
Building Learner Activity Models From Log Data Using
Sequence Mapping and Hidden Markov Models

Paras Sharma
University of Pittsburgh

Pittsburgh, PA, USA
pas252@pitt.edu

Angela E.B. Stewart
University of Pittsburgh

Pittsburgh, PA, USA
angelas@pitt.edu

Qichang Li
University of Pittsburgh

Pittsburgh, PA, USA
qil107@pitt.edu

Krit Ravichander
University of Pittsburgh

Pittsburgh, PA, USA
krit.rr@pitt.edu

Erin Walker
University of Pittsburgh

Pittsburgh, PA, USA
eawalker@pitt.edu

ABSTRACT
Open-ended learning environments (OELEs) involve high
learner agency in defining learning goals and multiple path-
ways to achieve those goals. These tasks involve learners
transitioning through self-regulated learning (SRL) phases
by actively setting goals, applying different strategies for
those goals, and monitoring performance to update their
strategies. However, because of the flexibility, how learners
react to impasses and errors has a critical influence on their
learning. An intelligent pedagogical agent (IPA) continu-
ously modeling learner activities could help support learn-
ers in these environments. However, this continuous com-
prehension of behaviors and strategies is difficult in OE-
LEs with evolving goals, ill-defined problem structures, and
learning sequences. In this paper, we draw from the lit-
erature on SRL phases and cognitive states to investigate
the utility of two different methods, Sequence Mapping, and
Hidden Markov Models, in building learner activity models
from log data collected from a summer camp with 14 middle
school girls in an open-design environment. We evaluate the
effectiveness of these models separately, and combined, in
identifying 7 states: Forethought, Engaged Concentration,
Acting, Monitoring, Wheel Spinning, Mind Wandering, and
Reflect and Repair. Lastly, we recommend dialogue inter-
vention strategies for an IPA to support learning in OELEs.

Keywords
Learner-State Modeling, Open-Ended Learning Environments,
Hidden Markov Models, Sequence Mapping

1. INTRODUCTION
Open-ended learning environments (OELEs) are learner-centered
and provide a learning context and scaffolding to help stu-
dents explore and build solutions to authentic and complex

problems [10]. In certain OELEs, the inherent nature of the
task makes the learning goals ambiguous and ill-defined, of-
fering learners high agency in defining their goals and strate-
gies to achieve them. We call these environments open-
design environments. For example, in our study, we give
learners a task to“build a robot protege”. While some learn-
ers focus on the physical appearance of their robots, others
program the robot’s functionality. Even when learners have
the same goal there is no fixed path to achieve them. For
example, some learners first added sensors to their robots
and then programmed them, while others had a mix-and-
match approach. This openness in goals and strategies en-
courages learners’ creativity and motivates them to bring
their experiences and identities into technology design. This
makes these environments suitable for a Culturally Respon-
sive Computing (CRC) context that attempts to engage and
empower a range of learners, in part by including interac-
tions where learners reflect on the choices made when design-
ing technologies, and how this intersects with their identities
and experiences [25]. An intelligent pedagogical agent could
help support learner activities in these highly exploratory
environments. However, to do so, the agent has to contin-
uously model learner activity states and perform strategic
interventions to guide learners. In this paper, we present
an attempt at modeling learner activities in open-design en-
vironments with the ultimate goal of building pedagogical
agents to support learning in these environments.

Previous works in the EDM community have focused on
modeling learner behaviors in educational contexts with large
sample sizes and well-defined trajectories, e.g. MOOCs [24,
15, 23] and open-ended domains with fixed goals [1, 6, 12].
These models either consider learning systems with fixed
pathways or learner performance as a feature in the behav-
ior model construction. However, in open-design domains,
the learner models have to come only from the learning pro-
cess without any pre-defined knowledge of the learning goals
or with a more expansive notion of learner performance. As
per our knowledge, there is a lack of understanding of how
well these traditional learner modeling methods translate
to open-design contexts, especially with small sample sizes,
such as ours.

In this work, we translate the approaches for learner be-
havior modeling from more structured educational contexts

P. Sharma, A. E. Stewart, Q. Li, K. Ravichander, and E. Walker.
Building learner activity models from log data using sequence map-
ping and hidden markov models. In B. Paaßen and C. D. Epp, editors,
Proceedings of the 17th International Conference on Educational
Data Mining, pages 584–593, Atlanta, Georgia, USA, July 2024. In-
ternational Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729890

https://doi.org/10.5281/zenodo.12729890

to open-design contexts with open-ended goals and small
sample sizes. We build learner activity models from mul-
timodal log data in a robotics education curriculum where
learners use various tools to design, engineer, and program
their robots[4]. Robotics activities involve learners engaging
in self-regulated learning (SRL [29, 22]) by actively setting
and updating their goals (Forethought), applying different
strategies for those goals (Performance), and monitoring
their progress to update their strategies (Self-Reflection).
We attempt to model these SRL states as they are essential
markers for understanding learner progress and can provide
ways to support learners as they transition through these
metacognitive processes. A second set of states we model is a
learner’s cognitive states: Engaged-Concentration [6], Mind
Wandering [18] and Wheel-spinning [11] that regulate self-
learning in open-ended environments. The cognitive shifts
affect learning behaviors by inducing productive and unpro-
ductive states which might impact the learners’ transitions
through different learning phases. Understanding these cog-
nitive shifts is crucial for agents supporting learning partic-
ularly in open-design settings because the learner is likely to
encounter impasses they need to overcome.

