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ABSTRACT
With the rapid growth of education data mining as a re-
search field in recent years and the increasing interest in
measuring the effectiveness of the tools we produce, there
has been an increasing number of randomized educational
experiments and the amount of data gathered from them –
particularly with A/B testing on education software plat-
forms. In turn, there is an ever-present demand for robust
and flexible estimation and analysis of treatment effects with
these data. In this hands-on tutorial, we will demonstrate,
explain, and show participants how to implement novel and
powerful approaches to select experimental sample sizes, un-
biasedly estimate average treatment effects, and analyze pat-
terns of treatment effect heterogeneity. These methods are
easy to implement with off-the-shelf open-source software
and have been shown to produce more precise effect esti-
mates than currently popular methods.
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1. INTRODUCTION
Education researchers are often interested in causal effects—
for instance, how a particular learning or teaching strategy
may affect students’ abilities, knowledge, or affective states.
The most sure-fire approach to measuring causation is the
Randomized Controlled Trial (RCT), in which an experi-
menter randomizes subjects into two or more groups, ex-
poses each group to a different condition, and then mea-
sures outcomes of interest. RCTs can range from large field
trials [9, 6, 2] that evaluate a program, technology, or cur-
riculum over the course of a full school year, to A/B tests
conducted within an online learning environment [8], mea-
suring the short-term impact of, for instance, types of hints
or feedback [16], metacognitive prompts [5], or non-cognitive
interventions [13].

Education researchers typically analyze RCT data with t-
tests or regression models. However, those methods leave a
lot of data, power, and science on the table. They neglect,
or do not make full use of, the rich baseline data—for in-
stance, prior clickstream or administrative data—available
for each student participating in the RCT; they make no use
of data on covariates and learning outcomes from students
who were not part of the RCT—large, rich auxiliary datasets
that are often available; and they only estimate overall av-
erage treatment effects, masking between-student variations
in effectiveness that are sometimes present.

This tutorial will teach participants how to use modern sta-
tistical approaches to effect estimation that leverage off-the-
shelf machine learning algorithms [14, 15] and incorporate
auxiliary datasets [3, 11] to estimate treatment effects with
no bias – but with much greater precision. These methods
can identify average treatment effects that would otherwise
be lost in the noise of more simple approaches, allow re-
searchers to explore treatment effect heterogeneity, and even
plan better experiments to begin with.

The statistical theory underlying some of these methods has
been introduced to the EDM community in technical papers
and presentations [10, 11]. In contrast, this tutorial will focus
on the practical application of the methods using a new open-
source library in R [12] that we have developed—by the end
of this tutorial, participants will be able to use these methods,
just (or almost) as easily as running a simple linear regression.

2. BACKGROUND
The tutorial will focus on a suite of methods based on a fa-
miliar idea in EDM: avoiding biases due to phenomena such
as overfitting or the optimizer’s curse by training a model on
one dataset and evaluating it on another, either by sample
splitting or cross-validation. When applied to the analysis
of RCTs, the separation of model training and testing al-
lows for not only unbiased but also extremely flexible causal
estimation.

2.1 Leave-One-Out Cross Validation for Esti-
mating Causal Effects

The loop (“Leave-One-Out Potential Outcomes”) estima-
tor [14] estimates causal effects by combining randomiza-
tion and supervised learning algorithms. For each subject
i = 1, . . . , n in an RCT, it trains predictive models using the
other n− 1 subjects to impute the outcomes subjects would
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potentially exhibit if assigned to, say, condition A or condi-
tion B, as a function of baseline covariate data. loop then
uses the randomization of treatment assignment to construct
an unbiased estimate of each subject’s treatment effect using
their imputed potential outcomes. Finally, it estimates the
average treatment effect as the average of those individual
effect estimates.

When the analysis model matches the design of the exper-
iment, the causal estimators are guaranteed to be unbiased
and their confidence intervals or p-values are guaranteed to
be conservative. loop is a “design-based” estimator—these
guarantees depend on the experimental design, not on any
statistical model. It can use any model or algorithm to pre-
dict potential outcomes and will be unbiased even if the
model is inaccurate or fits poorly.

However, the more accurate the model’s predictions, the
more precise the loop estimate will be. [14] recommends
a Random Forest algorithm and empirical results show that
loop using Random Forests can yield much more precise
effect estimates than regression.

2.2 The More (Data) the Merrier: Incorpo-
rating Auxiliary Data

Besides data on covariate values and outcomes of individu-
als within RCTs, researchers often also have access to those
for individuals outside of the RCTs [10]. For instance, re-
searchers analyzing A/B tests on an educational platform
can access historical data from students who used the plat-
form before the A/B test began. Researchers conducting a
field experiment have data from schools and school districts
that did not agree to be randomized between conditions.

