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ABSTRACT 
The educational data mining community has extensively investi-

gated affect detection in learning platforms, finding associations 

between affective states and a wide range of learning outcomes. 

Based on these insights, several studies have used affect detectors 

to create interventions tailored to respond to when students are 

bored, confused, or frustrated. However, these detector-based inter-

ventions have depended on detecting affect when it occurs and 

therefore inherently respond to affective states after they have be-

gun. This might not always be soon enough to avoid a negative 

experience for the student. In this paper, we aim to predict students' 

affective states in advance. Within our approach, we attempt to de-

termine the maximum prediction window where detector 

performance remains sufficiently high, documenting the decay in 

performance when this prediction horizon is increased. Our results 

indicate that it is possible to predict confusion, frustration, and 

boredom in advance with performance over chance for prediction 

horizons of 120, 40, and 50 seconds, respectively. These findings 

open the door to designing more timely interventions. 
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1. INTRODUCTION
Since its beginnings, the educational data mining community has 

been studying the affective states that emerge during learning ex-

periences mediated by digital platforms, attempting to identify, 

measure, analyze, and appropriately respond to them [16]. Previous 

research has demonstrated that affective states within digital learn-

ing platforms, such as intelligent tutoring systems and educational 

video games, are correlated with a variety of other important con-

structs, including self-efficacy [20], analytical reasoning [12], 

learning outcomes [4, 19, 24, 29], and college enrollment [32]. His-

torically, engaged concentration (flow) correlates positively with 

learning outcomes, while confusion and frustration have shown 

mixed and complex associations with these outcomes. In contrast, 

boredom has consistently shown a negative impact on learning (see 

review in [16]).

These insights have led to the use of affect detection in the design 

of customized interventions aimed at enhancing student 

engagement and minimizing the experience of affective states like 

confusion, frustration, and boredom [9, 10, 17, 23]. The core prem-

ise of all these research works is that recognizing and addressing 

students’ affective states enhances their interaction with learning 

environments, making these interactions more engaging and effec-

tive [16]. However, existing research primarily targets the 

identification of affective states at the point when students are al-

ready experiencing it, potentially too late to prevent negative 

impacts.

The challenge of timely intervention is further complicated by the 

current reliance on methods to establish the ground truth for train-

ing these models which do not identify the exact moment when 

these affective states start (e.g. [2, 15]). Therefore, current detectors 

are dependent on training labels that might only identify an affec-

tive state after it has been occurring for some time, causing even 

more delayed detection and intervention. Additionally, both detec-

tion and intervention do not occur instantaneously, delaying the 

entire process even more.

Knowing these limitations of current affect detectors, we propose 

to reframe this task as a prediction of future affect. Early prediction 

of frustration or boredom enhances the probability of sustaining or 

quickly restoring a positive affective state rather than trying to re-

verse negative affect once it has already emerged. Based on this 

motivation, in this paper, we use machine learning techniques to 

predict affective states in advance within the ASSISTments learn-

ing platform. Specifically, we explore various time horizons for 

forecasting engaged concentration, confusion, frustration, and 

boredom, determining the maximum prediction window where per-

formance remains sufficiently high. Additionally, we compare the 

prediction windows with the half-life of these affective states ob-

served in previous research to assess the feasibility of interventions 

that can make proactive interventions rather than react.

2. RELATED WORK

2.1 Affect Detection and Learning Outcomes
There has been considerable work to use machine learning models 

to detect affective states [1, 5, 15, 31] and explore how these affec-

tive states are associated with different learning and educational 

outcomes [18, 24, 32]. These findings, as in research conducted 

with other methods (see review in [16]), have found relationships 

between affect and learning, with many replicating across learning 

environments. For example, Pardos et al. [24] used affect detectors 

within the ASSISTments platform to investigate the association be-

tween detected affect and state test scores. Their results indicated 

that both engaged concentration and frustration were positively cor-

related with learning outcomes, whereas confusion and boredom 

had a negative association with this outcome. Using data from the 

same platform, San Pedro et al. [32] used affect detectors to predict 

future college enrollment. They found that engaged concentration 
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positively predicts college attendance, while those students for 

whom the detectors identified higher levels of boredom or confu-

sion were also less likely to enroll in college. Within another 

platform, Reasoning Mind, Kostyuk and colleagues [18] found that 

detected boredom and confusion were negatively associated with 

learning, whereas engaged concentration was positively associated 

with learning. However, these results are complicated somewhat by 

results such as [19], which found that the duration of confusion or 

frustration (detected in Cognitive Tutor Algebra) also matters for 

learning outcomes. 