We use 2 techniques to model learner activity states in our
work. Using 2 different methods makes our findings more
reliable in the absence of ground truth data about learner
states. We first introduce the Sequence Mapping technique,
a combination of “Text Replays” [5], sequence diagrams for
learner action mapping [26], and sequence mining, with a
human-in-the-loop to build learner activity models in our
open-design context by visualizing learner action sequences
and theoretically grounding them to extract activity pat-
terns. We then evaluate the transferability of Hidden Markov
models, a widely used method for modeling learners’ behav-
iors [23], to our novel open-design context. We further com-
bine these approaches to enhance validity, gain diverse per-
spectives on learner states, and compare model suitability,
recognizing individual models’ insufficiency in identifying all
cognitive states. Our research questions are:

• What activity states characterizing learner behaviors
in open-design contexts can be identified using Se-
quence Mapping and HMMs?

• How can these methods jointly model learner actions,
enabling informed interventions for an IPA?

2. BACKGROUND
Self-regulated learning involves learners continuously tran-
sitioning between three cyclical metacognitive phases: Fore-
thought, Performance, and Self-Reflection [29, 22] through-
out the task. The Forethought phase demonstrates planning
and involves learners analyzing the task, setting their goals,
and developing strategies. In the performance phase, learn-
ers execute the task and monitor their progress toward their
goals, keeping themselves cognitively engaged. The self-
reflection phase involves learners assessing their performance
and updating their strategies. Supporting learners’ SRL ac-
tivities by building their behavioral models has been shown
to enhance project-based learning [9], improve inquiry-based
learning by helping in information organization capabilities
[20], and promote students’ learning achievements using con-
cept maps [16]. Open-design environments, especially those

supporting robotics activities, engage learners in these self-
regulated learning phases by allowing them to actively set
their goals, apply different strategies for those goals, and up-
date their strategies. We model these SRL phases of learner
activities when they build their “robot protege” using mul-
timodal log data extracted by our system.

Another line of work studies learners’ cognitive state shifts
during learning. While engaging in learning activities, learn-
ers sometimes end up in Gaming, Mind Wandering, and
Wheel Spinning cognitive states [1] or Boredom, Confusion,
and Engaged Concentration affective states [6]. These states
are usually associated with learner actions and are classified
as desirable (Engaged Concentration) or undesirable (Mind
Wandering, Gaming, and Wheel Spinning) during the learn-
ing process. For example, mind-wandering is associated with
task-unrelated thoughts and boredom [18] and wheel spin-
ning is related to long response time in learning systems [11].
Learners can sometimes transition into undesirable cognitive
states in open-design environments due to the unstructured
nature of the goals and pathways to achieve those goals. We
model learners’ cognitive states while they build their robots
and identify the behaviors leading to transitions in the un-
desirable states, guiding the design of intelligent agents to
support the transition from undesirable to desirable states.

The use of learners’ task performance data and correctness
of current action [6] and temporal understanding of their
system interaction data [21] to build activity models has
been prevalent in learning environments with fixed goals
and pathways of progress. Researchers have leveraged this
learner interaction data to build learner models using var-
ious machine learning and data mining techniques. Hid-
den Markov models have been used to understand learner
dialogue processes in collaborative learning [13] and SRL
processes in MOOCs [23]. Sequence mining has been used
to model cognitive and metacognitive states in open-ended
learning [12]. Hierarchical task modeling has been utilized
to model learner actions in science learning settings [10].

All these techniques use features common in well-defined
learning environments, for example, knowledge of learning
goals, fixed ordering of tasks, correctness of learner actions,
and time duration of interaction, and often require huge
amounts of learner data. However, their translation to open-
design environments, with unrestricted learning goals and
pathways to achieve those goals, and smaller sample sizes
is still unclear. We apply HMMs in our novel open-design
context of robotics education and evaluate their effective-
ness in this context. We also develop a new visual coding
technique called Sequence Mapping using “Text Replays” [5]
and learner action mapping using sequence diagrams [26] to
build a visual representation of learner actions, followed by
a human-coding process to extract behavioral patterns. Our
Sequence Mapping technique applies to smaller datasets like
ours and is theoretically informed, transparent, and explain-
able in building learner models.

3. CORPUS AND MEASURES
Task. We conducted a 2-week summer camp with 14 upper-
elementary to middle-school (4th to 7th grades) girls, re-
cruited through our community partner from a historically
African American neighborhood in a mid-sized US city. The

learners ranged from 8− 12 years old (average = 10.36, SD
= 1.2) with 12 identifying as Black and 2 with no answer.
65% of them had moderate experience with computer science
and robotics through prior participation in robotics camps.
3 learners were part of a similar theme camp we ran last
year. The broader camp followed a Culturally-Responsive
Computing pedagogy [25] and included discussions of power
and identity, community-building activities, lessons on AI
Fairness, a Futuring Day, and a series of Robot-Co-Creation
sessions. For this paper, we only focus on our Robot Co-
Creation sessions. The learners were asked to: “Create a
robot protege to be presented on a robot runway”. This task
is open as it allows learners to bring their identities and expe-
riences to the learning activity, which is one of the tenets of
CRC pedagogy [25]. The learners worked on building their
robots in 4 one-hour sessions: aesthetic design, brainstorm-
ing and coding, sensor addition to the robot, and a final
session to finish the development. The ethical evaluation of
our study was conducted by our IRB and parental consent
and learner assent were taken before the study. Moreover,
learners’ explicit assent was re-taken every time before they
were audio or video recorded during the study.