Auxiliary datasets are often much larger than RCT datasets,
allowing researchers to train supervised learning algorithms
that are higher-dimensional, more complex, and more accu-
rate than what would be possible using only RCT data. [3]
and [11] use auxiliary data to train a model predicting the
outcomes as a function of baseline covariates, use the trained
model to predict outcomes for subjects in the RCT, and then
use the predictions from this model as an additional covari-
ate in loop. [11, 3] showed that doing so can improve the
precision of causal estimates, even if auxiliary data do not
closely reflect or match up with the experimental data.

2.3 Not Everyone Experiences the Same Ef-
fect

loop estimators are essentially averages of unbiased esti-
mates of individual treatment effects. Researchers interested
in how treatment effects differ between individuals canmodel
these effect estimates instead of averaging them. For in-
stance, researchers interested in understanding what factors
are associated with higher or lower treatment effects may
regress the individual effect estimates on a set of baseline
predictors (which, in this case, are moderators). Researchers
interested in predicting an effect for new subjects—perhaps
to personalize their tutoring plans—can fit a neural net or
random forest to individual effect estimates, and use the fit-
ted model to anticipate the effect for new users. A similar
approach can be used to extrapolate the result of an RCT to
a new population of potential users, as long as all of the im-

Part Description Timing
I Conceptual Overview 0:00–0:30
II Estimating Effects with RCT Data 0:30–1:15
III Incorporating Auxiliary Data 1:15–2:00

Break 2:00–2:30
IV Treatment Effect Heterogeneity 2:30–3:15
V Planning Experiments 3:15–4

Table 1: Tutorial schedule

portant moderators are measured and included in the model
[7].

2.4 Using Auxiliary Data to Plan Experiments
Power analysis and sample size selection are among the most
vexing parts of experimental design, partly because they re-
quire experimenters to guess at a set of unknown parameter
values. Auxiliary data can help here, too, serving as a ba-
sis for these guesses. Specifically, researchers planning on
using an existing auxiliary dataset to boost the precision of
their estimate can use the auxiliary dataset to train a model
predicting outcomes as a function of covariates before the ex-
periment even begins. Then, they can use cross-validation
estimates of that model’s prediction accuracy to anticipate
the precision of their eventual effect estimate from the RCT.

However, the cross-validation estimate of the model’s ac-
curacy will only serve as a good prediction of the model’s
performance imputing potential outcomes for RCT partici-
pants if subjects who participate in the RCT are similar to
the model training set. To achieve more honest predictions,
we may assess a model’s performance on a large number
of subgroups within the auxiliary data, and use results for
those subgroups to calculate a range of power estimates or
require sample sizes for an upcoming experiment. Then,
a researcher can make an informed decision on power and
sample size, based on auxiliary data and on the uncertainty
of extrapolating from the auxiliary dataset to a new, ran-
domized dataset.

3. TUTORIAL GOALS
By the end of the tutorial, participants will be able to:

• Use modern machine learning techniques to estimate
precise and unbiased effects from Bernoulli-randomized
or pair-randomized experiments.

• Incorporate appropriate auxiliary data into effect esti-
mators to further improve precision without incurring
additional bias.

• Estimate and model individual, average, and hetero-
geneous treatment effects.

• Use auxiliary data to help plan a randomized experi-
ment.

• Identify scenarios where or assumptions under which
these techniques are appropriate or inappropriate.

4. THE PLAN
The tutorial will begin with conceptual overviews of random-
ized trials, principles of causal inference, and the methods



we will focus on. The bulk of the tutorial will be spent alter-
nately discussing specific use cases and guiding participants
through hands-on demonstrations using [either datasets they
brought or] example EDM datasets.

4.1 Software
We have developed an open-source package to implement
these methods on the R data analysis platform, and a Shiny
[1] application—a graphical user interface—for power anal-
ysis using auxiliary data. To facilitate their use for tutorial
participants, we will provide a downloadable Docker con-
tainer that contains the R program, our software library
(along with libraries it depends on), and example datasets.
By opening the docker container on their laptops, partici-
pants can carry out all of the analyses we will describe with-
out having to install R or download any additional files. The
Docker container will run on all major operating systems,
including Windows, OSX, and Linux.

We will also provide instructions for installing our library
and downloading datasets for participants who already have
R on their computers.

4.2 Example Data Sets
Each discussion of a use case will be illustrated with one of
two example datasets, and after each discussion participants
will have the opportunity to carry out their own analysis on
that dataset. We intend to use two EDM-themed datasets
in the tutorial:

• Data from an A/B test run on the ASSISTments E-
Trials platform designed to measure the effect of spa-
cial features on students’ demonstrated mastery of order-
of-operations problems [4]. The dataset includes data
on the performance of 5,732 middle school students as-
signed to one of two conditions, along with nine aggre-
gated student-level covariates. The associated auxil-
iary dataset includes log data from ASSISTments users
who worked on the same ASSISTments module before
the A/B test started.

• School-level data from a field trial testing the effec-
tiveness of an intelligent tutoring system (ITS). In the
experiment, schools were paired and randomized to ei-
ther use the ITS or continue business as usual. The
dataset includes publicly available school-grade-level
passing rates, prior achievement, and demographic vari-
ables. Associated auxiliary data includes the same
school-grade-level measures for schools in the same
state that did not participate in the RCT.

