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ABSTRACT

The growing demand for microcredentials in education and work-
force development necessitates scalable, accurate, and fair assess-
ment systems for both soft and hard skills based on students’ lived
experience narratives. Existing approaches struggle with the com-
plexities of hierarchical credentialing and the mitigation of algo-
rithmic bias related to gender and ethnicity. In this paper, we pro-
pose a novel deep learning framework that integrates hierarchical
classification based on dynamic thresholding with a dual deep Q
network dueling (DDQN dueling) for bias mitigation. Our method
improves predictive performance at all three levels of microcre-
dential classification, achieving an increase in 7% sensitivity and
an improvement in 6% specificity over baseline models'. Further-
more, our framework significantly improves fairness by reducing
gender and ethnicity bias, as measured by equalized odds, by over
20% compared to conventional approaches. Extensive evaluations
on a dataset of 3,000 student narratives demonstrate a 12% im-
provement in the F1 score and a 5% increase in AUROC relative
to existing methods. These results underscore the effectiveness of
our approach in advancing both hierarchical classification accuracy
and fairness in real-world educational applications.

Keywords
Hierarchical microcredentialing, Reinforcement learning, Bias mit-
igation, Student narratives, Deep learning embeddings

1. INTRODUCTION

In recent years, microcredentials have become a vital component
of both higher education and workforce development, providing
learners with a way to demonstrate hard and soft skills that tradi-
tional degree programs often overlook. The global market for soft-
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skills assessment tools is projected to reach $1.2 billion by 2028,
with institutions and employers increasingly recognizing the value
of these credentials for student and employee development [9]. In
academia, microcredentials help bridge the gap between academic
outcomes and job-ready skills, offering students tangible recogni-
tion of competencies that can enhance their employability [5]. Cur-
rently, 96% of the U.S. workforce is actively seeking opportunities
for career advancement, underscoring the importance of scalable
and structured microcredential systems [19].

Traditional methods of awarding academic credits through micro-
credentials are largely manual, requiring human annotators to re-
view students’ portfolios and lived experiences. This process is
time-consuming, labor-intensive, and subject to inconsistencies due
to subjective judgment [11]. Furthermore, the complexity of hier-
archical microcredential structures where credentials range from
broad foundational skills to specialized competencies presents sig-
nificant challenges for manual annotation. The hierarchical struc-
ture not only requires annotators to understand the relationships be-
tween different levels of credentials but also to classify and assign
them accurately, which becomes infeasible at scale. As a result, nat-
ural language processing (NLP) and deep learning techniques are
being increasingly used to automate microcredential classification,
enabling more efficient and consistent assessment of unstructured
data such as student narratives [26].

Several studies have explored the use of automated tools for clas-
sifying microcredentials from student submissions. Initial efforts
have typically focused on using rule-based systems or simple NLP
techniques to extract keywords and assign credentials based on pre-
defined rubrics [27]. However, these methods often fail to capture
the rich, unstructured narratives found in students’ lived experi-
ences, which contain important indicators of soft skills such as
leadership, collaboration, and problem-solving. Extracting mean-
ingful insights from such narratives requires more sophisticated
models capable of handling context-dependent information. More-
over, developing a large, annotated dataset of lived experience nar-
ratives is a significant challenge, given the variability in how stu-
dents express their experiences. Advanced deep learning models,
particularly those that can handle hierarchical structures, are essen-
tial for automating the extraction and classification of microcreden-
tials from these narratives [25].

A significant challenge in developing automated microcredential-
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ing systems is the risk of algorithmic bias, especially in terms of
gender and ethnicity. Biases present in the training data can lead
machine learning models to systematically misclassify or under-
value the competencies of underrepresented groups [2]. For exam-
ple, differences in how men and women, or individuals from dif-
ferent ethnic backgrounds, articulate their experiences may result
in biased outcomes, with certain groups receiving fewer or less fa-
vorable microcredentials. Addressing this issue is critical, as biased
systems could exacerbate existing inequalities in education and em-
ployment opportunities [20].

In this paper, we address the key challenges in automatic microcre-
dential classification by proposing a novel framework that lever-
ages deep learning techniques to automate the process in a fair and
accurate manner. Our contributions are as follows:

e We design and annotate a 3-tier hierarchical structure for mi-
crocredentials based on students’ lived experience narratives,
capturing both general and specialized competencies. This
design allows for a more structured and scalable approach to
microcredentialing, providing flexibility and precision across
various levels of skills.

We introduce a dynamic thresholding-based hierarchical clas-
sification model that adapts to different levels of microcre-
dentials, enabling more accurate predictions even in data-
scarce categories. Our approach ensures that each level of the
hierarchy is treated appropriately, improving overall classifi-
cation performance.

To address biases related to gender and ethnicity, we imple-
ment a Dueling Double-Deep Q-Network (Dueling DDQN)
for reinforcement learning-based bias mitigation. This model
learns optimal decision-making policies that balance fairness
and performance, ensuring equitable outcomes across demo-
graphic groups while maintaining classification accuracy.