System Used. We develop a custom system enabling learn-
ers to build and program robots using different sensors or ac-
tuators (LEDs, TriLEDs, Servos, etc.), coding blocks, design
materials, and a modified Hummingbird Robotics kit1. Our
system enables the learners to design the aesthetics of their
robot, add physical sensors to the robot, program different
robot functionalities using a customized Blockly interface,
voluntarily record videos about their actions and goals, and
respond to pre-defined dialogue scenarios using a Chatbox
in the frontend. Our system automatically captures these
multiple modalities of learner interactions with the robot as
log data. The main data collection in the system happened
through continuous logging of sensed learner events consti-
tuted by sensor activities, programming activities, dialogue
activities, and learner-initiated video interaction activities.

Action Categories. We categorize the log data into 5 ac-
tion categories based on the system component they are as-
sociated with. Each action category is further divided into
plausible actions. Below is a list of the action categories:
(1) Sensors: The logs associated with this category show
the addition or removal of a sensor from the robot, along
with the type of the sensor and the port that the sensor is
associated with. For our learner activity models, we do not
use the sensor type or associated port information and only
consider the sensor addition (SA) and sensor removal (SR)
as possible learner actions to focus on learner processes and
not the content of their actions.
(2) Blocks: This action category constitutes logs about the
coding blocks and repeatedly logs any block addition (BA),
updates (BU), or removal (BR). It also logs the values and
the blocks’ structural arrangement; however, we do not con-
sider them for our final learner action models.
(3) Dialogue: Dialogue Logs consist of the interactions (D)
between the learner and the robot in the frontend dialogue
interface. In the current system, the robot always triggers
these interactions based on pre-defined conditions.
(4) Video: Video logs relate to the learner-initiated video

1https://www.birdbraintechnologies.com/products/
hummingbird-bit-robotics-kit/

interactions with the system and include Video Start (VS)
and Video End (VE) as plausible learner actions.
(5) Code Run : This category corresponds to the action of
running the code (CR) from the frontend interface and logs
whenever a learner tries to test their robot.

We collected 2961 instances of log action data across all
the learners (Mean = 199, SD = 141.15). Each of these
actions also contains timestamp information associated with
them. We believe both the sequence of actions and the time
between subsequent actions determine a learner’s behaviors
and cognitive states they are in, during learning in an open-
design environment. We divide the time between subsequent
actions under 3 categories: Fast (less than 1 minute, 93%
of all actions), Regular (between 1 min and 5 min, 5% of all
actions), and Long (more than 5 minutes, 2% of all actions).
The data is skewed with most of the actions under 1 minute.
A further subdivision of these Fast actions revealed that 60%
of these actions are block reordering/updates, which may
not necessarily indicate cognitive shifts. Hence, we maintain
the initial time segmentation for our analysis.

4. SEQUENCE MAPPING
We introduce a visual technique called sequence mapping to
build patterns out of learner action sequences. Our method
is based on “Text Replays” [5] which represent segments of
log files in textual form to code. We further closely follow
[26] to represent individual learner actions using sequence di-
agrams. We extend these techniques by incorporating tim-
ing information in the sequence diagram creation, and by
including a qualitative coding of the diagram itself to ex-
tract theoretically grounded patterns of learner behaviors.
We first individually plot sequence diagrams using the log
data for all the learners following [26], then map the com-
monly identified observable patterns from these diagrams
to a defined coding scheme. Coding these visualized se-
quences of learner actions from the log data could prove more
useful than automatic pattern-matching techniques such as
sequence mining for smaller datasets like ours. Moreover,
this visual process is more transparent and explainable in
extracting patterns than other black-box pattern-matching
techniques.

Sequence Diagram. Figure 1 shows different clippings of
sequence diagrams across learners. We build the sequence
diagrams using the individual actions across all the action
categories as the observable events. Each action is repre-
sented as a separate node (Action Node) in the sequence
diagram, and each row in the diagram represents a logged
event from the data at a particular time. A learner takes a
sequence of actions over time starting from a node “S”. The
number and order of these actions could vary across learn-
ers based on the variability in learner goals and the multiple
pathways to achieve those goals.

Each learner action is assigned to an action node. An edge
is added from the current node (previous action or “S” at
the beginning) to the corresponding action node in the next
row, representing an action shift moving forward in time.
There are 3 types of edges that could be there between 2 ac-
tion nodes (A & B) or the same action node(A & A): Edge
1 (Red) represents a Fast transition from node A to node
B, Edge 2 (Blue) represents a Regular time transition from

Table 1: Table shows the set of rules developed after a series
of qualitative coding.

Forethought: Exploration and Planning (4.2%)
At the start of the process, there are a variety of “Fast”
or “Regular” time subsequent actions between different
action categories.
More than 3 different types of actions across different
action categories not under “Long” time category.
The actions are at the beginning of the process.

Engaged Concentration (27.81%)
The learner is under the same action category, but
transitioning between states with “Fast” or “Regular”
transition times.
Consistent progress with predominantly Fast or Regular
actions with minimal periods of inactivity across
Sensors and Blocks.
All actions within Regular time are related to building
/coding (adding, removing, updating, running code)

node A to node B, and Edge 3 (Violet) represents a Long
transition from A to B. There could also be weighted edges
at the same level between 2 action nodes. This weight rep-
resents the number of times the learner continuously tran-
sitioned between these action nodes before moving to a dif-
ferent action node.

