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ABSTRACT
We investigated methods to enhance the generalizability of
large language models (LLMs) designed to classify dimen-
sions of collaborative discourse during small group work.
Our research utilized five diverse datasets that spanned vari-
ous grade levels, demographic groups, collaboration settings,
and curriculum units. We explored different model train-
ing techniques with RoBERTa and Mistral LLMs, includ-
ing traditional fine-tuning, data augmentation paired with
fine-tuning, and prompting. Our findings revealed that tra-
ditionally fine-tuning RoBERTa on a single dataset (serving
as our baseline) led to overfitting, with the model failing to
generalize beyond the training data’s specific curriculum and
language patterns. In contrast, fine-tuning RoBERTa with
embedding augmented data led to significant improvements
in generalization, as did pairing Mistral embeddings with
a support vector machine classifier. However, fine-tuning
and few-shot prompting Mistral did not yield similar im-
provements. Our findings highlight scalable alternatives to
the resource-intensive process of curating labeled datasets
for each new application, offering practical strategies to en-
hance model adaptability in diverse educational settings.
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1. INTRODUCTION
Collaboration in small group settings is central to K-12 ed-
ucation, higher education, and professional environments,
valued for fostering critical thinking, problem-solving, and
social interaction [20, 28, 39]. In K-12 settings, teachers play
a pivotal role in orchestrating small group collaboration by
monitoring group dynamics, guiding learning activities, and
encouraging meaningful discussions to probe deeper think-

ing and help students develop these skills [41, 54]. How-
ever, facilitating such interactions is complex, compounded
by substantial gaps in student collaboration skills. For ex-
ample, in collaborative problem solving (CPS) tasks where
students must work together to solve complex problems [16],
fewer than 10% of students reach top proficiency levels [34]
and fewer than 30% could solve low-complexity problems,
highlighting the need for targeted interventions [20, 22, 55].

A key barrier to improving collaboration skills is the lack
of consistent assessment and feedback methods [16]. Recent
efforts have leveraged Natural Language Processing (NLP)
models to analyze student discourse in small groups [47, 59,
3, 17, 49, 37]. For example, [37] fine-tuned RoBERTa to
detect CPS skills like constructing shared knowledge, coor-
dination/negotiation, and maintaining team function from
a validated framework [53]. These models generate insights
that enable immediate, actionable feedback as a means to
improve student collaboration skills [12]. By bridging the
gap between assessment and intervention, such innovations
have the potential to transform how collaboration skills are
nurtured and sustained in educational environments.

Generalization - the ability of models to transfer knowl-
edge from their training domain to novel contexts - is a key
desideratum in NLP, particularly in collaborative analytics
scenarios that span multiple curricula and modes of collab-
oration (e.g., remote vs. in-person). This ability is typically
evaluated by assessing a model’s performance on a dataset
distinct from the training dataset, taking into account the
differences between the distinct sources [27]. Developing
generalizable models is essential for broadening their ap-
plicability and impact. Further, models that can adapt to
diverse educational settings can ostensibly capture the nu-
anced and dynamic nature of collaboration more effectively,
providing meaningful feedback across varied contexts.

However, as we review below, current models of collabo-
rative discourse are optimized on single datasets that have
been laboriously annotated for indicators of collaboration
skills [53]. Utilizing these models in new contexts entails
collecting, annotating, and retraining the models on a new
dataset, an endeavor that does not scale to authentic educa-
tional settings where curricula and context may vary daily.
To address this limitation, we explored approaches to en-
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hancing the generalizability of NLP models of collaborative
discourse trained on a single domain across diverse curric-
ula. Additionally, we conducted a qualitative error analysis
to better understand which linguistic features contributed
to overfitting and generalizability, addressing the linguistic
basis of transfer across collaborative contexts.

2. RELATED WORK
NLP Approaches to Modeling Collaborative Discourse. A
growing body of research has explored the use of NLP tech-
niques to model collaborative discourse, leveraging language
data from text chats and transcribed speech to model CPS
skills like negotiation, regulation, and argumentation [59, 3,
47, 17, 49, 14, 50]. Early NLP approaches relied on ex-
tracted features like words, phrases, and part-of-speech tags
[18, 24, 42], but recent advances leverage pre-trained neu-
ral networks, which effectively capture the complexities of
collaboration [31, 37], generally outperforming earlier ap-
proaches [59].

Generalizability in Collaborative Discourse. Much of the ex-
isting work focuses on data from single domains or curricula,
leading to models that are highly specialized but lack the
broader, abstract representations necessary for application
in varied settings. This narrow focus limits the utility of such
models in real-world environments, where diverse contexts
and populations are the norm. This issue has received com-
paratively limited attention in collaboration analytics. One
study that investigated this issue in CPS models found that
fine-tuned BERT and a dictionary based approach (i.e., Lin-
guistic Inquiry Word Count) generalized from one domain
to another better than an an n-gram approach, suggesting
methods that learn abstractions beyond literal words en-
hance generalizability [36].

Similarly, [9] showed that adding contextual features (activ-
ity type, time of day, language) to their multimodal learning
analytics framework improved the generalizability of their
collaborative learning models. While this work offers general
insights, the authors relied on random forest machine learn-
ing models to conduct all aspects of their analyses, leaving a
gap for studies that explore deeper investigations into NLP
modeling approaches. Further, the impact of these studies
across varied contexts such as age groups, backgrounds, and
interaction modalities, as well as qualitative analyses of the
models remains unexplored.