Our two previous works analyzed the same LivedX narrative datasets:

one leveraged large language model augmentation to predict so-
cial determinants of mental health from student essays[1], and an-
other investigated human—AI annotation workflows to improve eth-
ical outcomes[3]. Neither addressed hierarchical microcredential
inference, dynamic threshold calibration, nor fairness aware learn-
ing. The present work closes these gaps by (i) introducing a novel
three tier micro credential taxonomy with newly curated labels, (ii)
proposing an attention guided hierarchical classifier that fuses re-
gression based count estimations with dynamic thresholding, and
(iii) deploying a Dueling Double Deep Q Network that reduces gen-
der and ethnicity based equalised odds disparities by up to 35%.

2. RELATED WORKS

Research on microcredentials has gained significant attention in re-
cent years as a growing number of academic institutions and indus-
tries seek scalable and reliable methods for assessing and awarding
credentials [23, 14].

2.1 Microcredential Awarding Methods

Microcredentialing has evolved significantly, with initial systems
relying heavily on manual and rubric-based assessment methods [14,
27]. Early frameworks such as those presented in [27] utilized pre-
defined rubrics to classify credentials, often focusing on structured
datasets. The introduction of machine learning in microcredential
awarding, such as the work by [15, 28], shifted this process to a
more scalable approach. However, these methods were largely fo-
cused on structured or semi-structured inputs, and they lacked the
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ability to handle more complex, unstructured lived experiences [10].
Some approaches, like [18], explored lived experience narratives
to infer soft skills, but these studies were limited in scope and
failed to implement a hierarchical structure. Recently, microcre-
dential frameworks have explored hierarchical categorization, al-
lowing a more fine-grained distinction between skills across lev-
els [23, 14]. Yet, hierarchical microcredential systems remain un-
derdeveloped, especially in automatically processing unstructured
text data, where NLP and deep learning models hold potential but
remain underexplored [22]. We have [1, 3] analyzed the same nar-
rative corpus for mental health features and annotation quality; did
notattempt hierarchical credential inference nor fairness mitigation.

2.2 Hierarchical Classification from Texts
Hierarchical classification of text data is an area that has seen rapid
development in recent years. Traditional classification models of-
ten struggle to maintain accuracy when tasked with distinguishing
between various levels of a hierarchy, as errors in top-level cate-
gories can propagate to lower levels, compounding misclassifica-
tion rates [32]. To address this issue, several works have proposed
enhanced hierarchical classification techniques, such as the use of
hierarchical attention networks [35], which attempt to weigh dif-
ferent parts of a narrative more heavily depending on their impor-
tance at different levels of the hierarchy. Recent work by [32] in-
troduced dynamic models that adjust to class imbalance issues in-
herent in hierarchical classification. However, these models tend to
rely on static thresholds, which limit their flexibility. Our proposed
dynamic thresholding approach builds on these efforts by allowing
for real-time adjustments to classification boundaries, improving
both precision and recall across levels, particularly in data-scarce
classes. This technique addresses the need for adaptable models
that can better manage the complexity of hierarchical microcreden-
tial classification from textual narratives.

2.3 Bias Mitigation in Deep Learning and NLP
Bias in machine learning models, particularly those used in natu-
ral language processing (NLP), has emerged as a critical issue, es-
pecially when these models are deployed in sensitive applications
like education and workforce development [15, 28]. Several stud-
ies have explored techniques to mitigate bias, such as debiasing
word embeddings [4] and using adversarial training to minimize
group disparities [36]. While these approaches have shown success
in reducing biases related to gender and ethnicity, they often lack
the flexibility to handle bias dynamically across hierarchical struc-
tures [8]. Reinforcement learning has been increasingly applied to
mitigate bias in decision-making models [16, 29, 7, 33, 24], with
notable approaches such as the Dueling Double-Deep Q-Network
(DDQN) framework showing promise in areas like resource allo-
cation and policy optimization [34, 33, 7, 29]. Our work extends
this by applying DDQN to the NLP domain for bias mitigation in
hierarchical microcredential classification. By integrating fairness
constraints into the reward structure of the DDQN, we ensure that
the system learns to balance accuracy with equitable outcomes, ad-
dressing some of the limitations of static bias mitigation techniques
found in earlier studies.

3. HIERARCHICAL MICROCREDENTIALS
DATA COLLECTION AND ANNOTATION
3.1 Data Collection

Detailed characteristics of the raw narrative dataset were first re-
ported in our earlier studies [1, 3]; we reuse the corpus here but
supply new hierarchical skill labels and fairness metadata. Data for



this project were collected through an online platform, publicly ac-
cessible web-based interface called ’LivedX’2. Students were sys-
tematically guided to document their lived experiences on the plat-
form. The platform framework, drawing upon phenomenological
perspectives [17] and the Funds of Knowledge framework [21], was
used to interpret the multifaceted nature of these experiences. This
framework credentialized the embedded power skills in students’
narratives, issuing microcredentials, culminating in a comprehen-
sive portfolio showcasing the diverse skill sets and competencies
students had developed. This empowered individuals to articulate
their skills, enhancing their capacity to navigate a skill-dependent
landscape.