Qualitative Coding. We performed a qualitative coding
of the sequence diagrams to generate a list of codes identi-
fying patterns across different learner action sequences. We
used a mix of inductive and deductive coding approaches.
Initially, the first author went through the sequence dia-
grams and generated a codebook based on the patterns in
the diagrams. The codes represented a learner’s cognitive
and metacognitive states and were theoretically grounded
in the 4 learning phases (forethought, monitoring, control,
and reaction and reflection) in [22] and the metacognitive
states in [27]. 2 other authors used this initial codebook to
extract patterns from data while adding to the codes or code
definitions. After this coding session, all the authors agreed
upon a collective list of 7 codes and their definitions. Ta-
ble 1 shows the codebook generated after the coding process
with the percentage of the occurrence of these states across
the learners. 3 authors then independently coded the data
for 2 learners (Krippendorf’s alpha [19] = 0.583) using the
codebook.

Rule-based Pattern Matching. We operationalize the
fuzzy terms from the code book to convert them to rule-
based Pseudocodes. Table 2 shows Pseudocodes for pseu-
docodes of Forethought and Engaged Concentration states.
We then use these pseudocodes in pattern-matching algo-
rithms to automatically determine a learner’s state at a par-
ticular moment using the log data. These algorithms use the
action history from data sequences based on the time cate-
gories to identify the patterns occurring over time.

Results. Based on the qualitative coding followed by rule-
based pattern matching we identified 7 activity states across
all the learners. Figure 1 shows the sequence diagrams for
“Forethought” and “Mind Wandering” states. All the other
state diagrams are presented in the appendix E. The per-
centage associated with each state represents the fraction of
time that state occurred across the learners.

(1) Forethought: Exploration and Planning (4.2%): This
activity state corresponds to the situation when learners are
unsure of their goals or the system functionality and hence
are trying the different components of the system. This ties
back to the “Forethought” phase in Zimmerman’s Cyclical
Phases model of self-regulated learning [29] where a learner
defines an understanding of the task and is ready to enter
the goal-setting and planning process.

(2) Wheel Spinning (1.62%): This cognitive state means
that the learners are unsure of how to proceed further from
the current state. This links to a“Wheel Spinning”cognitive
state under unproductive thinking when the student makes
an effort but does not succeed, leading to long response times
and many help requests [11].

(3) Engaged Concentration (27.81%): This cognitive state
signifies that the learner is implementing a strategy towards
their goal and is in a concentrated state. It reflects the “en-
acting study tactics and strategies” phase of studying from
Winne and Hadwin’s SRL model [27], where a learner is
acting upon the strategies to reach their goals.

(4) Mind Wandering (12.29%): This state is associated
with the “Mind-wandering” cognitive state and is related to
boredom and attention shift toward task-unrelated thoughts
[18]. It could also indicate distraction, e.g. performing these
actions while talking with another learner (which is not in-
hibited by our study design), hence not interacting quickly
enough with the system. Additional logging by the system
might be needed to disambiguate between these states.

(5) Monitoring and Testing (21.02%): This means that
the learner is testing the different system components. This
relates to the “Monitoring” phase in [22] Pintrich’s SRL
model [22] and the“Performance”phase in the cyclical phases
model [29] where learners execute the task while monitoring
their progress. However, this pattern could have different
meanings across different time intervals in our open-design
context. If this occurs at the end of the learning process,
this could mean that the learner is just checking whether
everything is working correctly or showing off the function-
ality of their robot to other people. A similar pattern in
the middle of the learning process following an Acting state
might mean that the learners are testing the functionality
of the components they just added.

(6) Reflect and Repair (4.92%): This state circles back
to the “Reaction and Reflection” phase in [22] and “Self-
Reflection” in [29] where students evaluate the task and their
performance. This state could also mean debugging or good
coding practice. It can have learners in a concentrated en-
gagement making goal progress.

(7) Acting (28.14%): This is the default state for a learner
action and signifies that a learner is interacting with the
system in some form.

5. HIDDEN MARKOV MODEL
Our sequence mapping technique revealed different activity
states that learners transition through in our open-design
context. Even though our technique has a qualitative step,
we do not have explicit ground truth information about

(a) “Forethought” as observed in learners. (b) “Mind Wandering” as observed in learners.

Figure 1: Sequence Diagrams. Edge 1 (Red) represents a fast transition (< 1 min), Edge 2 (Blue) Represents a regular
transition (> 1 min and < 5 min), and Edge 3 (Violet) is a long transition (> 5 min). The weight on an edge represents
the number of times a learner transitioned through that edge. The transition time for an edge represents the total time the
transition was repeated.

learner states to verify these findings. Hence, we experiment
with a widely used learner behavior modeling method, the
Hidden Markov Model (HMM), and evaluate how it trans-
lates to our context and complements the sequence map-
ping results. An HMM is a probabilistic model based on
the chain of Markov processes (sequence of events where the
next event only depends on the current event) and can be
used to describe latent (hidden) events that lead to a se-
quence of observations. We consider all the 9 action types
as observations in our model and further add timing infor-
mation based on the 3 time categories defined above. For
example, if a random log data corresponds to Block up-
date (BU) and the learner took this action after a “Regu-
lar” time from the previous action, the feature for this data
becomes [BU, 2]. To identify the optimal number of hid-
den states, we train HMMs on these derived features for
these sequences with hidden states ranging from 2 to 9 us-
ing a leave-one-out cross-validation approach. We identified
models with 5 (HMM-5) and 6 (HMM-6) hidden states to
perform the best across Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC), and log-likelihood (see
Appendix B. However, an extra state in the HMM-6 was a
low-probability state and could be collapsed into the other
states in the HMM-5 without any information loss. Hence,
we only consider the HMM with 5 states for further analysis.