2.2 Detector-Based Interventions 
Given that it is possible to detect affect, and affect is associated 

with learning, there has been considerable research focusing on us-

ing detectors to drive interventions that influence student affect. For 

instance, Padron-Rivera et al. [23] implemented a system to offer 

hints upon detecting students’ confusion or frustration, arguing that 

such interventions could facilitate a return to engaged concentration 

while preventing boredom (in line with the affective state dynamics 

model in [11]). Additionally, they integrated congratulatory mes-

sages after correct answers to sustain student engagement. 

However, their work was not able to impact student affect.  

D’Mello and Graesser [10] conducted a study comparing an affect-

sensitive version of an intelligent tutoring system with a non-affec-

tive version. The affect-sensitive version was designed to recognize 

and respond to students’ affective states, specifically boredom, con-

fusion, and frustration, through pre-programmed emotional 

responses. Their system was successful at improving learning out-

comes, but more for students with lower domain knowledge. In a 

third study along these lines, DeFalco et al. [9] detected student 

frustration, giving learners three different types of motivational 

messages designed around control-value theory, social identity, and 

self-efficacy. They found that giving frustrated students motiva-

tional messages focused on self-efficacy led to higher learning 

outcomes compared to a control group who did not receive mes-

sages. However, the intervention’s success did not replicate in a 

subsequent learning environment designed to be less frustrating, 

suggesting that the impact of these messages may vary depending 

on the affective context of the learning environment. 

Overall, automated interventions based on affect detection have 

shown promise but have not fully demonstrated that potential. One 

possible reason is that these systems may be intervening too late. If 

a student is already experiencing a negative emotion, it could be 

less likely for them to return to a more positive affect. Once a stu-

dent is already frustrated or bored, that negative affect may be 

difficult to disrupt. By contrast, if an intervention is applied in an 

earlier stage when students are at risk of becoming frustrated or 

bored but have not yet done so (or who are just beginning to expe-

rience shifts), the chances of maintaining or returning quickly to 

positive affect are higher. Consequently, the primary objective of 

this research is to determine how much sooner affective states can 

be accurately predicted, so that interventions can be proactive about 

negative emotion rather than reactive to it. 

2.3 Advanced Forecasting of Affect 
To the best of our awareness, there has not yet been research on the 

advanced forecasting of affect in education, but efforts along these 

lines have been conducted in other domains. For example, both 

neural networks and random forest have been successfully used to 

forecast a speaker’s future affect a few seconds later, from their 

current and past speech and image data [21, 33]. In addition, re-

searchers have successfully predicted future stress levels from 

current and recent multimodal data [34, 35]. Though these efforts 

have involved very different data than digital learning platforms, 

they increase confidence that this challenge is feasible. 

3. METHODS 

3.1 Dataset 

ASSISTments is a learning platform designed to enable teachers to 

assign content, offer automated feedback and support for student 

responses, and generate comprehensive reports on student perfor-

mance. For this study, 9 middle-school mathematics teachers who 

frequently used ASSISTments [14] were recruited between 2021 

and 2023, to assign problems using the platform and collect affec-

tive data from their students. A total of 312 middle-school students 

from the 9 teachers participated in the study, where they solved 

mathematics problems using the ASSISTments platform and re-

ported their affective states. To support the replicability of our 

results and further experiments, the full data set and code used in 

this research can be found at https://osf.io/spg6v/.  

