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ABSTRACT 
In category learning, a growing body of literature has increasingly 

focused on exploring the impacts of interleaving in contrast to 

blocking. The sequential attention hypothesis posits that interleav-

ing draws attention to the differences between categories while 

blocking directs attention toward similarities within categories [4, 

5]. Although a recent study underscores the joint influence of 

memory and attentional factors on sequencing effects [31], there 

remains a scarcity of effective computational models integrating 

both attentional and memory considerations to comprehensively 

understand the effect of training sequence on students’ perfor-

mance. This study introduces a novel integration of attentional 

factors and spacing into the logistic knowledge tracing (LKT) mod-

els [22] to monitor students’ performance across different training 

sequences (interleaving and blocking). Attentional factors were in-

corporated by recording the counts of comparisons between 

adjacent trials, considering whether they belong to the same or dif-

ferent category. Several features were employed to account for 

temporal spacing. We used crossvalidations to test the model fit and 

predictions on the learning session and posttest. Our findings reveal 

that incorporating both attentional factors and spacing features in 

the Additive Factors Model (AFM) significantly enhances its ca-

pacity to capture the effects of interleaving and blocking and 

demonstrates superior predictive accuracy for students’ learning 

outcomes. By bridging the gap between attentional factors and 

memory processes, our computational approach offers a more com-

prehensive framework for understanding and predicting category 

learning outcomes in educational settings. 
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1. INTRODUCTION 
How to present examples to optimize category learning and gener-

alization is crucial in inductive category learning [3, 9, 17, 18, 19, 

26, 28]. The sequence of these exemplars significantly influences 

what we attend to, and how we encode and memorize new catego-

ries [5]. While extensive research has been dedicated to identifying 

effective sequencing methods in category learning, a growing body 

of literature has focused on exploring the impacts of two different 

sequencing methods: interleaving and blocking.  

Interleaving means presenting one exemplar from one category fol-

lowed by an exemplar from another category (e.g., 

A1B1C1A2B2C2A3B3C3, where A, B, and C represent different cat-

egories and 1, 2, and 3 denote different exemplars).  In contrast, 

blocking entails grouping all exemplars from the same category in 

a single block so that learners learn one category at a time (e.g., 

A1A2A3B1B2B3C1C2C3). The benefit of interleaving over blocking 

has been found many times in empirical research on learning visual 

materials like paintings, naturalistic photos, and artificial images 

[12, 15, 32]. However, under specific circumstances, blocking can 

be more beneficial compared to interleaving [2, 3, 4, 5, 10, 11, 30, 

32]. For example, Carvalho and Goldstone [3] have found that low-

similarity stimuli were more effectively learned when presented in 

blocked sequences. 

Researchers have proposed several theoretical accounts of the in-

terleaving and blocking effects [4, 5, 12, 14]. Yan and colleagues 

[31] have integrated these diverse theoretical accounts into a two-

stage framework. Remarkably, they provided empirical support for 

this framework using a meta-analytic approach. Their findings in-

dicated that a combination of memory and attentional factors 

accounts for a significantly greater proportion of variance in se-

quencing effects compared to attentional factors in isolation. 

Within this framework, sequencing effects play a pivotal role in 

shaping category learning through two distinct sequential phases. 

Firstly, in the attention-based stage, learners are tasked with direct-

ing their focus towards the pertinent features of the category 

structure and recognizing its similarities. At this stage, interleaving 

encourages discrimination between categories, while blocking pro-

motes the formation of commonality abstractions within categories. 

Secondly, in the memory-based stage, learners must commit to 

memory the cluster of features and establish associations between 

these features and category labels. When practice is spaced over 

time instead of studied in a single session, forgetting is also decel-

erated [21]. Interleaving naturally spaces exemplars from the same 

category apart and the spacing interval is determined by the number 

of intervening categories. For instance, in a sequence like 

ABCDABCD, the intervals between the two ‘A’s are spaced by 3 

items. Conversely, in blocking, exemplars from the same category 

are presented consecutively without any temporal lag or spacing 
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between them. Therefore, one significant drawback of blocking be-

comes apparent: it lacks spacing. 