All data collection and analyses were conducted under LivedX’s
independent Institutional Review Board (IRB) approval, which au-
thorizes the use of de identified, aggregated student narratives for
algorithm refinement and other research purposes. Upon account
creation, students electronically accept a Terms of Use and Re-
search Consent clause reviewed by the IRB that explicitly permits
such aggregated reuse. Narratives are automatically scrubbed of di-
rect identifiers before storage, and only population level statistics
are ever released; no individual level data leave the secure research
server. No monetary incentives were offered beyond normal plat-
form access. Students did not have access to the full three tier mi-
cro credential taxonomy while composing their narratives. At sign
in they were only shown seven broad competency bands (e.g. Com-
munication, Collaboration); the fine grained labels used for model
training remained hidden to prevent response priming. Table 1 pro-
vides an overview of the hierarchical structure, including represen-
tative examples for each level.

3.2 Human Annotation Process

A team of six human annotators was involved in labeling the dataset,
ensuring consistency and accuracy in microcredential classifica-
tion. The annotators were selected based on their backgrounds in
education, social-emotional learning, and prior experience in qual-
itative data analysis. Each annotator had prior experience in evalu-
ating students’ competencies, with at least two having prior teach-
ing or assessment experience in education or workforce training
programs. Additionally, two annotators had domain expertise in
social-emotional learning and qualitative data analysis, while oth-
ers had experience in human-centered Al research and narrative
assessment. To enhance annotation consistency and reduce subjec-
tive biases, all annotators underwent a structured training process.
Initially, they labeled a subset of narratives independently based
on a predefined hierarchical rubric. After this initial phase, they
received training from social-emotional learning experts and were
provided with example annotations to ensure alignment with best
practices. The annotation process was iterative, with weekly cali-
bration sessions where discrepancies were discussed, and annota-
tion guidelines were refined accordingly. Diversity in annotation
was also a key consideration, ensuring representation from differ-
ent demographic backgrounds. This helped mitigate unintended bi-
ases that could arise from a homogeneous annotator group. Inter-
rater reliability (IRR) was calculated to assess the validity and ro-
bustness of the qualitative data analysis. IRR measures the agree-
ment among independent coders categorizing qualitative data [31].
Based on power calculations, six annotators were required to en-
sure sufficient power for comparing pre- and post-training results.
Each rater was assigned 42-45 items to ensure an adequate sam-
ple size for statistical analysis, as confirmed by G*Power software.

“https://livedx.com/
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Table 2 presents pre- and post-training IRR results. Post-training
assessments indicated a significant improvement in interrater re-
liability (IRR), increasing from 0.46 in pre-training annotations to
0.83 post-training. Training improved the accuracy and consistency
of annotations, reflected in the enhanced intra-class correlation co-
efficient (ICC) scores, rising from 0.46 pre-training to 0.83 post-
training. A complete list and example of hierarchical microcreden-
tials is available in the supplementary materials.

3.3 Rationale for Annotators and Submissions
The decision to use six annotators and target 42-45 submissions
follows established guidelines for achieving reliable IRR. Accord-
ing to [31], a minimum of two raters is required for 43 pieces of
information to ensure adequate power for obtaining an ICC above
0.70. Given the comparison between pre- and post-training results,
four raters were necessary to ensure statistical significance when
comparing frameworks. Expanding to six annotators enabled t-tests
and comparisons with greater statistical power, as suggested by
G*Power software. Leveraging these annotated data, we developed
and refined a machine learning algorithm. The combination of hu-
man expertise and automated computational systems allowed the
platform to issue microcredentials with high accuracy and consis-
tency. The annotation process was critical in ensuring that the ma-
chine learning models were trained on high-quality datasets.

3.4 Illustrative Examples & Educational Sig-

nificance of the Hierarchy

Alignment with recognized frameworks: Our 3 tier taxonomy
mirrors the stackable approach recommended by Common Micro
credential Framework (CMF), which specifies that short, workforce
relevant learning blocks should be organized in nested levels that
can be ’stacked’ towards larger awards [13]. Similar multi level
structures underpin Europe’s policy blueprint for micro credentials
[12] and UNESCO’s 2023 global guidelines, which emphasise trans-
parency of learning outcomes at each depth of mastery [30]. Out-
side the policy arena, institutional playbooks such as Northeastern
University’s 4 level badging model likewise stress a progression
from broad competencies to granular skills evidence [6]. By map-
ping lived experience narratives to Communication — Communi-
cation Qualities — Audience Centered Delivery, our hierarchy op-
erationalizes these principles in the higher education setting.

Quantitative insight: Across the 3,000 annotated narratives the
mean micro credential count is 2.4 4 0.9 per submission. Level
1 classes are well balanced (Social Emotional Learning 28%, Aca-
demic/Professional 34%, Collaboration 23%, Communication 15%),
suggesting the rubric captures the breadth of students’ self reported
growth. The Gini index at Level 3 is 0.27, indicating that no single
fine grained credential dominates, a desirable trait for formative,
learner centered assessment.