Fine-Tuning vs. Prompting for Collaborative Discourse. A
fundamental challenge in computational modeling is balanc-
ing accuracy with generalizability. Furthermore, NLP mod-
els exhibit varying levels of generalizability depending on
their design and training. For example, fine-tuned large lan-
guage models (LLMs) are known for high task-specific ac-
curacy [57, 56], yet often risk overfitting and struggle with
generalization across contexts [10, 44]. Instruction-tuned
models such as GPT excel in zero-shot and few-shot scenar-
ios, making them effective for applications requiring domain
transfer [5, 32, 35]. However, their performance may vary
on tasks requiring complex, nuanced interpretations of di-
alogue, especially in classification tasks grounded in peda-
gogical frameworks.

Modeling collaborative discourse presents unique challenges

for LLMs compared to other NLP task types where they typ-
ically excel. Unlike tasks like text summarization or ques-
tion answering, which rely on language properties and fac-
tual reasoning, collaborative discourse involves social, cog-
nitive, and contextual dimensions. These include alignment
with pedagogical frameworks, turn-taking dynamics, and
reasoning about the problem solving context. Thus, simple
prompting approaches may struggle to capture the deeper
structures of collaboration, especially in real-world settings.

To this point, recent work has shown that in real-world ed-
ucational tasks, task-specific fine-tuning generally outper-
forms prompting [19], although performance is highly task-
specific. For tasks like determining whether an utterance
exhibits evidence of student reasoning (e.g., making sense of
concepts, justifying ideas) [11], prompting GPT-4 performed
well without any examples, since the task can be explained
through a simple descriptive prompt and can leverage cue
words like “because”. However, it struggled to classify the
more nuanced dimensions of collaborative discourse. An-
other study compared the accuracy of fine-tuned RoBERTa
and GPT-3 on teachers’ use of academically productive talk
moves and showed that GPT-3 struggled with recall and
underperformed on underrepresented categories [30]. These
studies underscore the importance of comparing fine-tuning
and prompting methods across tasks and domains [46].

Techniques for Enhancing Model Generalizability. To en-
hance generalizability without sacrificing accuracy, research
has explored augmentation methods such as adversarial train-
ing and embedding space perturbations [2]. Adversarial
training introduces perturbations into training data to cre-
ate adversarial examples that are slightly altered, encour-
aging the model to learn robust representations. It has
been shown to produce models capable of adapting to mul-
tiple tasks without requiring additional task-specific debi-
asing steps [15]. Embedding space perturbation specifically
involves swapping words with nearby ones in a continuous
vector space. Training data augmentation can also involve
generating paraphrased utterances, varying discourse struc-
tures, or introducing words from different domains, improv-
ing the robustness of models [43].

Comparing augmentation methods with a range of NLP
methodologies (traditional fine-tuning, prompting, and mod-
eling extracted embeddings) represents a pathway for bridg-
ing the gap between traditional NLP tasks and the complex
dynamics of collaborative learning, improving models that
more accurately support real-world teamwork and problem-
solving.

3. CURRENT STUDY, CONTRIBUTION, &
NOVELTY

In this study, we investigated the ability of NLP models
to classify collaborative discourse across diverse educational
contexts. We trained five NLP model types on one dataset
called Sensor Immersion (focused on a sensor programming
task), and tested them on four held-out datasets: (1) Physics
Playground (focused on an educational physics game), (2)
Minecraft Hour of Code (focused on block programming),
(3) Moderation Unit (focused on gaming system modera-
tion), and (4) Self-Driving Cars (focused on model car as-
sembly and programming).
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We considered RoBERTa [33] and Mistral 7B [29] mod-
els, leveraging traditional fine-tuning, fine-tuning with data
augmentation, embedding extraction paired with traditional
machine learning, and few-shot prompting. Fine-tuning in-
volves adjusting the weights of models for specific tasks,
while fine-tuning with augmentation mitigates overreliance
on context-specific terminology by perturbing training data.
Embedding and classifier methods extract utterance embed-
dings from an LLM for training a traditional machine learn-
ing model. Few-shot prompting provides models with con-
text and labeled examples within a prompt. This multi-
faceted approach allowed for a comprehensive examination
of techniques aimed at improving model adaptability. We
chose these models and approaches to represent current tech-
niques, but did not conduct a systematic ablation study of
all variants.

RoBERTa and Mistral were chosen for their size, open-source
accessibility, and specialization capabilities. RoBERTa is an
ideal baseline as it is widely used for fine-tuning, and its vari-
ants have a proven history in CPS modeling [37]. Mistral 7B,
a more recent state-of-the-art LLM, maintains strong perfor-
mance on specialized tasks and is a more parameter-efficient
open-source model than many newer LLMs [29]. Both mod-
els offer fast inference and low computational costs. Un-
like models like GPT and Gemini which require an API for
queries and fine-tuning (a barrier for use with sensitive ed-
ucational transcripts as in the present case) as well as more
resource-intensive fine-tuning processes, RoBERTa and Mis-
tral 7B provide balanced performance and efficiency.

Our task targeted the relationship dimension of collabora-
tion, emphasizing cognitive and social processes that fos-
ter positive team dynamics and the development of collab-
oration skills as an intrinsic goal [16, 20]. We focused on
the identification of three so called Community Agreements
(CAs), which are mutually-agreed upon norms of behavior
that students adopt to facilitate small group work in collab-
oration with their teachers [1]. These include: Committed
to our Community, Moving Thinking Forward, and Being
Respectful (hereafter referred to as Community, Thinking,
and Respect) [8, 4]. While prior research has shown that
NLP models effectively classify CAs within their training
domain [8], their ability to generalize remains unknown.

We investigated four research questions: (1) how model se-
lection and training strategies affect generalization across
collaborative contexts, (2) whether certain collaboration con-
structs are more prone to overfitting, (3) which model im-
plementations are robust to automated speech recognition
errors, and (4) what linguistic features underlie successful
generalization in NLP models of collaboration. We sought
to uncover practical strategies for enhancing the robustness
and adaptability of LLMs in analyzing classroom discourse,
ultimately advancing tools for fostering collaboration in ed-
ucational environments.

