that can adversely affect model performance.

As demonstrated in Table 2, all three subjects experienced
a substantial increase in the number of generated KCs com-
pared to the original sets. Specifically, Figure 6 provides
compelling evidence that item-blocked performance dimin-
ishes as the number of KCs escalates. This trend is fur-
ther supported by the significant disparity in AFM perfor-
mance observed in the oli french dataset, where the original
human-created KCs numbered only seven. In the computing
dataset, the KC count increased from 41 to 118, and in stat-
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Figure 6: AFM performance change based on the number of clusters.

Table 2: Summary statistics of generated KCs for different OLI courses.

Course # KCs Avg. KCs per item % Multi-KC # KCs in gold

oli computing 118 3.14 91% 41
oli statics 187 3.01 94% 81
oli french 196 2.91 94% 7
oli biology 197 2.1 71% 275

oli psychology 187 2.08 69% 226

Table 3: AFM scores. RMSE columns are the full cross-
validation score, and - Student and - Item columns are the
performance when the corresponding feature is blocked. ope-
nai and T5-XXL are our generated KCs, while the others
were created by humans.

Model RMSE - Student - Item

OLI statics
openai 0.395 0.403 0.465
T5-XXL 0.395 0.404 0.478
F2011 0.394 0.403 0.407

OLI french
openai 0.363 0.374 0.388
T5-XXL 0.376 0.385 0.409
Bonnie 0.345 0.354 0.346
Level4 0.354 0.358 0.355

OLI computing
openai 0.397 0.401 0.491
T5-XXL 0.398 0.402 0.502
poc 1 13 0.416 0.422 0.432
poc 1 10 0.428 0.433 0.435

ics from 81 to 187—approximately doubling in both cases.
In contrast, the oli french dataset saw an increase from 7 to
196 KCs, a 28-fold amplification, which likely intensified the
observed effect on AFM performance.

Thus, while the AFM is capable of effectively evaluating per-
formance in multiple-KC systems, we infer that significant
discrepancies in the number of KCs can lead to inequitable
comparisons between different KC sets. This finding implies
that when applying Knowledge Tracing (KT) methodolo-
gies, especially in contexts with vastly differing KC counts,
it is crucial to consider the potential impact on model per-
formance assessments. Careful examination of these factors
is essential to ensure fair and accurate evaluations within
educational data mining and learning analytics.

As qualitative aspects of generated KCs, Table 1 presents
randomly selected content from the oli statics and oli psych-
ology datasets, showing the GPT-4o generated names and
descriptions for the KCs tagged to those contents and the
KC names classified by clustering. For the Biology and Psy-
chology datasets, the higher specificity of the topics often
resulted in all KCs within a single problem being classified
under the same tag, explaining the relatively low Multi KC
ratio in Table 2. Figure 4 displays example knowledge com-
ponents belonging to two clusters in oli statics dataset.

4.1 Effect on Knowledge Tracing Performance
Table 4 shows the results of the KT experiments. For PFA
and DAS3H, which are logistic regression-based KT models
that can utilize multiple KCs [33, 4], we find using the KCs
generated by our algorithm improves performance compared
to the Random baseline. Notably, in PFA performance, our
KCs outperform those of human experts across three do-
mains. We believe that these advantages stem from the rich
information provided by the multiple KCs tags per item.

When comparing model-wise performance, our generated
KCs exhibited a pattern similar to that of human expert
KCs. In certain datasets and models, using LMM-generated
KCs even showed a greater performance increase compared
to human KCs. This, along with the previous experiments,
supports the conclusion that our generated KCs explain the
training data as effectively as human experts.

5. DISCUSSION & LIMITATION
The goal of this work was to evaluate the effectiveness of
using LMMs to generate KCs directly from the text, figures,
and diagrams of questions. In an empirical evaluation using
AFM, we found that the KCs generated by our LMM-based
method matched the quality of human-generated knowledge
components. Our method worked across five different do-
mains (from computing to psychology to French) and four
different knowledge tracing models. Furthermore, in models
designed to work with multiple KCs per question, the KCs
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Table 4: Knowledge Tracing performance metrics (AUC). The IRT method doesn’t use any KC information. Only PFA
supports multiple KCs, while the other models concatenate all KCs and treat them as a single, independent KCs.