To facilitate the collection of affective data, a self-reporting infra-

structure was integrated into the ASSISTments platform, as shown 

in Figure 1. This infrastructure was designed to be minimally dis-

ruptive, ensuring that the primary focus of students remained on 

their mathematics learning. Upon the completion of a problem 

within their assigned mathematics assignment, students were 

prompted to report their affective state. The self-reports were de-

signed based on past self-report approaches for affect [27] and 

iteratively designed with members of the target population. For this 

study, we focused on engaged concentration, confusion, boredom, 

and frustration, which are the most commonly studied affective 

states in online learning environments (see reviews in [2, 16]). The 

order of each affective state was randomized in the survey each 

time it was presented to the students. Students were randomly asked 

to report their affective states, either once or twice, for each assign-

ment they completed. This decision was governed by a probabilistic 

algorithm, where there was a 10% chance of picking two problems 

from an assignment for affective reporting and a 90% chance of 

picking only one problem. The students were instructed to report 

their affective states immediately after completing the selected 

problem(s), thereby ensuring the timeliness and relevance of the 

affective data. We limited how often students were asked about 

their affective states to avoid fatigue, minimize potential disrup-

tions to their learning experience, and avoid inadvertently inducing 

disinterest and boredom. 

Figure 1. Self-Report survey within an assignment in the AS-

SISTments platform, asking students to report their affective 

state when working on an assignment. 



This dataset collected using the ASSISTments infrastructure in-

cludes information about students’ correct and incorrect answers, 

hint requests, and self-reported affective states. On average, each 

student solved 1.81 assignments (SD = 1.21), submitted 14.2 re-

sponses (SD = 10.5), requested hints 2.84 times (SD = 2.2), and 

self-reported their affective state 1.75 times (SD = 1.25).  

The distribution of these reported affective states is detailed in Ta-

ble 1. The most common affective state reported was None (29.0%), 

followed by engaged concentration (27.8%). Frustration was the 

least reported state, noted by only 8.3% of the reports. These pro-

portions are similar to those observed in previous studies when 

students categorized their own affective states. For instance, Baker 

et al. [3] reported that students most frequently identified as feeling 

Neutral (29%) and Engaged Concentrated (20%) when they as-

sessed their own affective states every 20 seconds while watching 

recordings of themselves using AutoTutor (a computerized tutor 

that mimics human tutors and converses with students in natural 

language, as described by [13]). In that study, students categorized 

Frustration, Confusion, and Boredom at rates of 11%, 18%, and 

16%, respectively, which aligns to the distribution observed in our 

study. 

Table 1. Distributions of affective states. 

Affective State # Samples % 

Eng. Concentration 151 27.8 

Confusion 90 16.5 

Frustration 46 8.3 

Boredom 99 18.2 

None 158 29.0 

Total 544 100 

 

Past studies where affect was identified by trained experts had a 

very different distribution of affective states than the student self-

reports we observed. Generally, Engaged Concentration is the pre-

dominant affective state noted by trained human observers, 

exceeding 60% in multiple studies across various learning plat-

forms, including ASSISTments [1, 3, 22, 24]. This difference in 

proportions between researcher-categorized affect and student self-

reports has been found even within the exact same sample of stu-

dents. For instance, [38] reported that substantially fewer positive 

emotions (concentration, focus, delight, and happiness) were ob-

served by trained experts compared to self-reports collected 

simultaneously. Though experts disagree with self-report, it is un-

clear which method is more accurate, given the limitations of each 

approach (systematic error and bias for observers; demand, self-

presentation, and lack of meta-awareness for self-report; see dis-

cussions in [26, 27]). 

3.2 Prediction in Advance 
The dataset was segmented into 5-second clips. This approach was 

adopted instead of the more commonly used 20-second segmenta-

tion to increase the granularity of the analysis. For each clip, we 

crafted 58 features, capturing diverse aspects of student interaction 

with the educational software. These aspects include the correct-

ness of responses, the frequency of answers, hints requested, the 

time elapsed since the last action, and others. These features were 

tailored to reflect both general and skill-specific student interac-

tions. Although the core clip is defined as 5 seconds, when 

predicting the label (typically from before the clip, since we are 

predicting in advance), the set of features also included data aggre-

gated over the prior 20 seconds, 1 minute, and 3 minutes, and 

during the prior 3, 5, and 8 actions within the current study session. 