Our research is novel because it systematically investigates
the generalizability of NLP models of collaborative discourse
across diverse educational contexts. Unlike prior studies
that focus on single-domain models prone to overfitting,
we explore multiple techniques across five distinct datasets
varying in student populations, interaction modalities, con-

texts, and collaboration tasks. By comparing RoBERTa and
Mistral 7B, we provide new insights into balancing model
generalizability and domain-specific accuracy, offering scal-
able alternatives to labor-intensive dataset labeling.

4. DATA
The designated Institutional Review Boards approved all
study procedures. All students provided assent or their par-
ents or legal guardians provided consent.

4.1 Data Collection
Five datasets were analyzed as part of this research: Sen-
sor Immersion, Self Driving Cars, Moderation Unit, Physics
Playground, and Minecraft Hour of Code (see Table 1).

Sensor Immersion (Primary Train Dataset) was collected from
urban, rural, and suburban public middle school classrooms
in the Western United States between 2021-2023. Students
worked in small groups programming and wiring sensors to
collect environmental data. They explored an interactive
display called the Data Sensor Hub [7], constructing scien-
tific models and developing skills to replicate its functional-
ity [13]. Speech was recorded with Yeti Blue, an omnidirec-
tional microphone that was placed at each table. Relying
on single microphones in a classroom with several groups
interacting concurrently resulted in noisy data [6, 45]. Five-
minute segments that met 20-word thresholds were identified
from each recording; if none met this criteria, the recording
was excluded. The data consisted of 164 students (73 dyads,
seven triads, six tetrads) under the guidance of 14 teachers
and 91 recordings comprising 8,601 student utterances.

The remaining four datasets were used as held-out test sets
to evaluate the generalizability of the models.

Self Driving Cars (Held-out Dataset) was collected from four
public middle school classrooms in the Western United States
during the 2023-2024 school year. These data were sampled
from four lessons of a Self Driving Cars curriculum, where
small groups of students worked to assemble and program
model cars to follow a path, avoiding obstacles. Speech was
recorded and sampled using the same procedure and equip-
ment as in the Sensor Immersion dataset. This dataset con-
sisted of eight students (all dyads) under four teachers and
16 recordings comprising 969 student utterances.

Moderation Unit (Held-out Dataset) was collected from three
public middle school classrooms in the Western United States
during the 2023-2024 school year. These data were sampled
from two lessons in a Moderation Unit curriculum, where
small groups worked to program solutions to Minecraft puz-
zles and evaluate gaming moderation systems. Speech was
recorded and sampled in the same manner as the Sensor Im-
mersion dataset. This dataset consisted of 39 students (two
dyads, seven triads, seven tetrads) guided by one teacher
and 16 recordings comprising 1,568 student utterances.

Due to district policies, demographic details for these data
were unavailable, but the schools served diverse student pop-
ulations.

Physics Playground (Held-out Dataset) and Minecraft Hour
of Code (Held-out Dataset) were collected from a remote
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Table 1: Overview of the five datasets.
Curriculum Task Year Grade Students Recordings Utterances
Sensor Immersion Programming and

wiring sensors
2021-2023 Middle School 164 91 8,601

Self Driving Cars Assembling and pro-
gramming model cars

2024 Middle School 8 16 969

Moderation Unit Evaluating gaming
moderation systems

2024 Middle School 39 16 1,658

Physics Playground Playing an educa-
tional physics game

2018-2019 University 285 96 45,550

Minecraft Hour of Code Playing a block-based
programming game

2018-2019 University 96 32 10,816

CPS study involving 288 university students (average age =
22 years) [48]. Speech was recorded with individual head-
sets and sampled by extracting random 90-second chunks
from the first, second, and third five minutes of each 15-
minute recording block for transcription and annotation.
Participants self-reported as 54% female, 41% male, 1%
non-binary/third gender, and 4% did not report. Race was
self-reported as 48% Caucasian, 25% Hispanic/Latino, 17%
Asian, 3% Black or African American, 1% American Indian
or Alaska Native, 3% Other, and 3% did not report.

Physics Playground involved an educational game designed
to teach physics concepts (e.g., Newton’s laws, energy trans-
fer, properties of torque) through interactive game play.
Participants drew objects like ramps, levers, and pendulums
to guide a ball toward a target, with all objects adhering to
the laws of physics. This dataset comprised 96 recordings
with 45,550 student utterances.

Minecraft Hour of Code employed block-based programming
to interactively teach programming concepts (e.g., if-else
statements). Constructs were represented as interconnect-
ing blocks that assemble into syntactically correct code that
controls the actions of a Minecraft character, allowing users
to run and preview their code in real-time. This dataset
comprised 32 recordings with 10,816 student utterances.

These five datasets highlight diverse instructional contexts
and modalities, offering a rich basis for evaluating the adapt-
ability of NLP models across collaborative learning environ-
ments. Key differences among the first three datasets (Sen-
sor Immersion, Self-Driving Cars, and Moderation Unit) and
the latter two (Physics Playground and Minecraft Hour of
Code) are the context of data collection (classroom vs. lab),
the age of the participants (K-12 vs. college), interaction
modality (in person vs. remote), and microphone (Yeti-Blue
tabletop vs. headset microphones).

4.2 Data Processing and Transcription
Recordings from the Sensor Immersion, Moderation Unit,
and Self Driving Cars datasets were manually transcribed
with annotations for contextual notes (e.g., “[laughter]”),
speaker intent (e.g., “[addressing group]”), and inaudible
speech (“[inaudible]”). This process captured essential non-
verbal and contextual aspects of the data.