Recognizing the significance of both attentional factors and spacing 

in comprehending the effects of training sequences (interleaving 

and blocking), it is essential for computational models to integrate 

both aspects simultaneously. While models have been developed to 

address attentional factors [1, 6] and others track memory in rela-

tion to spacing [8, 23, 29], none of these explicitly incorporate both 

factors concurrently [31]. For example, the Sequential Attention 

Theory Model (SAT-M) [6] focuses solely on attentional factors by 

incorporating the encoding strength of features, which depends on 

the sequence of the study, into the Generalized Context Model 

(GCM) [20]. The GCM is a special case of exemplar models where 

learners need to make a categorical selection based on the similari-

ties between the stimulus and all the stored exemplars [7, 16, 24]. 

The model assumes a person memorizes all prior instances without 

forgetting and lacks components addressing the spacing effect. Ad-

ditionally, a recent PFA-Categorization model addresses 

attentional factors by incorporating the prototype model, where 

learners make a categorical selection based on the similarities be-

tween the stimulus and the prototype in memory, into the 

Performance Factors Analysis (PFA) model [1]. Although the PFA-

Categorization model tracks the influence of similarities between 

temporally neighboring items and can be used to predict learners’ 

performance, the model still does not account for the spacing effect. 

There are some models solely addressing the spacing effect without 

considering attentional factors [8, 23, 29]. Among these, the Lo-

gistic Knowledge Tracing (LKT) framework developed by Pavlik 

and colleagues [23] allows testing various features addressing the 

spacing effect, as detailed in the methods section. Therefore, in this 

study, we concentrate on utilizing LKT to construct new computa-

tional models that integrate both attentional factors and spacing 

features for predicting student performance in categorical learning 

with different training sequences (interleaving and blocking). By 

infusing cognitive features into computational modeling, this ap-

proach enhances the model’s ability to implement and track human 

learning, leading to more accurate predictions of learning out-

comes. 

2. METHOD 

2.1 Spacing in the LKT models 
Logistic regression models have been widely used in tracing learn-

ers’ learning and predicting their retention for their flexibility in 

incorporating various factors that impact learners’ memory pro-

cesses. The LKT framework facilitates the comparison of various 

student models, including AFM, PFA, recent-PFA (R-PFA), and 

others with various novel features [23]. The primary distinction be-

tween AFM and PFA lies in their approach to tracking past 

experiences: PFA tracks counts of prior successes and failures sep-

arately, while AFM focuses on counts of prior practices regardless 

of correctness. In the LKT framework, the efficiency of construct-

ing novel logistic models with tailored features is facilitated 

through adherence to a symbolic notation system. For example, a $ 

indicates that a feature fits with one coefficient for each knowledge 

component (e.g., KC, learner, or item) level, while without a $ sign, 

all levels of a component are assumed to be treated the same. More 

details regarding the symbolic notation can be found in Pavlik and 

Eglington’s LKT R package paper [22]. To capture the temporal 

spacing within sequences, multiple features can be employed 

within LKT, including ppe, base4, and recency.  

The ppe feature is the predictive performance equation described in 

[29], and the base4 was initially proposed by Pavlik et al. [23] as a 

comparison to the ppe feature. Both features are rooted in the ACT-

R memory model [21] and require four parameters to scale spacing 

between trials and characterize forgetting. A power-law decay is 

employed to represent the forgetting of successive presentations of 

items. A primary difference between ppe and base4 lies in their ap-

proaches to estimating forgetting rates. Specifically, ppe uses all 

past trials’ ages since past practices for its estimation, while base4 

considers only the age of the first trial, representing the time 

elapsed since the creation of the memory trace. Consequently, the 

ppe feature may be more accurate at tracing spacing and decay. 

Specifically, as the spacing between consecutive presentations of 

an item increases, the decay rate for that item decreases. In contrast, 

the base4 feature characterizes the spacing between trials by multi-

plying the mean spacing to a fractional power so it is simpler but 

less sensitive. When the fractional power falls between 0 and 1, 

there are diminishing marginal returns for increasing average spac-

ing between trials. When the fractional power is equal to or close 

to 0, the scaling factor for spacing is 1. 

The recency feature was developed to capture the recency effect, 

which suggests that learners tend to perform improved memory re-

tention and recall for items presented to them most recently. The 

recency feature requires one parameter to characterize the impact 

of the recency of the preceding repetition only, with its value com-

puted as t-d, where t is the time elapsed since the prior repetition at 

the time of the new prediction and d captures the nonlinear decay. 