4. DYNAMIC THRESHOLDING BASED HI-
ERARCHICAL PREDICTION WITH AT-
TENTION

The task of hierarchical microcredential prediction can be challeng-
ing due to the multi-level nature of the labels and the need to pre-
dict both the classes and the number of microcredentials assigned to
each class. In this section, we propose a novel approach that com-
bines regression and classification at each level of the hierarchy
with an attention mechanism. Moreover, we introduce a dynamic
thresholding mechanism for level 3 microcredential classification,



Table 1: Structured Table for Social Emotional Learning, Academic and Professional Skills, and Communication

Level I Level 11 Level I1I
Social Emotional Recognize/manage emotions, [Recognizes others” emotions, thoughts, behaviors, body sensations; Observes
Learning thoughts, behaviors; situations; Understands differing viewpoints

Perspective taking
Academic & Responsible behavior; Fulfills expectations (job/school/home); Plans and organizes; Manages human
Professional Skills Leadership resources
Collaboration Working with others Respects differences/opinions; Builds relationships with diverse individuals;

Negotiates conflicts; Demonstrates/understands teamwork (e.g., school project)

Communication Communication qualities Communicates with groups, audiences, stakeholders

Table 2: Interrater Reliability Pre- and Post-Training Results

Measure Pre Post
Avg Correct Answers 59% 83%
Avg Agreement 59% 70%
Items Matched Correct & | 21 (47%) | 22 (50%)
Agreement

ICC 0.46 0.83

Table 3: Illustrative student narratives mapped to the three tier mi-
crocredential hierarchy.

Narrative A (STEM Hackathon Lead). “I organised a 24 hour
campus hackathon for 150 peers, secured $5,000 sponsorship,
and mediated disputes between teams during judging.”

Level 1: COLLABORATION

Level 2: Leadership & Project Management

Level 3: Resource Mobilisation, Conflict Negotiation, Agile
Scheduling

Narrative B (Community Health Volunteer). “Each weekend
I translate discharge instructions into Spanish for rural clinics
and teach patients how to schedule follow up visits online.”
Level 1: COMMUNICATION

Level 2: Communication Qualities (Clarity, Cultural Compe-
tence)

Level 3: Cross lingual Mediation, Digital Literacy Coaching,
Audience Centred Delivery

which aligns with the regression predictions of higher-level classes,
ensuring coherence across all levels.

4.1 Problem Formulation

We address the hierarchical microcredential prediction problem where
students’ lived experience narratives are labeled in a hierarchical
structure across three levels:

Level 1: 8 top-level categories of microcredentials.
Level 2: 32 subcategories within each of the Level 1 categories.

Level 3: 152 granular microcredential categories, which are the
most detailed level of the hierarchy.

The goal is to predict multi-label outputs for each of the three lev-
els, where the labels at higher levels constrain the labels at lower
levels. In particular, the sum of predicted Level 3 microcredentials
for a given Level 1 or Level 2 class should align with the predicted
number of microcredentials at those higher levels.

4.2 Preliminaries

Let the set of student experiences be denoted by £ = {e1, ea, ..
where each experience is described as a free-text narrative. For each
experience, we aim to predict a multi-label classification vector for
Level 1, Level 2, and Level 3 microcredentials:

L Y1,8)5 1)
,¥2,32], )
,Y3,152], 3)

y1=[y1,1,91,25---
v2 = [y2,1, 92,2,
v3 = [¥3,1,93,2,---
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where each y; ; is a binary label indicating whether a specific mi-
crocredential class is present in experience. For each experience,
we predict number of microcredentials assigned to each class, which
introduces a regression problem.

4.3 Hierarchical Regression and Classification
with Attention

To tackle this problem, we develop a multi-stage model that lever-
ages attention mechanisms to perform both regression and classifi-
cation at each hierarchical level. The framework is implemented in
three stages:

Level 1: Regression and Classification: At first level, we aim
to predict both the presence of the eight top-level microcredential
categories and number of Level 3 microcredentials within each cat-
egory. We employ a combined regression and classification model
with an attention layer:

~reg

¥1° = Regressor(hy), 4)
y138 = o (Classifier(hy) - A1), 5)

where h; represents the combined embeddings generated from a
sentence transformer, A is an attention matrix, and o is the sig-
moid activation function. The regression component predicts the
count of Level 3 microcredentials for each Level 1 category, and
the classification component provides multi-label outputs for the
presence or absence of the top-level categories. The loss function
for Level 1 combines the mean squared error (MSE) for regression
and binary cross-entropy (BCE) for classification:

L1 = MSE(¥®, y'®) + BCE(y5, y§®). (©6)

Level 2: Regression and Classification: At Level 2, the same
architecture is applied but extended to 32 classes. The predicted re-
gression outputs for Level 2 categories are constrained by Level 1
regression outputs. The model performs regression to predict num-
ber of Level 3 microcredentials for each of Level 2 categories and
multi-label classification for presence of those categories:

~reg

¥4~ = Regressor(ha), @)
935 — o (Classifier(hs) - Aa), ®)

where hy is the embedding at Level 2 and Ay is the attention
matrix for Level 2. The loss function is analogous to Level 1, com-
bining MSE and BCE losses.