Knowledge Component Source KT Model French Computing Statics Biology Psychology

None IRT 0.822 0.809 0.797 0.743 0.781

PFA 0.619 0.604 0.600 0.595 0.590
Random DAS3H 0.873 0.816 0.804 0.762 0.793

SAKT 0.828 0.780 0.812 0.858 0.809
DKT 0.925 0.817 0.860 0.912 0.822

PFA 0.787 0.723 0.751 0.666 0.698
LLM (Ours) DAS3H 0.881 0.800 0.836 0.772 0.802

SAKT 0.869 0.802 0.854 0.869 0.815
DKT 0.918 0.835 0.883 0.915 0.828

PFA 0.752 0.699 0.693 0.671 0.698
Human DAS3H 0.911 0.840 0.843 0.768 0.801

SAKT 0.850 0.554 0.854 0.874 0.817
DKT 0.929 0.868 0.877 0.918 0.828

generated by our method outperformed human-generated
KCs in four of the five datasets. Our method has the poten-
tial to immediately improve the quality of intelligent tutor-
ing systems by making it possible to quickly generate high
quality KCs for practically any set of questions.

5.1 Towards More Refined Domain Modeling
As reviewed by previous work [35], Modeling the teaching
domain with KCs has the potential to achieve greater gran-
ularity and richer informational content by assigning multi-
ple KCs to a single item, modeling hierarchical relationships
among KCs, or capturing prerequisite structures. However,
in practice, it has often been the case that KCs are directly
derived from curricula classifications, leading to a one-to-
one mapping between problems and KCs [42]. Consequently,
Transformer-based KT models, such as SAINT and SAKT,
have been designed to utilize this straightforward mapping
[5, 32]. However, given that real-world problems typically re-
quire the interconnection of multiple KCs, this approach de-
viates significantly from the intended role of KCs as“units of
cognitive function” within the original Knowledge-Learning-
Instruction framework [19].

Moreover, recent studies have increasingly diverged from the
original definition of KCs, treating them as mere metadata
to be leveraged for enhancing KT performance. There have
been instances where KCs have been used interchangeably
with terms like knowledge concepts [2] or generalized into la-
bels such as knowledge, tag, or skill [42]. This shift risks un-
dermining the connection between KCs and learning science
fields, such as recommendation systems that rely on KCs to
provide meaningful educational insights. Therefore, it is cru-
cial to maintain the integrity of KCs, ensuring they are not
reduced to simple metadata for performance enhancement
purposes. We note that in this work we use ”Knowledge
Components” as our primary term and subsume related no-
tions (e.g., concept, skill, tag) under this unified definition.

As large language models continue to advance, enabling the
successful execution of more complex cognitive tasks, there
is a growing opportunity to construct more sophisticated
KC frameworks. These frameworks could consider hierarchi-
cal and prerequisite relationships with significantly reduced

overhead, offering more robust and nuanced models for ed-
ucational contexts. Moving beyond the AFM, there is a
pressing need for enhanced methodologies that can leverage
highly detailed KCs and evaluate their quality. Revisiting
discussions on Cognitive Diagnosis Models may also help us
remain focused on the core issues at hand [10].

5.2 Linking to Zero-Shot Knowledge Tracing
A key direction for future research, as proposed by this
study, is the development of Zero-Shot KT techniques me-
diated by KCs. Currently, KT models are predominantly
optimized for interaction data, rendering assessment infea-
sible without prior records. This limitation is particularly
problematic for ITS, where KT models a student’s knowl-
edge state based on their problem-solving history to predict
future performance [1]. Despite the advances brought about
by transformer architectures, these models still rely heavily
on the statistical properties derived from problem-solving
records. This approach contrasts sharply with human ed-
ucators, who can intuitively assess knowledge and identify
deficiencies without the need for extensive data histories.

The primary challenges associated with current KT methods
include:

1. The inability to manage educational content or stu-
dents without prior records, leading to cold-start issues
for both users and items.

2. Biases stem from an over-reliance on statistical data,
which can be influenced by the difficulty level of the
content or peer interactions.

3. In the case of Deep Neural Network models, opera-
tions that are theoretically expected are not always
guaranteed. For example, even if a learner answers
more questions correctly than before, the learner’s KT
prediction value may be lower than it was before an-
swering those questions [17].

While human educators also face challenges with user-cold
starts, they can manage biases more effectively by assess-
ing knowledge within learning materials and identifying the
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essential problem-solving skills. However, the subjectivity
inherent in human assessment remains a significant issue,
particularly in large-scale educational systems that struggle
to rely solely on human evaluation. In this context, LLMs,
with their capacity to quickly comprehend content and an-
alyze vast amounts of data, offer a promising alternative.