While recency is not a direct measure of spacing, it can capture the 

spacing caused performance difference between interleaving and 

blocking. For instance, in a blocked sequence where the same cat-

egory is practiced consecutively, there is little decay due to minimal 

elapsed time between repetitions. Conversely, in an interleaved se-

quence where items are dispersed, the longer intervals lead to more 

substantial decay. This approach allows the recency feature to ac-

count for the immediate effects of spacing, demonstrating its 

adaptability in modeling cognitive processes related to memory 

performance. 

Table 1. Example models with/no spacing feature in LKT  

Models Predictors: feature(component) 

AFM Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) 
PFA Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + linesuc (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + linefail (𝐾𝐶. 

. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) 
PFA + 

recency 
Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + linesuc (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + linefail (𝐾𝐶. 

. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + recency (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) 
PFA + 

ppe 
Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + linesuc (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + linefail (𝐾𝐶. 

. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + ppe (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) 
PFA + 

base4 
Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + linesuc (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + linefail (𝐾𝐶. 

. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) + base4 (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) 

We initially examined the impact of spacing in student models by 

incorporating features such as ppe, base4, and recency, (see exam-

ple models in Table 1). Given that the AFM is the most basic 

logistic regression model, we start with AFM. Additionally, we ex-

plored the PFA model, leading us to evaluate both AFM and PFA 

with spacing features. In Table 1, each predictor is presented by the 

feature (component) format. Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) a sin-

gle coefficient to characterize the exponential decay of the logit of 



prior success divided by failures for the participant, serving to cap-

ture student variability. 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (Problem.Name) represents the 

initial difficulty of items. Lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.) is  the AFM, 

predicting performance as a linear function of prior practices with 

the knowledge component. Linesuc and Linefail are from the PFA 

model, tracking counts of prior successes and failures. 

2.2 Attentional Factors 
In the second step, attentional features were integrated into the 

models. Drawing from the sequential attention hypothesis, which 

suggests that interleaving directs attention to differences between 

categories, while blocking focuses on similarities within categories  

[4, 5], both types of comparisons play a crucial role in category 

learning. In the blocked sequence, there are more within-category 

comparisons, as all exemplars from the same category are learned 

consecutively. In contrast, in the interleaved sequence, more be-

tween-category comparisons occur, as each exemplar is followed 

by one from a different category.  

Tracking whether consecutive trials belong to the same or different 

categories can reveal whether participants are engaging in more be-

tween-category or within-category comparisons, providing insight 

into whether the training involves blocking or interleaving. There-

fore, to integrate attentional factors, we recorded the counts of 

comparisons with each preceding trial, considering whether it be-

longs to the same or different category (see example models with 

attentional factors in Table 2).  We denoted models with attentional 

factors by adding an "a" before the traditional AFM and PFA mod-

els. Specifically, lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % Comparison% Same) 

tracks the counts of within-category comparisons for each KC and 

lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % Comparison% Different) tracks the 

counts of between-category comparisons for each KC. 

Table 2. Example models with attentional factors in LKT  

Models Predictors: feature(component) 

a-AFM Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Same) + lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Different) 

a-PFA Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-

lem.Name) + linesuc (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Same) + linefail (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Same) + linesuc (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Different) + linefail (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. 
% Comparison% Different) 

a-AFM 

+recency 

Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(Prob-
lem.Name) + lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Same) + lineafm (𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. % 

Comparison% Different) + recency (𝐾𝐶. . 

𝐷𝑒𝑓𝑎𝑢𝑙𝑡. ) 

2.3 Cross Validation 
In this study, a student-stratified cross-validation approach was em-

ployed to rigorously validate the entire process, ensuring no 

leakage of model information between different iterations for the 

held-out data. The dataset was randomly partitioned into five folds, 

with models trained on four folds and tested on the fifth. This cross-

validation procedure was iterated ten times for each model, and the 

means of key model fit parameters, including R2, AUC, RMSE, and 

correlation coefficients, were calculated for the test fold. The cor-

relation coefficients, in particular, played a crucial role in assessing 

the model’s ability to predict both learning session and posttest per-

formance accurately. The reported averages represent a 

comprehensive evaluation of the model’s predictive capabilities 

across multiple iterations, providing a robust measure of its overall 

performance. 

3. DATASETS 

3.1 Bird Category Learning 
The bird learning dataset included 43,326 observations from 181 

participants who learned bird categories by reviewing bird images 

and selecting which category it is, after excluding outliers. The 

study was approved by the Institutional Review Board of the Uni-

versity of Memphis. Participants were Amazon Mechanical Turk 

workers recruited through web service (www.cloudresearch.com). 