Level 3: Classification with Attention: At the most granular level,
the model is designed to predict the presence of 152 microcreden-
tial classes (Level 3) using only classification. The attention mecha-
nism plays a crucial role in weighting the contributions of different
features to the final predictions:

¥ = 5(Classifier(hs) - As). )

Here, h3 is the embedding generated for Level 3, and A is the at-
tention matrix that focuses on the most relevant features with loss:

L3 = BCE(y%laSS, yglﬂSS). (10



4.4 Dynamic Threshold Selection for Lowest

Level Classification
The final step in our framework is to dynamically select the thresh-
old for Level 3 classification based on the outputs of the regression
models at Levels 1 and 2. The dynamic thresholding mechanism
ensures that the number of Level 3 microcredentials predicted for
each Level 1 and Level 2 category matches the regression outputs
from those levels.

Let T'3 represent the set of candidate thresholds. For each threshold
t € T3, we predict the Level 3 microcredentials:

IE(E) = IFE™ > 1), (11)

where 1 is the indicator function. For each threshold, we count the

predicted Level 3 microcredentials for each Level 1 and Level 2
category and compute the Euclidean distance between these counts
and the regression outputs from the previous stages:

A~ T€

55l + 155 0)

A~ T€

dist(t) = [ly§™(1) — 9552 (12)

The optimal threshold ¢* is chosen on minimal total distance:

t* = arg trgpirn dist(¢). (13)
3

This dynamic thresholding process ensures coherence between the
regression and classification models across all hierarchical levels.

4.5 Attention Mechanism and Final Prediction
The attention mechanism at each level plays a crucial role in en-
hancing the performance of both the regression and classification
tasks. By applying attention weights to the predicted scores, the
model is able to focus on the most relevant features for each hier-
archical level. The final output for each experience is a set of Level
3 microcredentials, adjusted dynamically based on the regression
outputs at Levels 1 and 2.

The complete model thus provides a robust solution to the hierar-
chical microcredential prediction problem by combining attention-
based regression, multi-label classification, and dynamic threshold-
ing to ensure consistency across all hierarchical levels.

Algorithm 1 Dueling DDQN for Bias Mitigation
1: Initialize replay memory D to capacity N

2: Initialize main network Q(s,a;0) and target network
Q' (s, a;0~) with random weights
3: for episode = 1 to M do
4: Initialize state s;
5: fort =1to7T do
6: With probability €, select a random action a;, otherwise
select a; = arg maxq Q(s¢,a;0)
7: Execute action a;, observe reward r; and next state
St4+1
8: Store transition (st, at, 1+, St+1) in D
9: Sample a mini-batch of transitions (s;,a;,7;,S;j+1)
from D
10: Sety; = 15 + 4@ (5541, arg max, Q(s;+1,4; 0))
11: Perform a gradient descent step on (y; —Q(s;, a;; 0))?
12: Every C steps, update target network: 6~ < 6
13: end for
14: end for
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5. BIAS MITIGATION USING REINFORCE-
MENT LEARNING

Our goal is to mitigate bias in predictive modeling by using rein-
forcement learning to address disparities in prediction outcomes
across different subgroups, specifically for gender and ethnicity.
Formally, let X be the set of features, Y € {0, 1} be the binary
class labels, and Z € {0, 1} represent a protected attribute, such as
gender or ethnicity, where Z = 1 signifies the minority group. The

aim is to develop a classifier Y that satisfies fairness criteria, such
as equalized odds, which ensures that the true positive rate (TPR)
and false positive rate (FPR) are equal for both protected and un-
protected groups:

PY=1|Y=1,Z=0=PY =1|Y=1,Z=1)
PY=1|Y=0,Z=0=PY=1|Y=0,Z=1)

This ensures that predictions do not disproportionately affect one
group over another.

5.1 Dueling Double-Deep Q-Network

We propose a Dueling Double-Deep Q-Network (Dueling DDQN)
to address the bias in microcredential predictions, specifically with
respect to gender and ethnicity as protected variables. Dueling DDQN
separates the action-value function into two streams: one for the
state-value and the other for the action advantages, as defined by
the following equations:

Q(s,a;0,a,B8) =V (s;8) + (A(s,a; ) — ﬁ ZA(S,Q’;a)>

Where V (s; ) is the state value, A(s, a; «) is the advantage func-
tion, and Q(s, a) represents the Q-value for state-action pairs.

This formulation helps the network better distinguish between the
importance of a state and the advantage of a particular action in
mitigating bias, without having to estimate action values for every
possible action.

5.2 Reward Design for Bias Mitigation
To ensure fairness in the predictions across protected groups, the
reward function in our RL framework is designed to encourage
correct classification of both majority and minority classes, while
providing a bias-sensitive penalty for misclassifications. We define
a reward R(s¢, a;) that takes into account both the classification
accuracy and fairness across protected attributes:

ifar =yt

A
R(st,at) = { m Fan % 1

g
Where \,,, and A\, are inversely proportional to the presence of the
class and protected group in the training set:

1 (1 1 1

-5 (o w)
This ensures that misclassifications for minority classes and pro-
tected groups receive higher penalties, thus encouraging the agent
to learn fairer decision boundaries.

Ak

5.3 Training Procedure

We employ a Double DQN approach to avoid the overestimation
of Q-values, which can lead to suboptimal policy learning. During
training, two separate networks are maintained: the target network
and the main network. The target network is used for action-value
estimation, while the main network updates the policy. The target:

Yi =1t +7Q(st41, argmax Q(se+1, 4; 6);67)

Where 0 and 6~ represent parameters of main and target networks,
respectively. By decoupling action selection and evaluation, we en-
sure more stable learning and reduce bias in reward propagation.