These features are inspired by similar features employed in previ-

ous studies that trained affect detectors using ASSISTments data 

[24, 36]. When aggregating data on the last 3, 5, or 8 actions, we 

do not consider actions of previous learning sessions that ended 

more than one hour earlier, because these older actions are fairly 

unlikely to influence the student's current affective state. Addition-

ally, if the student has not performed any actions recently, it 

becomes impossible to calculate certain features, or they default to 

values of 0. Therefore, we filtered out periods of inactivity exceed-

ing one hour. 

In a model capable of predicting an affective state N minute in ad-

vance, the features must correspond to actions that occurred more 

than N minutes prior to the affective self-report of the students. For 

this reason, all affective states reported during the first N minutes 

after the first action of a studying session cannot be used for train-

ing and testing the models. This constraint, while necessary, does 

distort the sample somewhat, for students who solve a few or only 

one question in each studying session because those affective states 

will not be matched with a set of previous actions before the corre-

sponding prediction horizon, reducing the number of samples 

available for developing the machine learning models. 

Figure 2 presents the number of self-reports for each affective state 

with enough data (at least one action before the corresponding time 

horizon of N seconds within the same study session) for developing 

prediction models for each horizon ranging from 0 to 5 minutes in 

10-second increments. As this time horizon increases, the number 

of samples with sufficient data to train and test a predictive model 

decreases. Based on the data available for each time horizon, we 

only considered horizons between 0 and 3 minutes in advance. This 

selection aimed to keep an adequate number of samples for training 

and testing the detectors while also establishing a sufficiently wide 

range of prediction horizons to investigate whether there is a de-

cline in prediction performance as this horizon widens. 

 

Figure 2. Number of samples for each affective state and each 

time horizon. 

In Table 2, we present the distribution of samples that have suffi-

cient prior data for a 3-minute temporal horizon to be possible. 

From the initial pool of 544 samples, only 265 (48.7%) met the cri-

teria for the selected horizon. The distribution of affect in this 

reduced data set closely resembles the original dataset. Although 

more data is available for prediction horizons shorter than 3 

minutes, we used this selected set of 265 samples for training and 



validating all models across all the temporal horizons considered in 

this study (from 0 to 180 seconds in 10-second increments). This 

methodological choice allows us to attribute any observed changes 

in model performance specifically to the extension of the prediction 

horizon rather than to the influence of sample size variation or dif-

ferences in affect at different times within the session. 

Considering the dataset’s relatively small size, we employ Logistic 

Regression (LR) and decision tree-based methods like Random 

Forests (RF) and Extreme Gradient Boosting (XGB) with the de-

fault parameter settings [8, 25]. For each affective state, separate 

binary classifiers were trained, as in [1, 24]. To validate these mod-

els, we applied a 4-fold stratified student-level cross-validation, 

selecting 4 folds to keep test sets large despite the small sample 

size. To enhance the robustness of our estimation, we repeated this 

process with 10 unique random seeds, thereby generating 40 unique 

combinations of training and testing sets. We assessed model per-

formance using the Area under the Receiver Operating 

Characteristic Curve (AUC ROC), providing a comprehensive 

evaluation across various thresholds. This is particularly useful for 

evaluating the model's applicability in diverse interventions with 

varying cost-benefit trade-offs. The mean and standard deviation of 

the AUC were calculated across these 40 validation sets. Addition-

ally, we examined the confusion matrix to identify and understand 

each detector's misclassification patterns. We evaluated the mean 

decrease impurity (MDI; [7]) feature importance of each model to 

understand how the most important features varied across different 

prediction horizons. This feature importance metric was chosen due 

to its straightforward computation, which relies on the division of 

decision trees, while reducing the risk of hiding important features 

that do not have a uniform association (either positive or negative) 

with the outcome and that are dependent on interactions with other 

features [7]. 

Table 2. Affect distributions for samples with enough data for 

training prediction models with a time horizon of at least 3 

minutes. 