4.3 Tutorial Organization
Part I: Conceptual Introduction. The tutorial will begin with
a conceptual introduction to causal inference from RCTs, as
well as the logical underpinnings, structure, and assump-
tions of the methods we will be discussing. We will begin
by reviewing causal estimation targets—individual, average,
and conditional average treatment effects—and how RCTs
facilitate their unbiased estimation. Next, we will describe
common effect estimators, including the simple difference
(t-test) and regression estimators. Finally, we will explain,
at a high level, how researchers can use covariates, auxiliary

data, and modern machine learning methods to estimate in-
dividual and average treatment effects more precisely, with-
out bias. By the end of this part of the tutorial, participants
will be able to describe different goals of RCT analysis and
have a deep enough understanding of the estimation process
to be able to choose the appropriate estimator for a given
scenario, and to make well-informed modeling decisions.

Part II: Estimating Average Treatment Effects with RCT
Data. The remainder of the tutorial will be purely practical,
beginning with the most common use case, estimating aver-
age treatment effects using RCT data. We will on two com-
mon experimental designs: first, we will discuss Bernoulli
randomization, in which each subject is randomized between
conditions independently, such as in the ASSISTments E-
trials dataset. We will use the E-trials data to demonstrate
how to use our software package in R to precisely and un-
biasedly estimate average effects for Bernoulli designs by
identifying and formatting covariates, treatment indicators,
and outcome measures, entering them into the appropriate
function, and interpreting the results. Next, we will guide
participants in using our software to estimate effects in the
same dataset, which we will distribute.

We will repeat this process with the second experimental
design, paired randomization, which is common in field trials
such as the ITS effectiveness trial: we will demonstrate the
use of our software, and guide participants as they use our
software to estimate average effects using the ITS field trial
data.

Finally, we will briefly describe other experimental designs
covered by our software, and show participants how they can
specify their own predictive functions within our software.

Part III: Incorporating Auxiliary Data. Auxiliary data—
covariates and outcome measures from subjects who were
not randomized between experimental conditions—can be
used to improve the precision of both average and individual
treatment effects without causing bias. We will use both ex-
ample datasets to demonstrate to participants how to iden-
tify usable and potentially helpful auxiliary data; how to
verify that pre- and post-randomization measures are cor-
rectly labeled as such; how to specify, choose, and fit pre-
dictive models using auxiliary data; and how to use those
models to more precisely estimate average treatment effects.
We will demonstrate the use of these methods in R using the
example datasets, along with their associated auxiliary data,
and guide participants through the same.

Part IV: Treatment Effect Heterogeneity. In this part of the
tutorial, participants will learn how to use the techniques
from the first half of the session to estimate individual treat-
ment effects and subgroup or conditional average effects, and
how to use models to uncover patterns in treatment effect
heterogeneity. Specifically, we will show how to predict the
treatment effect for a new participant—potentially allowing
for personalized education—how to extrapolate average ef-
fect estimates to new populations, and how to interpretable
models to individual effect estimators that may shed light on
how effects vary between subjects. We will also explain the
conditions under which these estimates are accurate. For
this portion, we will use the E-trials dataset for demonstra-



tions and hands-on activities.

Part V: Planning an Experiment. The final part of the tuto-
rial will focus on one of the first stages of experimentation—
using auxiliary data to choose an appropriate sample size.
We have developed an interactive graphical interface, using
the R web application framework Shiny, to perform power
analyses and select a sample size using auxiliary data, and
in this part of the tutorial, we will demonstrate to tutorial
participants how to use the application, as well as providing
an opportunity for them to try it themselves using the field
trial or ASSISTments E-trials auxiliary dataset, or another
dataset of their choosing.

5. ORGANIZERS AND PRESENTERS
Adam C. Sales1 is an Assistant Professor of Statistics and a
member of the Learning Sciences and Technologies faculty
at Worcester Polytechnic Institute. He works on incorporat-
ing log data from computer-based learning applications into
causal models to better understand what works in education
and why.

Johann A. Gagnon-Bartsch2 is an Associate Professor of Statis-
tics at the University of Michigan. His research focuses
on causal inference, machine learning, and nonparametric
methods with applications in the biological and social sci-
ences.

Duy M. Pham is a graduate student in the Department of
Data Science at Worcester Polytechnic Institute, working
with Adam Sales. He has led the development of treat-
ment effect heterogeneity estimators using loop and auxil-
iary datasets.

Charlotte Z. Mann is a recently minted PhD in Statistics
from the University of Michigan, where she worked with
Johann Gagnon-Bartsch. She has led the development of
the R package for loop and the application of LOOP for
pair-randomized experiments.

Jaylin Lowe is a PhD student in the Department of Statistics
at the University of Michigan, working with Johann Gagnon-
Bartsch. She is leading the development of the Shiny appli-
cation and methods to estimate power and select sample
sizes using auxiliary data.
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