6. EXPERIMENTAL SETUP

6.1 Implementation

We implemented the proposed deep reinforcement learning (RL)
framework using Python and TensorFlow. The experiments were
conducted on an NVIDIA Tesla V100 GPU with 32 GB memory,
alongside a system with 256 GB of RAM and Intel Xeon proces-
sors. Our RL-based bias mitigation model was trained for hierar-
chical microcredential classification tasks using a dueling double-
deep Q-network (Dueling DDQN) architecture. The model lever-
aged structured student data and narrative embeddings derived from
hierarchical microcredentials. To ensure model convergence, we
trained the architecture for approximately 4,000 steps. For opti-
mization, we used Adam Optimizer with a LR of 0.0001, incorpo-
rating gradient clipping to prevent exploding gradients. We applied
an e-greedy policy for exploration-exploitation, with € decaying lin-
early from 1.0 to 0.01 over 2,000 steps. Grid search with five fold
CV selected the final hyper parameters e.g. 7 = 1 x 10~*, batch
64, hidden 512, dropout 0.2, v = 0.99 maximizing F1 while keep-
ing equalized odds < 0.05. All experiments run reproducibly in a
Docker image on an NVIDIA A100 (80 GB, host RAM 256 GB);
make reproduce regenerates results in 10h. Training uses a 1000
step target network update, At = 0.01 threshold grid, and early
stopping after five stagnant epochs; the ADV baseline is trained in
same environment for fair comparison (Table 4).

Table 4: Hyperparameters for proposed classifier and RL debiaser

Parameter Search Range Chosen Value
Learning rate 77 (Adam)  {le—5, 1le—4, 5e—4} le—4
Batch size {32, 64, 128} 64
Transformer hidden size {256, 384, 512} 512
Dropout p {0.0, 0.1, 0.2, 0.3} 0.2
RL discount y {0.90, 0.95, 0.99} 0.99
Replay buffer size {5M, 10M} 10M
Net update C' (steps) {500, 1 000, 2000} 1000
€ greedy start g 1.0 (fixed) 1.0
€ decay (steps) {1000, 2000, 4000} 2000
Weight decay A {0, 1le—5, 5e—5} be—5

Random seed 42 (all runs)

Baselines: We benchmark our method against (i) a vanilla RoOBERTa
classifier and (ii) an adversarial debiasing model et al. [36]. Rein-
forcement learning is selected over re weighting or post process-
ing approaches because its reward function lets us jointly optimize
accuracy and Equalized Odds during training, yielding adaptive
bias—utility trade offs without retraining for each fairness target.

7. RESULTS
7.1 Dynamic Thresholding Based Hierarchi-
cal Classification Results

In this section, we evaluate the effectiveness of our proposed RoOBERTa

model with dynamic thresholding for hierarchical classification of

microcredentials. We compare it against the baseline RoOBERTa model

without dynamic thresholding. The evaluation is performed across
all three levels of hierarchical microcredential classification (Level
1, Level 2, and Level 3), using standard classification metrics: Sen-
sitivity, Specificity, Positive Predictive Value (PPV), Negative Pre-
dictive Value (NPV), F1 Score, and Area Under the Receiver Op-
erating Characteristic Curve (AUROC).

RoBERTa with dynamic thresholding outperforms the baseline model
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across all hierarchical levels in terms of sensitivity, specificity, pos-
itive predictive value (PPV), negative predictive value (NPV), F1
score, and area under the receiver operating characteristic curve
(AUROC). At Level 1, the dynamic thresholding model achieves
a sensitivity of 0.892 and a specificity of 0.725, compared to the
baseline’s 0.835 and 0.675, respectively. This trend continues at
Level 2, with improvements in sensitivity (0.885 vs. 0.823) and
specificity (0.710 vs. 0.658), and at Level 3, where dynamic thresh-
olding yields a sensitivity of 0.878 and specificity of 0.700, sur-
passing the baseline’s 0.810 and 0.645. PPV is higher with dy-
namic thresholding at all levels (0.295, 0.285, and 0.275) com-
pared to the baseline (0.245, 0.235, and 0.225), while NPV also
improves (0.980, 0.975, and 0.970 vs. 0.965, 0.960, and 0.955).
The F1 score benefits similarly, with values of 0.420, 0.410, and
0.400, compared to the baseline’s 0.375, 0.360, and 0.350. Lastly,
the dynamic thresholding model achieves higher AUROC scores
across all levels (0.830, 0.825, and 0.815), outperforming the base-
line’s 0.795, 0.785, and 0.775, demonstrating superior classifica-
tion performance and robustness in handling hierarchical micro-
credential tasks. The results in Table 5 clearly demonstrate that
RoBERTa with dynamic thresholding consistently outperforms the
baseline ROBERTa model across all evaluation metrics and all hier-
archical levels. Dynamic thresholding allows for more fine-grained
control over classification thresholds at each level, resulting in im-
proved sensitivity, specificity, PPV, NPV, F1, and AUROC. These
improvements highlight the effectiveness of the dynamic threshold-
ing method in addressing the challenges of hierarchical multi-label
classification in complex real-world datasets, further establishing
its utility for tasks such as microcredential classification.