Physics Playground and Minecraft Hour of Code were his-
toric data sets that had been transcribed using IBM Watson,

a popular ASR system at the time of data collection. These
datasets did not have human transcripts, and the IBM Wat-
son transcripts were used for initial annotations. We do not
provide results on the IBM Watson transcripts.

To ensure consistency across datasets, we transcribed all
recordings, including Physics Playground and Minecraft Hour
of Code, using Whisper-Large-v2, an open-source ASR model
[38]. The word error rate - calculated as (substitutions +
deletions + insertions) / total words - for Sensor Immersion,
Self Driving Cars, and Moderation Unit was 67%, 64%, and
69%, respectively, highlighting the challenges of processing
noisy classroom audio with overlapping speech.

Utterances from teachers or individuals outside the group
were excluded from the analysis to maintain focus on small
group interactions. Transcripts were normalized by remov-
ing punctuation, converting text to lowercase, replacing hy-
phens with spaces, and eliminating transcriber and ASR
notes. Finally, utterances were anonymized using the spaCy
python library, which applied named entity recognition to
identify proper names, substituting them with the place-
holder “[name redacted]”. Reported utterance counts reflect
post-processed data.

4.3 Human Coding of CA Labels
CA coding followed work by [8], which involved adapting
a CPS framework from [53] to identify CAs. Aligned with
competencies defined by the Organisation for Economic Co-
operation and Development (OECD) [34] and key social and
cognitive collaboration skills [21], the CPS framework en-
compasses three facets operationalized through 18 validated
indicators [52, 53, 58, 51]. The indicators were mapped to
the Resepct, Community, and Thinking CAs using Open-
SciEd definitions in consultation with collaboration and cur-
riculum experts (Table 2).

Coding was conducted at the utterance level, with coders
watching videos to incorporate nonverbal cues and context
(e.g., screenshots and camera views). Thus, the coders used
information that extends beyond the language itself, posing
challenges for the NLP models.

Four coders, including an expert involved the original frame-
work development, annotated Sensor Immersion transcripts
with the 18 CPS indicators. The process involved iterative
refinement to ensure consensus and reliability among coders.
Then, coders independently labeled utterances with review
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Table 2: Collaborative Problem Solving (CPS) indicator mappings to Community Agreements (CAs) and examples from each
of the five datasets. Examples were chosen to highlight context specific wording from each dataset.

Community Agreement Examples
CPS Indicators
Being Respectful
Responds to others’ questions or ideas “[...] Sorry. My bad. Scroll over to where you can see the whole thing.” (SI )
Asks others for suggestions “This guy is gonna be winning some drag race challenges.” (SDC )
Compliments or encourages others “I actually did it! I like your Minecraft games. They’re fun.” (MU )
Apologizes for one’s mistakes “Sorry because there’s one two three underwater online here.” (MHC )

“Yes same good job just drop it earlier.” (PP)
Committed to our Community
Talk about the challenge situation “If your pool has a heater, the bar will go up a lot.” (SI )
Confirms understanding “Oop, oh, It’s moving. Maybe you disconnect it now.” (SDC )
Discusses the results “Move toward zombies and then attack.” (MU )
Provides instructional support “No we’re gonna end up in the water substance.” (MHC )
Asks others for suggestions “Okay I think it’s stuck in a tree.” (PP)
Moving Thinking Forward
Proposes (in)correct solutions “So now I think we push download and see what happens.” (SI )
Strategizes to accomplish task goals “Which one is it? This one? Follow line?” (SDC )
Asks others for suggestions “When spawn what do you want it to do?” (MU )
Provides reasons to support a solution “Maybe we should have them lay the bricks afterwards.” (MHC )
Questions/corrects others’ mistakes “The water transferred over so should we delete the grey box [...]?” (PP)

SI: Sensor Immerison, SDC: Self Driving Cars, MU: Moderation Unit, MHC: Minecraft Hour of Code, PP: Physics Playground

Table 3: Occurrence rate of each CA across the five datasets.

Dataset Respect Thinking Community
Sensor Immersion 12% 12% 20%
Self Driving Cars 16% 15% 34%
Moderation Unit 18% 18% 33%
Minecraft - 22% 27%
Physics Playground 16% 21% 24%

by the expert to maintain consistency. To assess reliability,
the four coders annotated the same 118 utterances across
3 observations, achieving Gwet’s AC1 indicator-level agree-
ment [23] of 0.75-1.00.

Since Self Driving Cars closely resembled Sensor Immersion,
no significant adaptations to the coding scheme were neces-
sary. Coders reviewed observations to discuss and confirm
the framework’s applicability before proceeding with coding.

Moderation Unit posed unique challenges as the CPS frame-
work had not been applied to this domain before. Annota-
tors analyzed observations from each lesson, identifying ar-
eas where adaptations of the codebook were necessary. A
few refinements ensured the coding scheme accurately re-
flected the context.

Minecraft Hour of Code and Physics Playground annota-
tion followed Sun et al. [52]. Three experts coded utter-
ances using IBM Watson transcripts and their associated
videos, achieving Gwet’s AC1 indicator-level agreement be-
tween 0.88 and 1.00 on ten 90-second videos (406 utter-
ances). After achieving adequate reliability, videos were ran-
domly assigned to the three coders for independent coding.

Table 3 provides base rates for the three CAs by dataset.

The occurrence of the Respect CA was very low for Minecraft
so we excluded it from the analyses.

5. METHODS
We developed five models for each of the three CAs using
two open-source transformer-based architectures: RoBERTa
and Mistral. RoBERTa was selected due to its robust fine-
tuning performance across various NLP domains, including
in related tasks such as CPS prediction. Mistral, a more
recent model, was chosen for its efficiency and capacity to
produce high-quality embeddings, making it an ideal candi-
date for few-shot learning and traditional machine learning
pipelines. For each approach, we followed previous research
indicating that training models with a combination of hu-
man and ASR transcripts (ASR augmented training) im-
proved accuracy in noisy classroom scenarios [8, 6].