We induced an HMM with 5 hidden states on all the learner
data (see Figure 2), and mapped the identified hidden states
to learner actions to understand the hidden learner activity
states. The HMM identified states 2 and 4 as the only start-
ing point for the learners, with 2 being the most probable.
State 4 corresponds to all the visible components (Video
Recording, Code Run, Dialogue) of the system. A learner
starting in this state means that they are exploring the dif-
ferent options present on the interface. Hence, at the be-

ginning of the session, this state corresponds to an “Explo-
ration” state for the learner. However, this is also the only
state with a high probability of the “Code Run”action being
observed. This means that if a learner enters this state at a
later point in the session, e.g. after they perform some ac-
tions related to other system components, they could be in
a “Testing” phase. Hence, a pedagogical agent making these
learner models needs to consider the timing information of
when a learner enters a particular state, as a state could
have different meanings based on when in the session it oc-
curs. The most probable way to transition out from state 4
is to move to state 1 which mostly emits sensor-related ac-
tions. This means that after either“exploring”or“testing” in
the state 4 a learner mostly performs sensor actions in their
robot. The most probable way to transition into this state
is from the state 1, meaning that a learner is immediately
testing whatever they are doing with the sensors.

Starting state 2 is mostly associated with block addition or
update actions. This indicates that a learner has an ini-
tial idea of their programming goals when they start in this
state and are making slow actions toward it, e.g. adding a
block and then updating it to decide what they want that
block to do. Hence, this state combines exploration and goal
definition and links back to the “Forethought” phase in [29]
and [22]. The learners in this state have formed goals but
are still investigating the system’s functionality and learn-
ing how to navigate through the system. However, this state
could also relate to Engaged Concentration later in the ses-
sions, where the learner knows about their goals and works
towards updating things to make the different components.
This state is almost in a cyclical transition with the state
5 that mostly emits the sensor addition action. This indi-
cates that a learner interacting with the system performs
the sensor and the block-related actions sequentially. They

Figure 2: Figure shows HMM with 5 hidden states. The circular nodes represent the hidden states and the transition between
the states identified by the models. The rectangular boxes represent the emitted states from a hidden state along with their
probability. The hidden states with “Black” borders are the start states identified by the models.

might add a sensor in the state 5 and then move back to
the state 2 to add/update/remove/test the corresponding
blocks, and this almost happens most of the time, until they
either transition to the state 3 or state 1.

The state 1 is mostly associated with the sensor actions and
could be considered an “Acting” state for the sensor-related
updates. A learner in this state mostly transitions to the
state 4 to verify their updates, which is a good coding prac-
tice, or with a low probability move to the state 2 for block-
related updates. This transition cycle between the states 1,
4, and 2 could be considered an “Engaged Concentration” or
“Acting” state. In this joint cognitive state, a learner has al-
ready built strategies for their goals and then is transitioning
between these states to enact those strategies [27].

The hidden state 3 hints towards a stuck or confused state.
If a learner enters this state, they mostly remain in it, until
they finally transition to the state 2 or state 4. A learner
in this state is mostly adding/removing sensors or updating
the code blocks. This corresponds to a “Wheel Spinning”
cognitive state with the learners stuck over a repeated set
of actions for a long time [11]. A learner does not enter this
state frequently but could transition into this from either
state 4 (if something fails and the learner doesn’t know what
to do, so they are just stuck trying different things and not
moving forward) or from state 2 (learner updated their code
but now don’t know how to proceed further and are just
playing around with sensors/blocks).

State 5 corresponds to a learner taking sensor-related ac-
tions. This state combined with the state 2 corresponds
to an “Acting” state. A learner enters this state from the
state 2 and then immediately transitions back to the state

5, meaning these 2 states jointly represent a single cognitive
behavior, related to action.

To summarize, the HMM identified 5 states: Forethought,
Acting, Engaged Concentration, Monitoring and Testing,
and Wheel Spinning.

6. ASSESSING LEARNER STATE BY COM-
BINING THE MODELS

Building a joint learner state assessment using the two mod-
els depends on the specific learning objectives and the de-
sired level of accuracy in the analysis. Both the models
only agree on the detected states 49.25% of the time, with
high agreement on Engaged Concentration (63.29%), but
lower agreement on Acting (27.34%), Monitoring and Test-
ing (26.81%), and Forethought (16.48%) and a rare agree-
ment onWheel Spinning. Because Engaged Concentration is
accurately detected by both models, either one can be used
to detect learner behaviors in this state. But for some states,
it may be useful to rely more on one model’s predictions over
the other’s. For example, the Sequence Mapping model does
not correctly distinguish between Forethought and Acting
states, due to highly similar codes for both states. So if the
objective is to decide when learner actions indicate they are
in a Forethought state, the HMM would be a better choice.
As the HMM model could not capture the Mind Wandering
or Reflect and Repair behaviors, Sequence Mapping would
be a better choice for those states.