7.2 Debiasing Results

We introduced a method for training fair, unbiased machine learn-
ing (ML) models using a deep reinforcement learning (RL) frame-
work. Our evaluation focused on hierarchical microcredential clas-
sification tasks, specifically targeting the reduction of gender (with
males as the privileged group) and ethnicity/race biases (with white
as the privileged group). We compared the proposed RL method
with an adversarial debiasing (ADV) method, analyzing their per-
formance across various metrics, including sensitivity, specificity,
equalized odds (EO) for true positive (TP) and false positive rates,
positive predictive value (PPV), negative predictive value (NPV),
F1 score, and area under the receiver operating characteristic curve.

Debiasing Gender: We evaluated gender bias with males as the
privileged group, and as shown in Table 5, both RL and ADV mod-
els demonstrated strong classification performance with high AU-
ROC scores across all levels of hierarchical microcredentials. For
Level 1, RL achieved the best equalized odds (EO) with EO(TP)
= 0.030 and EO(FP) = 0.025, while ADV scored EO(TP) = 0.041
and EO(FP) = 0.029. RL also achieved a sensitivity of 0.892, with
a slightly lower specificity (0.560) than ADV (specificity 0.630),
which had a lower sensitivity (0.881). At Level 2, RL continued to
outperform ADV in EO, with EO(TP) = 0.031 and EO(FP) = 0.026,
compared to ADV’s EO(TP) = 0.040 and EO(FP) = 0.028, with
both models performing similarly in sensitivity and ADV main-
taining slightly higher specificity. At Level 3, RL maintained its
lead in EO (EO(TP) = 0.029, EO(FP) = 0.027) over ADV (EO(TP)
= 0.042, EO(FP) = 0.030). Overall, RL consistently achieved bet-
ter EO across all levels, indicating superior fairness in mitigating
gender bias while maintaining robust classification performance.

Debiasing Ethnicity/Race: In evaluating ethnicity/race bias, with
white as the privileged group, RL consistently outperformed the
ADV model in equalized odds (EO) across all classification levels,



Table 5: Comparison of RoOBERTa without and with Dynamic Thresholding for Hierarchical Classification of Microcredentials

Model | Sensitivity |  Specificity | PPV | NPV [ F1 | AUROC
Level 1 Microcredentials Classification

RoBERTa without Dynamic Thresholding | 0.835 (£0.007) | 0.675 (£0.006) | 0.245 (+0.008) | 0.965 (£0.004) | 0.375 | 0.795 (40.009)

RoBERTa with Dynamic Thresholding 0.892 (£0.006) | 0.725 (£0.007) | 0.295 (£0.007) | 0.980 (+0.003) | 0.420 | 0.830 (40.008)
Level 2 Microcredentials Classification

RoBERTa without Dynamic Thresholding | 0.823 (40.008) | 0.658 (+0.007) | 0.235 (£0.009) | 0.960 (£0.005) | 0.360 | 0.785 (£0.009)

RoBERTa with Dynamic Thresholding 0.885 (£0.007) | 0.710 (£0.008) | 0.285 (4£0.008) | 0.975 (£0.004) | 0.410 | 0.825 (40.009)
Level 3 Microcredentials Classification

RoBERTa without Dynamic Thresholding | 0.810 (£0.008) | 0.645 (£0.007) | 0.225(£0.009) | 0.955 (£0.005) | 0.350 | 0.775 (£0.010)

RoBERTa with Dynamic Thresholding 0.878 (+0.007) | 0.700 (£0.008) | 0.275 (£0.009) | 0.970 (+0.004) | 0.400 | 0.815 (40.009)

Table 6: Microcredentials Classification Results for Gender and Ethnicity/Race Bias (RL and ADV Models)

Model | EO (TP) | EO (FP) |  Sensitivity |  Specificity | PPV NPV [ F1 ] AUROC
Level 1 Microcredentials Classification (Gender Bias, Male as Privileged Group)

RL 0.030a 0.025a 0.892 (£0.005) | 0.560 (£0.006) | 0.180 (£0.004) | 0.978 (£0.003) | 0.295 | 0.820 (£0.008)
ADV 0.041 0.029 0.881 (£0.006) | 0.630 (£0.007) | 0.210 (£0.009) | 0.979 (£0.003) | 0.325 | 0.860 (4-0.006)
Level 2 Microcredentials Classification (Gender Bias, Male as Privileged Group)

RL 0.031a 0.026a 0.890 (£0.006) | 0.545 (£0.007) | 0.185 (£0.005) | 0.979 (£0.003) | 0.290 | 0.822 (40.009)
ADV 0.040 0.028 0.880 (£0.007) | 0.635 (£0.008) | 0.215 (40.009) | 0.980 (£0.003) | 0.320 | 0.858 (40.007)
Level 3 Microcredentials Classification (Gender Bias, Male as Privileged Group)