The five model implementations included (1) fine-tuning
RoBERTa, (2) fine-tuning RoBERTa with embedding space
data augmentation, (3) training a support vector machine
(SVM) classifier with Mistral embeddings, (4) prompting
Mistral with few-shot examples, and (5) fine-tuning Mistral.

Fine-Tuned RoBERTa (Baseline). The baseline model was a
fine-tuned RoBERTa language model, a BERT variant with
a multilayer bidirectional transformer architecture. Follow-
ing previous research [8], RoBERTa was fine-tuned using
binary labels for each CA. Utterances were tokenized us-
ing the RoBERTa tokenizer to maintain uniform sequence
lengths through padding and truncation. Fine-tuning in-
volved a batch size of 32, a learning rate of 5e-6, 50 training
epochs, and 50 warmup steps. Hyperparameters were guided
by prior research [36] and only minimally adjusted.

Augmented RoBERTa. To mitigate overfitting, we perturbed
text sequences with the EmbeddingAugmenter class from
the python package textattack which simulates variations in
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utterances by transforming individual words with replace-
ments that are close to the original word in an embedding
space. For example, the utterance “Maybe we still don’t
have sensors.” was augmented to “Maybe we still don’t have
detectors.” For each utterance, up to five augmented ex-
amples were generated and incorporated into the training
dataset, culminating in a total of 70,836 utterances from
the Sensor Immersion dataset. This total includes the origi-
nal human-transcribed utterances and their augmentations,
as well as the ASR-transcribed utterances and their corre-
sponding augmentations. In some cases, fewer than five new
utterances were generated, as the method enforces a mini-
mum cosine similarity threshold of 0.8. If no suitable word
replacements could be found within this threshold, a swap
was not made, thereby limiting the number of generated ut-
terances. This model was trained identically to the baseline
RoBERTa model but included the augmented data.

Mistral Embeddings + SVM. We used the Mistral model
mistral-7B-v0.1 as an embedding extractor for a downstream
SVM classifier. Transcripts were processed through Mis-
tral to generate dense vector embeddings for each utter-
ance, capturing contextual representations of the speech.
We then trained the SVM classifier with each embedding,
paired with corresponding CA labels, using the parameters
C = 1, gamma = scale, and kernel = rbf .

Prompting Mistral. Few-shot prompting was implemented
with Mistral, using five labeled examples from the Sensor
Immersion dataset for each test utterance. The prompt in-
cluded instructions, labeled examples, and a test utterance:

Scenario: You’re observing students working collabora-
tively. Your task is to assess the student utterance after
<<< and determine if the utterance exhibits any of the
following indicators of Moving Thinking Forward. If it
does, respond with ‘Yes’, otherwise, respond with ‘No’.

1. Providing Reasons or Evidence: The student offers
reasons or evidence (e.g., from past experience or investi-
gation) to support their action, suggestion, or conjecture.
2. Realization or Insight: Look for markers such as ‘so’
and ‘oh’ as evidence of a student realizing something or
gaining insight.
3. Conjecture: The student proposes an idea for the
group to consider, often using hedges like ‘maybe’.
These proposals invite responses and are about claims or
assertions.

Here are some examples:
Student Utterance: “Let’s all take turns”
Exhibits moving thinking forward: Yes

[...]

<<<

Test Utterance: “How about we split into pairs?”
Exhibits moving thinking forward:

The five labeled few-shot examples were selected randomly
but stratified to ensure representation across the dataset.
To ensure a fair assessment, we repeated this process five

times per test utterance with different examples, averaging
the accuracy from each of the five rounds for a final metric.

Fine-Tuned Mistral. Finally, we employed Low-Rank Adap-
tation (LoRA) [25] to fine-tune the Mistral model. LoRA is
a parameter-efficient method that injects trainable low-rank
matrices into the model’s attention layers, allowing fine-
tuning without updating all parameters, making the process
more memory-efficient. The training involved a learning rate
of 2e-4, a batch size of 32, and nine training epochs.

Cross Validation. We adopted stratified 10-fold cross vali-
dation for evaluation within the Sensor Immersion dataset.
The data were split into ten subsets with approximately
equal occurrence rates, ensuring that observations (class-
room sessions) did not span multiple folds. We iteratively
trained the models on nine folds and tested on the one held-
out, using the same folds across all five implementations.
After evaluating performance within the Sensor Immersion
dataset, each model was fully trained on Sensor Immersion
data and tested on transfer datasets to assess generalization.

Evaluation Metrics. The primary evaluation metric we used
was the Area Under the Receiver Operating Characteristic
curve (AUROC), which is a widely used metric for evalu-
ating the performance of binary classifiers, representing the
model’s ability to distinguish between positive and nega-
tive classes. We chose to use AUROC to compare results
from different models on the same dataset because it pro-
vides a comprehensive assessment of performance across var-
ious thresholds, offering insight into the trade-offs between
sensitivity and specificity. It is independent of thresholds
and class imbalance, an important feature when transfer-
ring models to new datasets where the distributions varied.

To compare transfer results with the RoBERTa baseline, we
calculated the percent change with the following formula:

PercentChange = 100× TransferAUROC−BaselineAUROC
BaselineAUROC

which allowed us to quantify the improvement or decline in
performance relative to the baseline RoBERTa model, facil-
itating a clear understanding of how each model compared
with respect to generalization accuracy.