Additionally, HMM only considers the current state to pre-
dict the next state. Thus, it can perform better than Se-
quence Mapping, which requires action history, in the initial
learning stages. The predictions from Sequence Mapping

grow better as the actions accumulate over time. Hence,
if the objective is to understand a combination of learner
states over a period of time, we could start with more con-
fidence in the HMM model’s predictions and then gradually
add more confidence in Sequence Mapping predictions with
time. However, a more advanced study with evaluation met-
rics to compare these models is necessary to make definite
conclusions.

The learner’s state assessment also provides intervention op-
portunities for an intelligent pedagogical agent involved in
the learning process using dialogues. Dialogue as an inter-
vention strategy has been used to help students solve prob-
lems [14], explain their actions [2], and construct knowledge
[17]. Thus, it could be used as a tool for effective interven-
tions by an intelligent pedagogical agent in open-design con-
texts. For example, the agent could help learners progress
toward their goals through dialogues when it detects they
are in a “Wheel Spinning” state. It could initiate reflection
interactions to encourage learners to explain and reflect on
their actions [3, 2]. Moreover, it could try to employ social
interactions when it detects learners are in a“Mind Wander-
ing” state, to re-engage them in the activity and motivate
them to focus on their goals.

7. DISCUSSION AND CONCLUSION
We present two distinct methods, Sequence Mapping, and
Hidden Markov Models, to model learner activities in open-
design environments. We give the states identified by each
model and compare the effectiveness of these models to un-
derstand learner activities. We then recommend dialogue
strategies for pedagogical agents supporting learning in open-
design settings.

The states that we identify as part of this work are well-
grounded in two theoretical frameworks, Self-Regulatory learn-
ing, and cognitive state modeling, and thus understanding
those states has the potential to contribute back to those
frameworks by incorporating empirical findings from our
work to potentially extend existing understanding of learner
behaviors. One of the states that we do not engage with in
our models is Gaming [7], related to quick actions and short
response times [8]. It is not relevant in our settings as most
learner actions in our system are quick. We also only engage
with learner processes and not the content of learner actions
in our models. However, we do believe that the specific
information about learner actions could provide additional
insights into learner behaviors. For example, understanding
what learners program their robots to “say” might indicate
more about their tastes and preferences.

The Sequence Mapping technique we propose has several
distinct advantages. It is both explainable and allows for
theory-informed decisions. Hence, any decision that could
be made by a pedagogical agent based on these detected
states involved in the learning process could be easily jus-
tified to all the stakeholders (students, teachers, educators,
etc.). This transparency is essential to build models that
provide ways for learners/educators to understand the sys-
tem decisions [28], which is essential to give stakeholders
agency in the use of a system that models learner activities
using multimodal log data. Moreover, this method is appro-
priate for contexts with small sample sizes. We argue that

it is important to do this kind of data mining research on
locally run community programs, rather than solely using
data from large-scale online collections so that these meth-
ods can be applied to hyper-specific contexts that may be
relatively unique. We expect our methods to transfer to
similar open-ended contexts.

Compared to sequence mapping, applying HMMs is a more
widely used approach due to their ability to model sequential
data, applicability to unlabeled datasets, and flexibility in
state representation to capture various aspects of the learn-
ing process, such as cognitive states, or engagement levels.
Nonetheless, the HMM’s premise of decision-making solely
reliant on the present state may not effectively capture the
dynamics of open-design contexts, particularly behaviors ne-
cessitating knowledge beyond the current state. Although
we integrated time as a variable in our HMM, we think that
more temporally sensitive models, such as RNNs, could de-
tect learner states better.

One limitation of our study is the lack of a clear evaluation
metric for the states identified. Techniques like think-aloud
and field observations have effectively collected ground truth
for learner affective and cognitive states in previous works
[12]. However, they have limited suitability in our context
due to their potential disruption to the learning process.
Hence, we introduced a qualitative step in our analysis to
align observations with established theories and used two
methods to validate our findings. This qualitative step may
be time-consuming but aids in visualizing learner behaviors
and theoretically grounding observed patterns. Following
this qualitative step, learner states are automatically ex-
tracted using scripts in real-time, ensuring efficiency and
scalability beyond the initial qualitative phase. Since our
current work identifies relevant states and related behaviors
we could use this information in future system iterations, as
a part of learner-agent dialogue interactions or open-learner
models. This approach would allow us to verify the correct-
ness of identified states in the future.

Conclusion. This paper offers insights into modeling learner
activities in open-design environments and lays the ground-
work for future exploration and application of these models
to different open-design learning contexts. By contribut-
ing in this direction, we hope to enhance the effectiveness
of pedagogical support in adaptive learning environments,
such as those used in culturally-responsive pedagogies, that
empower learners to choose their own goals and strategies
to achieve them.

8. ACKNOWLEDGMENTS
We thank Dr. Tara Nkrumah, Dr. Amy Ogan, and Dr.
Kimberly Scott for their leadership on this project, as well
as the rest of the project team for their support with sys-
tem design and running the summer camp (Veronica Bella,
Angeline Pho, Paige Branagan, Nicole Balay, and Adeola
Adekoya). This work is funded by NSF DRL-1811086 and
DRL-1935801.

9. REFERENCES
[1] Z. Aghajari, S. Deniz, M. Unal, E. Mesut, L. Gómez,

and E. Walker. Decomposition of response time to

give better prediction of children’s reading
comprehension. 02 2021.