Affective State # Samples % 

Eng. Concentration 74 27.9 

Confusion 42 15.8 

Frustration 32 12.1 

Boredom 39 14.7 

None 78 29.4 

Total 265 100 

 

4. RESULTS 

4.1 Affect Detection 
Table 3 presents the baseline performance of affect detectors, oper-

ating with a zero-second time horizon (i.e. the actual clip time), 

using Random Forest (RF), XGBoost (XGB), and Logistic Regres-

sion (LR) models. The results indicate that frustration is the best 

predicted affective state using the decision tree-based models (RF 

and XGB), with the XGB model achieving the highest performance 

(AUC=0.727). Confusion and boredom are also effectively de-

tected by the ML models, showing an AUC of 0.671 for confusion 

and 0.638 for boredom using RF and XGB, respectively. In con-

trast, the models could not accurately detect engaged concentration 

in this data set, showing an AUC of 0.503 (chance level). 

Table 4 presents the confusion matrix for the detectors. Columns 

represent the real affective states reported by the students, while 

rows indicate the number of instances where the corresponding de-

tector identifies each affective state. We set the classification 

threshold at 0.3, as the detectors’ outputs tended to be below the 

conventional 0.5 threshold. Table 4 also includes, in parentheses, 

the percentage of each actual affective state that was identified by 

the detectors as the ground truth affect in that column (whether cor-

rectly or incorrectly). For example, the confusion matrix reveals 

that the Engaged Concentration detector incorrectly identifies 

49.5% of actual Boredom instances and 45.9% of None instances 

as Concentration, both higher percentages than its correct identifi-

cation of actual Engaged Concentration instances (36.7%). This 

suggests that the Engaged Concentration detector’s performance is 

compromised by misidentifying Boredom and None instances. One 

possible interpretation is that the None category may include some 

cases which would have been categorized as Engaged Concentra-

tion by experts, and that students do not fully understand the 

distinction between these affective states (and therefore are actually 

incorrectly categorizing their own affect). Similarly, the Boredom 

detector also misclassifies 10.5% of None instances and 8.2% of 

Engaged Concentration instances as Boredom. 

Table 3. Detection of current affective state. 4-fold student-level 

cross-validation AUC of affect detectors employing different 

ML techniques. Best performing models for each affective state 

are shown in bold. Standard deviation of performance metrics 

across the 4 folds are shown in parenthesis. 

Affective 

State RF XGB LR 

Eng. Con 0.503 (0.070) 0.483 (0.068) 0.439 (0.072) 

Conf 0.671 (0.065) 0.668 (0.079) 0.597 (0.074) 

Fru 0.688 (0.095) 0.727 (0.087) 0.556 (0.115) 

Bor 0.627 (0.085) 0.638 (0.082) 0.570 (0.075) 

 

Table 4. Confusion Matrix of Detections. Columns correspond 

to self-reported affect and rows correspond to detector outputs. 

In parentheses, the percentage of each actual affective state that 

was identified by the detectors as the ground truth affect in that 

column (whether correctly or incorrectly).  

Detector Eng. Con Conf Fru Bor None 

Eng. Con 27.2 
(36.7) 

11.1 
(26.4) 

10.2 

(31.9) 
19.3 

(49.5) 
35.8 

(45.9) 

Conf 7.2 
(9.7) 

10.1 
(24.4) 

8.4 
(26.3) 

2.5 
(6.4) 

6.1 
(7.1) 

Fru 3.1 
(4.2) 

4.2 
(10.0) 

6.6 
(20.6) 

0.4 
(1.0) 

3.4 
(4.4) 

Bor 6.1 
(8.2) 

2.5 
(6.0) 

1.7 
(5.3) 

8.4 
(21.5) 

8.2 
(10.5) 

 

The confusion and frustration detectors successfully identified En-

gaged Concentration, Boredom, and None as neither frustration nor 

confusion. None of these three affective states is misidentified by 

the confusion or frustration detectors at a rate higher than 10%. 