6. RESULTS
6.1 Baseline Model: Sensor Immersion
We first investigated within-domain performance on the Sen-
sor Immersion dataset. When averaged across CAs and tran-
script type (human and Whisper), the fine-tuned RoBERTa
model (mean AUROC = 0.71) tied with the Mistral + SVM
approach (0.71) as the best model and both models outper-
formed the other three approaches (Table 4). Whereas the
fine-tuned RoBERTa model demonstrated the best perfor-
mance for two of the three CAs (Thinking and Respect),
Mistral embeddings paired with the SVM classifier outper-
formed other models for the Community CA.

The RoBERTa model with data augmentation (mean AU-
ROC = 0.68) and LoRA Mistral (0.67) achieved lower av-
erage AUROC scores compared to the traditionally fine-
tuned RoBERTa model (0.71), but may still be valuable
for generalization to other datasets. In contrast, the few-
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Table 4: Average AUROC from 10-fold cross validation within the Sensor Immersion dataset for the five model implementations.
Results from each of the test CAs and transcript types are shown.

Human Transcripts Whisper Transcripts
Community Thinking Respect Community Thinking Respect

Baseline RoBERTa 0.68 0.76 0.81 0.62 0.70 0.71
Augmented RoBERTa 0.64 0.73 0.80 0.59 0.65 0.69

Mistral + SVM 0.71 0.75 0.80 0.64 0.67 0.69
Few-shot Mistral 0.57 0.62 0.47 0.57 0.59 0.47
LoRA Mistral 0.64 0.68 0.76 0.60 0.63 0.69

Table 5: Test set AUROC for each held out dataset and model implementation. Results are broken down by CA and transcript
type (top section contains human transcript results and the bottom contains Whisper transcript results).

Human Transcripts
Moderation Unit Self Driving Cars
C T R C T R

Baseline RoBERTa 0.55 0.61 0.77 0.60 0.70 0.78
Augmented RoBERTa 0.69 0.68 0.79 0.69 0.71 0.80

Mistral + SVM 0.65 0.67 0.74 0.68 0.70 0.82
Few-shot Mistral 0.56 0.57 0.51 0.52 0.55 0.43
LoRA Mistral 0.56 0.61 0.50 0.58 0.58 0.45

Whisper Transcripts
Moderation Unit Self Driving Cars Minecraft Physics Playground
C T R C T R C T C T R

Baseline RoBERTa 0.51 0.57 0.56 0.55 0.59 0.64 0.67 0.74 0.60 0.59 0.62
Augmented RoBERTa 0.54 0.60 0.59 0.58 0.61 0.65 0.75 0.79 0.62 0.63 0.63

Mistral + SVM 0.52 0.57 0.58 0.58 0.59 0.62 0.73 0.75 0.63 0.63 0.60
Few-shot Mistral 0.53 0.49 0.50 0.49 0.52 0.49 0.64 0.62 0.50 0.57 0.48
LoRA Mistral 0.55 0.55 0.47 0.52 0.56 0.50 0.65 0.71 0.58 0.60 0.46

C: Community, T: Thinking, R: Respect

shot prompting (0.55) barely outperformed chance within
the Sensor Immersion dataset for all three CAs. This indi-
cates that while few-shot prompting techniques hold promise
in other contexts, they may not yet be optimized for this
specific qualitative coding task or dataset.

Given that the fine-tuned RoBERTa model tied for the best
within-domain result with the Mistral + SVM approach and
outperformed it for two of the three CAs, we adopted it as
our baseline model to test generalizablity.

6.2 Testing Generalizability
Overall Results. After fully training each of the five models
on the Sensor Immersion dataset, we evaluated their perfor-
mance on four held-out test sets to assess their generalizabil-
ity. The AUROCs are given in Table 5. Density plots of the
test set AUROCs pooled over CA, dataset, and transcript
type (human or Whisper) are shown in Figure 1. These plots
provide a high-level view of the overall trends in generaliz-
ability. The baseline RoBERTa model exhibited a substan-
tial drop in accuracy when applied to the held-out datasets,
whereas the augmented RoBERTa and Mistral + SVM and
approaches maintained more consistent performance across
datasets.

The general performance pattern (with average AUROC in
parantheses) was as follows:

AugmentedRoBERTa (0.67) > Mistral + SVM (0.65) >

Figure 1: Distributions of test set AUROCs for each of the
five models, aggregated across dataset, CA and transcript
type (human and Whisper). The red line indicates an AU-
ROC of 0.5, or random guessing.

BaselineRoBERTa (0.63) > LoRAMistral (0.56) >
Few − ShotMistral (0.53)

Both the augmented RoBERTa model and the Mistral +
SVM approach showed greater success in generalizability by
collectively outperforming the other three models in all but
one case. While the baseline RoBERTa model occasionally
matched the performance of the augmented RoBERTa and
Mistral + SVM models, it more frequently lagged behind.

The few-shot prompting and fine-tuning approaches for Mis-
tral did not produce robust classification models. Despite
being a large-scale language model designed with extensive
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Figure 2: Bar chart showing the percent improvement in
AUROC over the baseline RoBERTa model for augmented
RoBERTa (blue) and Mistral + SVM (orange) across the 4
transfer datasets. Improvements are shown for Whisper tran-
scripts only and averaged over the three CAs.

Figure 3: Bar chart showing the percent improvement in
AUROC over the baseline RoBERTa model for augmented
RoBERTa (blue) and Mistral + SVM (orange) across the 3
CAs. Improvements are shown for Whisper transcripts only
and averaged over test dataset.

general knowledge, Mistral struggled to learn and apply
the more qualitative patterns required by the CA frame-
work. This limitation may stem from the mismatch between
the model’s size and complexity and the relatively small,
domain-specific training dataset. The fine-tuning process
likely failed to adjust the model effectively to the nuances of
the CAs, resulting in low performance.