[2] V. Aleven, A. Ogan, O. Popescu, C. Torrey, and
K. Koedinger. Evaluating the effectiveness of a
tutorial dialogue system for self-explanation. In J. C.
Lester, R. M. Vicari, and F. Paraguaçu, editors,
Intelligent Tutoring Systems, pages 443–454, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[3] V. A. Aleven and K. R. Koedinger. An effective
metacognitive strategy: learning by doing and
explaining with a computer-based cognitive tutor.
Cognitive Science, 26(2):147–179, 2002.

[4] J. Angel-Fernandez and M. Vincze. Towards a formal
definition of educational robotics. pages 37–42, 07
2018.

[5] R. Baker and A. Carvalho. Labeling student behavior
faster and more precisely with text replays. pages
38–47, 01 2008.

[6] R. Baker, J. Kalka, V. Aleven, L. Rossi, S. Gowda,
A. Wagner, G. Kusbit, M. Wixon, A. Salvi, and
J. Ocumpaugh. Towards sensor-free affect detection in
cognitive tutor algebra. Proceedings of the 5th
International Conference on Educational Data Mining,
page 126–133, 01 2012.

[7] R. S. Baker, A. T. Corbett, K. R. Koedinger, and
A. Z. Wagner. Off-task behavior in the cognitive tutor
classroom: when students ”game the system”. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’04, page
383–390, New York, NY, USA, 2004. Association for
Computing Machinery.

[8] R. S. Baker, A. T. Corbett, K. R. Koedinger, and
A. Z. Wagner. Off-task behavior in the cognitive tutor
classroom: when students ”game the system”. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’04, page
383–390, New York, NY, USA, 2004. Association for
Computing Machinery.

[9] M. Barak. From ‘doing’ to ‘doing with learning’:
reflection on an effort to promote self-regulated
learning in technological projects in high school.
European Journal of Engineering Education,
37:105–116, 03 2012.

[10] S. Basu, G. Biswas, and J. S. Kinnebrew. Learner
modeling for adaptive scaffolding in a computational
thinking-based science learning environment. User
Modeling and User-Adapted Interaction, 27(1):5–53,
Mar. 2017.

[11] J. E. Beck and Y. Gong. Wheel-spinning: Students
who fail to master a skill. In H. C. Lane, K. Yacef,
J. Mostow, and P. Pavlik, editors, Artificial
Intelligence in Education, pages 431–440, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[12] G. Biswas, J. Segedy, and J. Kinnebrew. Smart
open-ended learning environments that support
learners cognitive and metacognitive processes. volume
7947, 01 2013.

[13] T. V. Earle-Randell, J. B. Wiggins, J. M. Ruiz,
M. Celepkolu, K. E. Boyer, C. F. Lynch, M. Israel,
and E. Wiebe. Confusion, conflict, consensus:
Modeling dialogue processes during collaborative
learning with hidden markov models. In N. Wang,

G. Rebolledo-Mendez, N. Matsuda, O. C. Santos, and
V. Dimitrova, editors, Artificial Intelligence in
Education, pages 615–626, Cham, 2023. Springer
Nature Switzerland.

[14] M. Evens, R.-C. Chang, Y. Lee, L. Shim, C.-W. Woo,
and Y. Zhang. Circsim-tutor: An intelligent tutoring
system using natural language dialogue. pages 13–14,
01 1997.

[15] Y. Fan, W. Matcha, N. A. Uzir, Q. Wang, and
D. Gašević. Learning analytics to reveal links between
learning design and self-regulated learning. Int. J.
Artif. Intell. Educ., 31(4):980–1021, Dec. 2021.

[16] J.-W. Fang, L.-Y. He, G.-J. Hwang, X.-W. Zhu, C.-N.
Bian, and Q.-K. Fu. A concept mapping-based
self-regulated learning approach to promoting
students’ learning achievement and self-regulation in
stem activities. Interactive Learning Environments,
31(10):7159–7181, 2023.

[17] A. C. Graesser, K. VanLehn, C. P. Rose, P. W.
Jordan, and D. Harter. Intelligent tutoring systems
with conversational dialogue. AI Magazine, 22(4):39 –
51, Dec. 2001.

[18] S. Hutt, J. Hardey, R. Bixler, A. Stewart, E. F. Risko,
and S. Mello. Gaze-based detection of mind wandering
during lecture viewing. In EDM, Proceedings of the
10th International Conference on Educational Data
Mining, pages 226–231. ERIC, 2017.

[19] K. Krippendorff. Computing krippendorff’s
alpha-reliability. 2011.

[20] C.-L. Lai, G.-J. Hwang, and Y.-H. Tu. The effects of
computer-supported self-regulation in science inquiry
on learning outcomes, learning processes, and
self-efficacy. Educational Technology Research and
Development, 66(4):863–892, Aug 2018.

[21] C. Paans, I. Molenaar, E. Segers, and L. Verhoeven.
Temporal variation in children’s self-regulated
hypermedia learning. Computers in Human Behavior,
96:246–258, 2019.

[22] P. Pintrich. The role of goal orientation in
self-regulated learning. Handbook of Self-regulation, 12
2000.

[23] L. Qiao, W. Zhao, and X. Xu. Mining and analysis of
self-regulated learning process model: Based on
hidden markov model. In 2021 Tenth International
Conference of Educational Innovation through
Technology (EITT), pages 276–281, 2021.