Participants were randomly assigned to four training groups: high 

similarity narrow spacing, high similarity wide spacing, low simi-

larity narrow spacing, and low similarity wide spacing. All 

participants completed a pretest consisting of 40 items (bird photos: 

10 categories × 4 exemplars to be learned). Subsequently, partici-

pants engaged in a learning session with five levels of block size: 1 

(fully interleaving), 2, 4, 8, and 16 (fully blocking). The stimuli 

were repeated 4 times (160 trials: 10 categories × 4 exemplars × 4 

repetitions). Therefore, each learning session comprises a total of 

168 trials. Finally, participants completed a posttest featuring 60 

items (40 learned items and 20 novel stimuli). Participants received 

feedback during the learning session but not during the pretest and 

posttest. The stimuli type, the manipulation of block size and spac-

ing, repetition of KCs and items made this dataset appropriate for 

evaluating model fit to the effects of training sequences (interleav-

ing vs. blocking). The data will be available by request. 

3.2 Blob Figures Learning 
In Carvalho and Goldstone’s [3] first experiment, they investigated 

the impact of category structure (high vs. low similarity) on the ef-

ficacy of interleaving and blocking. The dataset comprises 40,320 

observations from 60 participants after excluding outliers. Partici-

pants were undergraduate students from Indiana University. They 

were randomly assigned to either the high similarity group or the 

low similarity group. All participants initiated the study by learning 

three categories in either interleaved or blocked sequences, fol-

lowed by testing. Subsequently, they underwent another study 

phase in a different sequence and were tested again. Each study 

phase consisted of four sessions, with 72 trials in each session.  Car-

valho and Goldstone [3] observed that interleaved sequence 

enhanced the classification of novel items at the posttest for high 

similarity categories, whereas blocked sequence improved the clas-

sification of novel items at the posttest for low similarity categories. 

The manipulation of training sequences in this dataset also rendered 

it suitable for assessing model fit concerning the effects of training 

sequences. The data can be found at https://osf.io/t8wzy/ 

4. RESULTS 

4.1 Bird Category Learning 
See Table 3 and Figure 1 for the model fitting results of AFM and 

PFA models incorporating spacing features. Notably, before adding 

spacing features, there was no discernible difference between the 

original AFM and PFA models concerning the R2, AUC, and 

RMSE. Both models demonstrated proficient predictions for the 

learning session. However, on the posttest, both AFM and PFA 

models demonstrated poor predictive performance, with the PFA 

model showing no correlation with the human data. 
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Table 3. Mean test fold fitting results with/no spacing for bird 

data  

Model R2 AUC RMSE r1 r2 

AFM 0.21 0.80 0.40 0.87 0.24 

PFA 0.21 0.80 0.40 0.90 -0.05 

AFM + recency 0.29 0.85 0.38 0.98 0.31 

PFA + recency 0.29 0.85 0.38 0.98 -0.18 

AFM + ppe 0.30 0.85 0.38 0.99 0.44 

PFA + ppe 0.31 0.86 0.38 0.99 -0.24 

AFM + base4 0.23 0.82 0.40 0.87 0.29 

Note. r1 represents the correlation between the model prediction 

and the human data for the learning session. r2 represents the 

correlation for the posttest. 

 

 

Figure 1. Fitting results (dots) of the learning session (top 

panel) and posttest (bottom panel) for the AFM and PFA model 

over the empirical results from bird data (represented by the 

bars).  

Upon the inclusion of spacing features, both recency and ppe ex-

hibited an enhancement in model fit, while base4 did not contribute 

significantly to the improvement. Therefore, in subsequent anal-

yses, we focused solely on testing the effects of recency and ppe. 

For the AFM, the addition of spacing features led to improved pre-

dictive performance for both the learning session and the posttest. 

However, for the PFA models, the inclusion of spacing features re-

sulted in more accurate predictions for learning sessions but a 

decline in posttest predictions. During the learning session, the 

larger the block size, the higher the accuracy of participants’ bird 

categorization. However, the posttest showed a reverse pattern that 

the smaller block size led to higher accuracy. This discrepancy 

challenges the predictions of the PFA model, which tracks counts 

of prior successes and failures. While the PFA model suggests that 

more correct answers indicate more learning, this assumption does 

not hold true in the context of interleaving or blocking.  In a blocked 

sequence, where items from the same category are practiced con-

secutively, participants may produce correct responses more easily. 