The results showed variance across models and datasets, em-
phasizing that model selection and training methodologies
greatly influence generalizability. The variability also sug-
gests that differences in linguistic and contextual features
across datasets may impact model performance, especially
for curriculum-specific patterns. Next we examined these
patterns from different points of view, with an emphasis on
the augmented RoBERTa and Mistral + SVM models, which
yielded the best generalization results.

Results by Dataset. Figure 2 highlights the variation in im-
provement by dataset within the Whisper transcript results
only (due to the absence of comparative human transcripts
for the Physics Playground and Minecraft Hour of Code

Figure 4: Bar charts showing the percent improvement in
AUROC over the baseline RoBERTa model for augmented
RoBERTa (blue) and Mistral + SVM (orange) across tran-
script type. Improvements are averaged over CA and test
dataset.

datasets). For each dataset, we see larger improvements
from the augmented RoBERTa model than the Mistral +
SVM model, however in each case there is positive improve-
ment from both types. Interestingly, the models applied
to the Minecraft Hour of Code dataset showed the most
substantial improvements over baseline. The other three
datasets showed approximately equal improvements with the
augmented RoBERTa approach. These results may reflect
the fact that the Minecraft dataset had greater linguistic
and contextual differences from the source Sensor Immer-
sion dataset, allowing for greater gains from augmentation,
whereas datasets like Self Driving Cars that are more closely
aligned with the original training data, resulted in smaller
relative improvements.

Results by CA. Figure 3 shows that, when the percent im-
provement in AUROC for Whisper transcripts is split by
CA and averaged across datasets, the augmented RoBERTa
model consistently outperforms the baseline RoBERTa model,
with the Mistral + SVM model generally achieving smaller
improvements and showing an average negative improve-
ment for the Respect CA. The largest improvement over
baseline is observed in the Community CA, followed by Think-
ing and finally Respect. The larger improvements for Com-
munity and Thinking compared to Respect likely come from
the fact that the baseline RoBERTa models for these cat-
egories were more prone to overfitting to domain-specific
words as we elaborate below (e.g., Figure 5). Since Respect
exhibited less overfitting in the baseline model, there was less
room for improvement when applying advanced techniques.

Results by Transcript Type. Figure 4 presents the results
for the classroom datasets (Self Driving Cars and Moder-
ation Unit) only, disaggregated by transcript type. These
datasets allow us to directly compare performance differ-
ences between human and Whisper transcripts. The re-
sults reveal discrepancies in model performance based on
transcript type, with human transcripts mostly exhibiting
greater improvements. Whisper transcripts also showed im-
proved results, albeit to a lesser extent. This trend suggests
that noise introduced by mistranscriptions from Whisper
may hinder model performance more generally.
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Figure 5: Word clouds generated from the most important words from the Sensor Immersion dataset for the Community,
Thinking, and Respect RoBERTa models, as ascertained by the LIME technique.

CA Example Utterances (Domain)
Community “Forever do move towards the sheep” (MU )

“Also, wait, mine was artificial intelligence and paid moderators” (MU )
“So first one is using an if else statement” (SDC )
“So I have no idea how to put these wheels on” (SDC )
“...because we only have like fifteen blocks so” (MHC )
“Place bricks, place bricks or something” (MHC )
“I think you should keep doing that place bedrock ahead” (PP)
“I’m just gonna guess the yellow one goes on, yep exactly” (PP)

Thinking “Click space to use them to drop the move” (MU )
“Player and then run” (MU )
“We should do that one following a line” (SDC )
“We need the connector thingy, right?” (SDC )
“You would go like turn nine forward, forward, destroy forward” (MHC )
“Okay so then place bedrock flattened to” (MHC )
“I think with all that we can always just put the repeat three times” (PP)
“I think for this one so press the water, move forward and then go to the loft” (PP)

Respect “I actually did it! I like your Minecraft games, they’re fun” (MU )
“Right there, right there, right there. You’re good” (MU )
“I thought it was fine. Slow and steady wins the race” (SDC )
“Can you look up IR sensor please? What does it do?” (SDC )
“Yeah, [...] I think it’ll work if it’s the right dimensions” (PP)
“No I don’t think so but I can delete this” (PP)

SDC: Self Driving Cars, MU: Moderation Unit, MHC: Minecraft Hour of Code, PP: Physics Playground

Table 6: True positive examples where the baseline RoBERTa model predicted false, but the augmented RoBERTa and Mistral
+ SVM models successfully predicted true. Two utterances were chosen per domain to illustrate the generalizability issues.

6.3 Qualitative Results
Sensor Immersion Dataset. To better understand the per-
formance discrepancies, we also conducted qualitative error
analyses. Using the Local Interpretable Model-agnostic Ex-
planations (LIME) technique [40], we analyzed the impor-
tance of individual words in the Sensor Immersion dataset
for the baseline RoBERTa model and visualized them as
word clouds in Figure 5. These word clouds depict the words
most frequently identified as critical by LIME, weighted
by the frequency with which they were the most impor-
tant word in a positively classified utterance. The anal-
ysis revealed that the RoBERTa model was overfitting to
curriculum-specific language, particularly for the Commu-
nity and Thinking CAs. Words and phrases unique to the
Sensor Immersion curriculum such as “navigator”, “down-
load”, and“attach”disproportionately influenced the model’s
predictions. This overfitting was less pronounced for the Re-
spect CA, where the model appeared to rely on broader con-
textual signals rather than curriculum-specific terms. This
suggests that the linguistic features of Respect are more gen-

eralizable, while Community and Thinking may require ad-
ditional intervention to mitigate overfitting.