[24] N. Rohani, K. Gal, M. Gallagher, and A. Manataki.
Discovering students’ learning strategies in a visual
programming mooc through process mining
techniques. In M. Montali, A. Senderovich, and
M. Weidlich, editors, Process Mining Workshops,
pages 539–551, Cham, 2023. Springer Nature
Switzerland.

[25] K. Scott, K. Sheridan, and K. Clark. Culturally
responsive computing: a theory revisited. Learning,
Media and Technology, 40:1–25, 12 2014.

[26] S. Wang, D. Sonmez Unal, and E. Walker. Minddot:
Supporting effective cognitive behaviors in concept
map-based learning environments. In Proceedings of
the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, page 1–14, New York,
NY, USA, 2019. Association for Computing

Machinery.

[27] P. Winne. A cognitive and metacognitive analysis of
self-regulated learning. Handbook of Self-regulation of
Learning and Performance, pages 15–32, 01 2011.

[28] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and
J. Zhu. Explainable ai: A brief survey on history,
research areas, approaches and challenges. In J. Tang,
M.-Y. Kan, D. Zhao, S. Li, and H. Zan, editors,
Natural Language Processing and Chinese Computing,
pages 563–574, Cham, 2019. Springer International
Publishing.

[29] B. J. Zimmerman. Attaining self-regulation: a social
cognitive perspective. pages 13–39, 2000.

APPENDIX
A. PSEUDOCODE FOR PATTERN MATCH-

ING
Table 2 shows the pseudocode developed for the Forethought
and Engaged Concentration states.

Table 2: Pseudocode for rule-based pattern-matching for
Forethought and Engaged Concentration states.

Forethought
Action Window is all actions within past 10 minutes
If count(unique categories in Action Window) > 3
and Current Action between first third of all actions:

ForEach action in Action Window:
Add ”Forethought” code to action

Engaged Concentration
Action Window is all actions within past 10 minutes
If All categories in Action Window in [Block,
Sensor, or Code Run] and Current Action within
last two-thirds of all actions:

ForEach action in Action Window:
Add ”Engaged Concentration” code to action

B. SELECTING IDEAL NUMBER OF HMM
STATES

To identify the best number of hidden states, we train a
series of models with hidden states ranging from 2 to 9
using a leave-one-out cross-validation approach for all the
learner sequence data. We then used Akaike Information
Criteria (AIC), Bayesian Information Criteria (BIC), and
Log Likelihood (LL) to compare all the trained models to
select the best number of hidden states. Figure 4 shows
the model comparison results. We find the number of hid-
den states 5 and 6 to perform best on average across all
the 3 evaluation criteria. We then train 2 models one with
5 (HMM-5) and the other with 6 (HMM-6) hidden states
with all the sequence data. We compared both the emerging
HMMs. HMM-6 had a similar arrangement of certain states
to HMM-5. The main difference between the 2 HMMs was
that states 3 and 5 from HMM-5 were split across states 1,
2, and 5 in HMM-6, producing the new state 1 in HMM-6.
But the chance of a learner transitioning into this state is
very low, 0.064 from state 2 and 0.066 from state 3. The
transition out of this state is highly likely towards either
the start state 6 (similar to the start state 2 in HMM-5)
or to the state 2 (similar to state 3 in HMM-5), and hence

this state could be collapsed into the states 2 and 5 without
losing any extra information. It shows that the HMM-6 is
likely overfitting the data (there are a lot of very less likely
transitions) and hence would not generalize better.

C. LEARNER CREATION
Figure 3 shows an image of a robot created by a learner
and the blocks programmed by the learner from the summer
camp.

D. CODES REPRESENTING EACH LEARNER
STATE

Table 3 shows the codes for Acting, Monitoring and Testing,
Wheel Spinning, Mind Wandering, and Reflect and Repair
states.

Table 3: Table shows the set of rules developed after a series
of qualitative coding.

Acting (28.14%)
Default Category for all actions.

Monitoring and Testing (21.02%)
The learner is transitioning in the “Code Run” category
for a “Fast” or “Regular” time.
More than half of the actions in the time window are
“Code Run”, combined with at least two kinds of action
types(adding, removing, updating blocks or sensors)

Wheel Spinning (1.62%)
The learner is under the same action category and
action state for a “Long” time before transitioning to an
action state under a different action category
Current action has a long duration and is the same
type as the previous action

Mind Wandering (12.29%)
The learner is transitioning continuously between 2
action states under the same action category(except
“Code Run”) for a “Long” transition time
Irregular action patterns with both “regular” and “long”
time between actions.

Reflect and Repair (4.92%)
The learner is continuously transitioning between “Code Run”
and “Sensor/Block” action categories with “Fast/Regular”
transition times for at least thrice in a “Long” time.

E. SEQUENCE DIAGRAMS
Figures 5, 6, 7, and 8 show the sequence diagrams repre-
senting the states Testing, Wheel Spinning, Engaged Con-
centration, and Reflect and Repair respectively.

Figure 3: Image of the blocks added and the robot created by a learner from the camp.

Figure 4: Evaluation metrics AIC/BIC and Log Likelihood
to select best HMM model.

Figure 5: “Testing” as observed in learners.

Figure 6: “Wheel Spinning” as observed in learners.

Figure 7: “Engaged Concentration” as observed in learners.

Figure 8: “Reflect and Repair” as observed in learners.