However, the confusion detector identifies 24.4% of confusion and 

26.3% of frustration instances as confusion. Similarly, but at a 

lesser level, the frustration detector identifies 20.6% of the frustra-

tion instances and 10% of confusion instances as frustration. These 

results suggest that some students might be having trouble distin-

guishing between these two affective states or that both share 



similar patterns that make them be identified together. Indeed, 

some recent work has argued that these two affective states should 

be lumped together during detection [28]. 

4.2 Affect Prediction in Advance 
Figures 3 through 5 present the performance of predictive models 

for each affective state with different time horizons ranging be-

tween 0 to 3 minutes with 10-second increments. In each figure, a 

range representing +1 and -1 standard deviations, as well as the 

chance level performance, are included. For this analysis, we ex-

clude Engaged Concentration because, as shown in Table 3, the 

detection and prediction models for Engaged Concentration do not 

surpass chance-level performance. 

The confusion detectors trained using RF perform above 0.6 AUC 

for temporal horizons within the 1-minute range, as shown in Fig-

ure 3. For all horizons less than 2 minutes, performance was 

consistently more than one standard deviation above chance. In the 

case of frustration detectors (trained using XGB), performance re-

mained at least one standard deviation above chance for prediction 

horizons up to 40 seconds in advance, as shown in Figure 4. In all 

these cases, the models achieved an AUC of over 0.6. The predic-

tive models for Boredom (trained using XGB; see Figure 5) show 

comparable outcomes. In this case, for prediction horizons up to 50 

seconds, all models had an AUC above 0.6, with performance at 

least one standard deviation better than chance. 

 

Figure 3. Confusion prediction with different time horizons us-

ing RF. 

 

Figure 4. Frustration prediction with different time horizons 

using XGB. 

 

Figure 5. Boredom prediction with different time horizons us-

ing XGB. 

4.3 Most Important Features 
We evaluated the most important features for each affect prediction 

considering the horizons of 0 (current affect), 60, and 120 seconds. 

As shown in Table 5, the time spent in the assignment appeared as 

an important feature across all prediction horizons for confusion. 

Errors in the current problem type (i.e. multiple-choice question) 

and time since the last error were important for the predictions of 0 

and 60 seconds but not for 120 seconds. Time since the last correct 

answer and time spent in the last attempt appeared as important fea-

tures for 60 and 120 seconds but not for detecting the current affect. 

In the case of frustration detection, the number of errors in the last 

8 attempts appeared as an important feature across all time hori-

zons. However, in contrast with the results observed for the 

confusion prediction, the detector of current frustration does not 

share any other feature with the 60-second and 120-second predic-

tion models. Finally, the boredom detection and prediction models 

shared 3 of the top 5 most important features (time since requesting 

the last hint, number of errors in multiple-choice questions, and at-

tempts during the last minute). 

5. DISCUSSION AND CONCLUSIONS 
According to our results, confusion, frustration, and boredom can 

be predicted in advance with performance over chance for time ho-

rizons of 120, 40, and 50 seconds, respectively. For each affective 

state, and particularly for confusion and boredom, the most im-

portant features for both prediction (60 and 120 second horizons) 

and detection (0 second horizon) models were similar. This result 

suggests that both models might be capturing a similar signal, just 

varying the timing of the prediction, indicating that the labels are 

likely autocorrelated. This finding reinforces the argument that 

these affective states can be anticipated. However, one limitation to 

our interpretation is that we are uncertain when each affective state 

instance actually began, a difficult thing to be certain of with any 

ground truth method. Thus, it is important to be careful in the inter-

pretation of these results. Nevertheless, it is unlikely that all of our 

predictive success is due to capturing earlier onset of the later af-

fective state. Botelho et al. [6] found that for the ASSISTments 

platform, confusion can persist for 40 seconds to 1 minute, frustra-

tion for 2 minutes, and boredom for even 5 minutes. Comparing 

this with our prediction windows, we see that our 120-second pre-

diction window for confusion exceeds its half-life. This suggests 

that we are likely to be predicting at least some confusion before it 

actually occurs. In contrast, our prediction windows for frustration 

and boredom are shorter than their potential durations. For this  



Table 5. Top 5 most important features for the top-performing prediction model for each affective state for a prediction horizon of 

0 (detection), 60, and 120 seconds. Common features across different time horizons are shown in bold. 