The most significant synergy between automatically gener-
ated KCs and Zero-Shot KT lies in the potential to enhance
KC frameworks without the constant need for human expert
evaluation. By leveraging performance comparisons across
existing KT benchmarks, much like the automated KC eval-
uation platforms provided by Datashop based on the AFM
[18], researchers can accelerate the research cycle, eliminat-
ing human bottlenecks and fostering rapid advancements in
educational technology.

5.3 Limitations
Our study has several limitations. First, our data prepro-
cessing led to significant losses—extraction from outdated
HTML (including deprecated Flash content), potential audio-
to-text conversion errors, and the exclusion of uncertain
mappings reduced transaction data by more than half. Sec-
ond, current KT models (SAKT and DKT) that rely on joint
skill modeling are not sufficiently advanced to fully assess
our detailed multi-KC approach. Finally, due to the visual
nature of some problems, we relied on images rather than
text, which prevented direct comparisons between Large Lan-
guage Models and Large Multimodal Models.

5.3.1 Losses in Data Preprocessing
Refining the content data proved challenging, resulting in
substantial losses. Extracting images from HTML files in-
cluding deprecated Flash elements and converting audio to
text introduced errors. The most substantial data loss oc-
curred during the mapping of content data to transaction
data. Due to incomplete metadata and the absence of con-
tent for some problems, we excluded any content with uncer-
tain mapping to ensure data accuracy. This process reduced
the original transaction data by over half.

5.3.2 KT Model Limitations
SAKT and DKT rely on joint skill modeling, which does not
fully capture the nuances of our multi-KC approach. Ad-
ditionally, AFM—being an older model—utilizes relatively
simple feature engineering to process time-series data, lim-
iting its ability to evaluate advanced KC details. Our pri-
mary focus was on developing detailed KCs, leaving further
refinement of KT methodologies for future work. Moreover,
it would be desirable for future work to support additional
KT frameworks—such as the multi-method pyKT library
[24] and the LKT framework [34]—so that our extracted
KCs can be evaluated across a broader and more diverse set
of models.

5.3.3 Access to Raw Content Data
While we have made all generated tags and refined data pub-
licly available, the parsed raw data remains accessible only
through CMU DataShop due to their policy. Because these
contents are actually used in educational settings, they can-
not be made publicly available without restrictions. How-
ever, obtaining access is straightforward and promptly pro-

cessed, and we have provided reproducible preprocessing
code to facilitate this. We are committed to ensuring the
usability of this benchmark by providing all necessary sup-
port for access.

5.3.4 Upper Bound on the Number of Clusters
As shown in Table 6, AFM’s overall RMSE continues to de-
crease even up to 200 clusters. In theory, a reversal would be
expected — an increase in RMSE due to overfitting — when
the cluster count becomes sufficiently large, but our exper-
iments were restricted to at most 200 clusters. Moreover,
we evaluated only three relatively small datasets (Statics,
Computing, and French), which further limited our ability
to explore higher cluster counts. These restrictions stem
from the computational burden that grows with both the
size of the dataset and the granularity of the cluster under
finite resources. We anticipate that the development of more
efficient algorithms for selecting the optimal number of KCs
would enable exploration beyond this bound and could yield
additional performance gains.

6. CONCLUSION
We have presented a novel, zero-shot approach that lever-
ages instruction-tuned large multimodal models (LMMs) to
automatically extract knowledge components (KCs) from
educational multimedia content. Unlike traditional meth-
ods—which rely on human-generated labels or purely statis-
tical techniques—our approach directly parses text, images,
and audio to generate detailed KCs. Experimental eval-
uations across five domains and multiple knowledge trac-
ing (KT) models (including IRT, PFA, DAS3H, SAKT, and
DKT) demonstrate that the LMM-generated KCs not only
match but often exceed the performance of human-defined
KCs, thereby improving the accuracy and interpretability of
student performance predictions.

In addition, by releasing refined KT benchmarks enriched
with these automatically generated KCs, we provide a valu-
able resource for the community to further develop advanced
KT methodologies. While our findings highlight the promise
of automated KC extraction in enhancing intelligent tutor-
ing systems, they also reveal key limitations—such as signif-
icant data losses during preprocessing and the constraints
of existing KT models in fully capturing the nuances of
multi-KC assignments—that must be addressed in future
research. Moving forward, integrating more sophisticated
domain modeling techniques and exploring zero-shot KT
strategies will be crucial for developing more personalized
and scalable educational systems.

Overall, our work lays a strong foundation for the next gen-
eration of content-aware KT models, bridging the gap be-
tween modern AI capabilities and educational practice.
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