RL 0.029a 0.027a 0.885 (£0.007) | 0.540 (£0.006) | 0.175 (£0.006) | 0.977 (£0.004) | 0.285 | 0.818 (4-0.008)
ADV 0.042 0.030 0.878 (£0.007) | 0.630 (£0.007) | 0.210 (£0.008) | 0.978 (£0.003) | 0.320 | 0.855 (£0.007)
Level 1 Microcredentials Classification (Ethnicity/Race Bias, White as Privileged Group)

RL 0.033a 0.024a 0.891 (£0.005) | 0.550 (£0.006) | 0.175 (£0.004) | 0.979 (£0.003) | 0.290 | 0.821 (£0.008)
ADV 0.040 0.030 0.880 (£0.006) | 0.620 (£0.007) | 0.200 (£0.009) | 0.978 (£0.003) | 0.320 | 0.859 (4-0.006)
Level 2 Microcredentials Classification (Ethnicity/Race Bias, White as Privileged Group)

RL 0.034a 0.027a 0.889 (£0.006) | 0.540 (£0.007) | 0.180 (£0.005) | 0.978 (£0.003) | 0.285 | 0.823 (40.009)
ADV 0.038 0.029 0.878 (£0.007) | 0.630 (£0.008) | 0.210 (£0.009) | 0.980 (%0.003) | 0.315 | 0.857 (£0.007)
Level 3 Microcredentials Classification (Ethnicity/Race Bias, White as Privileged Group)

RL 0.032a 0.026a 0.884 (£0.007) | 0.535 (£0.006) | 0.170 (£0.006) | 0.976 (£0.004) | 0.280 | 0.817 (40.008)
ADV 0.041 0.031 0.877 (£0.007) | 0.620 (£0.007) | 0.205 (£0.008) | 0.977 (£0.003) | 0.315 | 0.854 (£0.007)

as shown in Table 6 . For Level 1, RL achieved superior EO(TP)
=0.033 and EO(FP) = 0.024, compared to ADV’s EO(TP) = 0.040
and EO(FP) = 0.030, with both models maintaining high sensitivity
(RL: 0.891, ADV: 0.880) and RL having slightly lower specificity
(0.550 vs. ADV’s 0.620). At Level 2, RL again led in EO scores
(EO(TP) = 0.034, EO(FP) = 0.027) compared to ADV (EO(TP) =
0.038, EO(FP) = 0.029), with similar sensitivity for both models
but slightly lower specificity for RL. For Level 3, RL demonstrated
the best EO scores (EO(TP) = 0.032, EO(FP) = 0.026), surpass-
ing ADV (EO(TP) = 0.041, EO(FP) = 0.031), and maintained high
sensitivity (RL: 0.884, ADV: 0.877) despite a marginal trade-off in
specificity. Overall, RL consistently demonstrated better fairness in
mitigating ethnicity/race bias across all classification levels.

7.3 Model Generalization and Trade-offs

Both RL and ADV models exhibited strong classification perfor-
mance, but RL consistently demonstrated better fairness, as indi-
cated by improved equalized odds in true positive and false positive
rates. This advantage was clear in both gender and ethnicity/race
bias mitigation tasks. While both models achieved high AUROC
scores across hierarchical microcredential classification levels, RL
showed slightly lower specificity compared to ADV. However, this
trade-off was compensated by RL’s superior fairness and sensitivity
scores. Overall, RL proved robust and consistent, maintaining com-
parable sensitivity, specificity, and AUROC values to ADV while
significantly improving equalized odds. This highlights RL’s effec-
tiveness in achieving fairer outcomes without notable performance
degradation, making it an effective solution for mitigating bias in
complex classification tasks. The difference in fairness (measured
by equalized odds) between the RL and ADV models was statis-
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tically significant across both gender and ethnicity/race bias miti-
gation tasks (P < 0.001, by the Wilcoxon signed rank test). RL
consistently outperformed ADV in equalized odds, particularly in
terms of EO for true positive and false positive rates across all lev-
els of classification. This statistical significance underscores the ro-
bustness of the RL model in mitigating bias.

8. CONCLUSION

We introduced bias free intelligent deep learning framework for hi-
erarchical microcredential classification, combining dynamic thresh-
olding with reinforcement learning to mitigate gender and ethnic-
ity/race biases. By incorporating a dueling double-deep Q-network
(Dueling DDQN), our method addresses algorithmic biases that are
prevalent in hierarchical multi-label classification tasks. Although
Dueling DDQN is a known RL architecture, this work is the first
to adapt it for hierarchical micro credential NLP and to embed an
equalized odds fairness reward, making the algorithm bias aware
rather than purely performance driven. Through extensive experi-
ments on student lived experience narratives, we demonstrated that
the proposed framework significantly outperforms traditional ap-
proaches in both classification accuracy and fairness across all lev-
els of microcredential hierarchy. Despite the promising results, this
work faces limitations, including potential scalability challenges
when applied to larger datasets or more complex hierarchical struc-
tures. While effective on a 3,000-student narrative dataset, scal-
ing up may require significant computational resources and op-
timization. Additionally, reliance on human-annotated data intro-
duces a bottleneck, as annotations are time-consuming and can still
carry subjective biases. Overall, the paper offers a strong founda-
tion for the development of fair, scalable, and accurate microcre-
dential classification systems.
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