Detector 0 seconds 60 seconds 120 seconds 

Conf 

Time Spent in the Assignment Time Spent in the Assignment Time Spent in the Assignment 

Errors in Current Problem Type Errors in Current Problem Type Time Spent in the Last 8 Attempts 

Time since Last Error Time since Last Error Time Spent in the Last 3 Attempts 

Time in Questions of the Same Skill Time since Last Correct Answer Time since Last Correct Answer 

Errors in Questions of the Same Skill Time Spent in the Last Attempt Time Spent in the Last Attempt 

Frust 

Errors in Last 8 Attempts Errors in Last 8 Attempts Errors in Last 8 Attempts 

Errors in Questions of the Same Skill Hints in the Assignment Hints in the Assignment 

Time since Last Hint Hints in Last 8 Attempts Hints in Last 8 Attempts 

Hints Requested for Skill Attempts in Current Problem Type Attempts in Current Problem Type 

Time in Questions of the Same Skill Attempts in Check-All Questions Errors in Last 20 seconds 

Bored 

Time since Last Hint Time since Last Hint Time since Last Hint 

Errors in Multiple Choice Questions Errors in Multiple Choice Questions Errors in Multiple Choice Questions 

Attempts in Last Minute Attempts in Last Minute Attempts in Last Minute 

Attempts in Multiple Choice Questions Errors in Last 8 Attempts Errors in Last 8 Attempts 

Errors in Current Problem Type Time since Last Error Attempts in Same Problem Type 

reason, students might be already experiencing those affective 

states, in some cases, when the prediction models determine that 

students would report them in the next minute. Although this alter-

nate interpretation of the model functionality does not correspond 

to the original goal of intervening before students feel frustration or 

boredom, even in this case this approach remains useful because it 

allows earlier detection than what previous detectors can do. 

The potential autocorrelation of these signals suggests that future 

work could compare the predictive improvements of ML-based de-

tectors against models that solely use autocorrelation based on the 

labels' time series. If autocorrelation models alone (using the col-

lected labels exclusively) provide substantial predictive accuracy, 

it could indicate that labels of previous instances should be included 

in the feature set of ML-based models. In this case, we excluded 

the labels from the feature set because we want to be able to use 

detectors without continuously asking students about their affective 

states. However, the predicted labels in previous instances could 

also be considered when making later predictions, as is seen in 

some neural network topologies, such as the Long-Short Term 

Memory networks that have shown promising performance for af-

fect detection [5].  

One limitation of our study that prevented us from exploring neural 

networks was the limited sample size available for training the ma-

chine learning models. The reduced number of self-report requests 

for each student, to reduce issues from repeating the same question 

excessively, resulted in a smaller sample size than what previous 

detector research based on self-reports has typically gathered [37, 

38]. Using a larger dataset collected among a larger number of 

learners or increasing the granularity of the data acquisition would 

likely lead to better model performance. This ground truth with 

higher granularity or larger number of samples would enable a 

more precise tuning of the hyperparameters in the ML models and 

use other machine learning techniques like artificial neural net-

works [5], potentially enhancing the performance of the models. 

Additionally, future work can also explore data augmentation tech-

niques as an alternative to obtaining more training samples. 

One surprise in our findings is the relatively low frequency of en-

gaged concentration and the unusually poor performance of 

engaged concentration detection compared to previous engaged 

concentration detection in ASSISTments (and other systems as 

well) [3, 24, 31]. One possible interpretation is that offering None 

as a response option in students’ self-reports might be skewing the 

performance of our models, particularly engaged concentration. 