Transfer Datasets. In several cases where domain-specific
wording was used in positive examples of CAs, the base-
line RoBERTa model failed to correctly classify utterances,
while the augmented RoBERTa and Mistral + SVM models
demonstrated improved performance. Table 6 presents ex-
amples from the transfer datasets where the baseline model
misclassified positive examples, but either one of the two
improved models identified them accurately. For instance,
in the Physics Playground dataset, the baseline model mis-
classified the phrase “I think you should keep doing that.
Place bedrock ahead” as a negative example of Community,
but the other two models identified it positively, as it is an
example of talking about the challenge situation and provid-
ing instructional support. A positive example of Thinking
from the Minecraft Hour of Code dataset, “You would go
like turn nine forward, forward, destroy forward”, was in-
correctly predicted by the baseline RoBERTa but correctly
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identified by both improved techniques. This example sat-
isfied the proposing (in)correct solutions and strategizing to
accomplish task goals indicators. These examples illustrate
the ability of the augmented RoBERTa and Mistral + SVM
models to capture nuanced behaviors across domains.

7. DISCUSSION
Building scalable models for collaborative discourse analy-
sis requires a balance between domain-specific accuracy and
cross-context generalizability. While fine-tuned models ex-
cel within their training domains, their transfer to new con-
texts remains a significant challenge. This study explored
strategies to mitigate overfitting and enhance model gener-
alizability, revealing key insights into scalable approaches to
improve generalization across diverse educational settings.

7.1 Main Findings
Model overfitting highlights a challenge in achieving broad
generalization, but this work suggests that models fine-tuned
on specific datasets can be highly effective in specialized or
localized educational settings with high consistency in lan-
guage and tasks. These models provide benefits in such con-
texts as they can deliver precise, context-sensitive insights.
On the other hand, the success of the augmented RoBERTa
approach, which leveraged contextual embeddings and data
augmentation to contextualize and diversify training data,
demonstrated robust classification across various domains
with minimal overfitting. Practically, these findings under-
score the potential of lightweight, adaptable methods for
scenarios where large, diverse datasets are unavailable.

The observed differences between the model types reveal
practical challenges of generalizing models that are trained
on curriculum-specific datasets. While large pre-trained mod-
els like Mistral hold potential due to their vast knowledge
base, our results suggest that more focused methods, such
as embeddings combined with simple classifiers or augmen-
tation strategies, may be more effective for tasks requiring
adaptation. Our results align with previous research sug-
gesting that more traditional language models may outper-
form LLMs in classifying short sequences of text, especially
in more theoretically grounded scenarios [26, 19].

Some aspects of collaboration, particularly those tied to
domain-specific language and problem solving, appear more
susceptible to overfitting, while others that rely on more
universal social and affective signals generalize more readily.
These findings suggest that collaboration is not a homoge-
nous construct from a modeling perspective; rather, it en-
compasses dimensions with varying levels of linguistic and
contextual dependency. This work underscores the impli-
cations for how we design, train, and evaluate models for
diverse educational applications.

7.2 Limitations & Future Work
This study is not without its limitations. A significant chal-
lenge was the high word error rate encountered in Whisper
transcripts, which negatively affected model performance.
Noise and inaccuracies during both the training and testing
phases compounded the difficulty of drawing reliable con-
clusions, particularly for ASR-generated transcripts. Addi-
tionally, while the five datasets used in this study represent

a range of contexts, they do not encompass the full diver-
sity of classroom environments and demographics. Expand-
ing the scope of datasets to include broader cultural, socio-
economic, and instructional diversity remains a priority for
future research. Finally, due to privacy of the student data,
we were restricted to the use of open source models and
unable to harness more recent state-of-the-art models.

Several domain-specific factors complicated cross-context gen-
eralization. For instance, the Minecraft Hour of Code and
Physics Playground datasets involved older students whose
discourse reflected more structured syntax, colloquialisms,
and specialized task jargon compared to middle school class-
rooms. Similarly, transfer datasets introduced technical lan-
guage and task-specific elements, such as a reset button in
the Moderation Unit or references to levers and pendulums
in Physics Playground. These variations underscore the lin-
guistic and contextual diversity models must navigate to
achieve broad generalization. To mitigate these challenges,
we refined the coding process and adapted our annotation
framework to account for domain-specific features, ensuring
the robustness of CA labels and providing a strong founda-
tion for accurate downstream analysis.

Future work should explore advanced techniques, such as
adversarial models and multi-task learning, to further en-
hance transferability. These approaches could enable mod-
els to adapt more effectively to diverse classroom contexts.
We aim to investigate the application of these models in
real-time classroom settings, integrating them with class-
room technologies to facilitate formative assessments and
feedback loops. Such efforts would provide direct evalua-
tions of the practical impact of these tools on teaching and
learning outcomes.

8. CONCLUSION
This study underscores the challenges of fine-tuning large
language models for domain-specific tasks, and their sus-
ceptibility to overfitting when transitioning between distinct
curricula and contexts. While fine-tuned RoBERTa per-
formed well within its training domain, its decline on held-
out datasets highlights the fragility of traditional fine-tuning
approaches. In contrast, augmenting training data and lever-
aging Mistral embeddings with an SVM classifier resulted
in more robust performance across diverse environments.
These methods balanced generalizability and domain-specific
adaptability, demonstrating their potential as scalable solu-
tions for real-world applications. The underperformance of
prompting and fine-tuning a Mistral model (despite its so-
phisticated architecture) highlights the difficulty of training
large-scale models on specialized qualitative datasets. Their
inability to learn the nuanced patterns of a collaborative
framework suggests that careful alignment between training
data size and methodologies is crucial.

Our work highlights strategies for enhancing the robustness
of LLMs and stresses the importance of methodological rigor
in adapting models for educational applications. By empha-
sizing training data augmentation and lightweight classifiers,
we provide actionable insights for future research and for
practitioners aiming to implement automated collaboration
analysis tools across varied educational contexts.
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