Engaged concentration is commonly the dominant affective state in 

various learning environments [3, 22, 24, 38], as the only affective 

state with a non-negative valence studied in most environments [2, 

30]. Typically, engaged concentration is low activation [3], so it is 

possible that some students are not even realizing that they are en-

gaged. Alternatively, it may be that past studies based on expert 

judgment confused engaged concentration with the neutral affec-

tive state or an absence of affect. Earlier research also indicates that 

positive emotions, especially engaged concentration, are reported 

less frequently when individuals assess their own affective state [3, 

38]. The reduced effectiveness of engaged concentration detection 



in this study, along with its tendency to identify instances of bore-

dom and None more than actual engaged concentration, suggests 

that self-reporting might be less reliable for identifying engaged 

concentration compared to expert labeling methods. 

Despite these limitations, models that can predict (or early detect) 

confusion, frustration, and boredom can be useful, as they can lead 

to intervention before a student’s negative affect (particularly bore-

dom) lead to problematic behaviors such as gaming the system, 

which are detrimental to their learning outcomes [3]. This is partic-

ularly important in systems with high latency as such delays further 

postpone interventions, amplifying the risk of negative outcomes 

stemming from late responses. For instance, early detection of frus-

tration or boredom enables the learning platform to suggest breaks 

or deliver motivational messages to the students. This early detec-

tion can also facilitate other interventions, such as switching to a 

different learning activity in the next problem or even increasing 

the difficulty of the subsequent activities if the system detects that 

boredom will appear soon, but there is a low risk of future confu-

sion or frustration. This approach would help prevent students from 

becoming disinterested in their studies, a typical outcome of bore-

dom, or unresolved confusion or frustration, which lead to poorer 

learning. As such, detecting affect early or in advance may help us 

to develop learning systems that better support learners’ motivation 

and learning. 
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8. APPENDIX I: LIST OF FEATURES 
The complete list of features employed in this study is: 

• Number of skills practiced by the student. 

• Time taken in the last response. 

• Average time taken in the last 3 responses. 

• Average time taken in the last 5 responses. 

• Average time taken in the last 8 responses. 

• Time taken in the current assignment. 

• Days since the student started the current assignment. 

• Total attempts. 

• Percentage of wrong answers in the last 3 responses. 

• Percentage of wrong answers in the last 5 responses. 

• Percentage of wrong answers in the last 8 responses. 

• Hints requested in the current assignment. 

• Hints requested in the last 3 responses. 

• Hints requested in the last 5 responses. 

• Hints requested in the last 8 responses. 

• Total errors. 

• Total hints requested. 

• Attempts in the last 20 seconds. 

• Attempts in the last minute. 

• Attempts in the last 3 minutes. 

• Errors in the last 20 seconds. 

• Errors in the last minute. 

• Errors in the last 3 minutes. 

• Hints requested in the last 20 seconds. 



• Hints requested in the last minute. 

• Hints requested in the last 3 minutes. 

• Time since the last attempt. 

• Time since the last error. 

• Time since the last correct answer. 

• Time since the last hint requested. 

• Is the current problem a Match problem? 

• Is the current problem a numeric value problem? 

• Is the current problem a multiple-choice problem? 

• Is the current problem an algebraic expression problem? 

• Is the current problem a check all that apply problem? 

• Attempts in the current problem type. 

• Errors in the current problem type. 

• Hints requested in the current problem type. 

• Attempts in the match problems. 

• Attempts in numeric value entry problems. 

• Attempts in multiple-choice problems. 

• Attempts in algebraic expression problems. 

• Attempts in check-all that apply problems. 

• Total errors in match problems. 

• Total errors in numeric value entry problems. 

• Total errors in multiple-choice problems. 

• Total errors in algebraic expression problems. 

• Total errors in check-all that apply problems. 

• Total time solving problems of the current skill. 

• Is this problem the first time the student has practiced 

this skill? 

• First time practicing a skill in the last 20 seconds. 

• First time practicing a skill in the last minute. 

• First time practicing a skill in the last 3 minutes. 

• Error in the first time the student practiced the skill. 

• Total responses of the student in problems of the current 

skill. 

• Total errors of the student practicing the current skill. 

• Total hints requested by the student practicing the cur-

rent skill. 

• Action outside school hours (before 8 in the morning or 

after 5 in the afternoon).

 