Yet, this doesn’t necessarily imply effective learning. Conse-

quently, the PFA models may overfit the learning session data and 

exhibit bias against the posttest results. Therefore, in the following 

section of testing the attentional factors, we only explored the AFM. 

Table 4. Mean test fold fitting results with attentional factors 

for bird data 

Model R2 AUC RMSE r1 r2 

a-AFM 0.21 0.80 0.40 0.98 0.56 

a-AFM+recency 0.29 0.85 0.38 0.98 0.55 

a-AFM+ppe 0.31 0.85 0.38 0.98 0.79 

 

Figure 2. Fitting results (dots) of the posttest (bottom panel) for 

the attention-based AFM models over the empirical results 

from bird data (represented by the bars). 

We initiated the examination by testing the AFM with attentional 

factors, specifically focusing on the counts of between-category 

comparisons and within-category comparisons. The outcomes are 

presented in Table 4 and Figure 2. Utilizing attentional factors in 

isolation did not enhance overall model fit significantly but did re-

sult in improved predictions for both the learning session and 

posttest (see r1 and r2 in Table 4). Subsequently, we introduced 

spacing into the attention-based AFM. With the integration of both 

spacing and attentional factors into the model, there was an overall 

enhancement in model fit. However, recency and ppe demonstrated 

distinct effects on model predictions. The addition of recency to the 

attention-based AFM did not enhance the model’s predictive accu-

racy for the posttest. In contrast, incorporating ppe resulted in an 



improvement in posttest predictions. This difference may be at-

tributed to recency having only one parameter, whereas ppe, with 

four parameters, could better capture practice curves, spacing, and 

forgetting. In summary, both spacing and attentional factors are 

crucial in capturing the influence of interleaving and blocking on 

category learning. It's worth noting that the bird experiment design 

includes two between-subject variables: similarity and spacing, 

along with a within-subject variable, training sequence. However, 

the current model primarily focuses on the training sequence and 

spacing without incorporating the similarity parameters. The dis-

tinctions between high and low similarity, as depicted in Figure 2, 

were captured by Logit𝑑𝑒𝑐 (𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑). Although adding 

the similarity feature falls beyond the scope of the current paper, 

future research could explore its inclusion to enhance model fit. 

4.2 Blob Figures Learning 
Table 5. Mean test fold results for blob figures learning data 

Model R2 AUC RMSE r1 r2 r3 

AFM 0.14 0.75 0.43 0.99 0.92 0.36 

PFA 0.15 0.76 0.42 0.98 0.85 0.02 

AFM+ 

recency 

0.16 0.76 0.42 0.99 0.94 0.51 

a-AFM+ 

recency 

0.16 0.76 0.42 0.99 0.95 0.65 

AFM+ppe 0.15 0.76 0.42 0.99 0.96 0.68 

a-AFM+ppe 0.15 0.76 0.42 0.99 0.96 0.73 

Note. r1 denotes the correlation between the model prediction and 

human data for the learning session. r2 represents the overall 

correlation between the model prediction and human data for the 

posttest. r3 specifically signifies the correlation on the posttest for 

high-similarity stimuli. 

To assess the replicability of our findings from the bird category 

learning data, we conducted an evaluation of model fits and predic-

tions using the blob figures learning dataset. All models 

demonstrated accurate predictions during the learning sessions (see 

Table 5). However, when examining the posttest which includes 

learned and new items, we found that the posttest data exhibited 

distinct patterns based on the similarity of stimuli (see Figure 3). In 

instances of low similarity new items, participants demonstrated 

enhanced generalization for blocked items, mirroring the learning 

session. Conversely, for high-similarity stimuli, participants exhib-

ited a reversed pattern, showing improved performance on 

interleaved items, contrary to the learning session. The AFM model 

displayed relatively accurate predictions for low similarity but fal-

tered for high similarity stimuli (see r3 value in Table 5 and Figure 

3 bottom panel). The incorporation of both recency/ppe and atten-

tional factors into the model resulted in improved predictions for 

high-similarity stimuli. Specifically, the model integrating both at-

tentional factors and ppe showed the most improvement in posttest 

predictions. This observation aligns with the findings from the bird 

experiment. Generally, the findings underscored the importance of 

both spacing features and attentional factors in capturing the effects 

of training sequences (interleaving vs. blocking). 

  

 

Figure 3. Fitted model results (dots) of the learning session (top 

panel) and posttest (bottom panel) for the AFM and a-

AFM+ppe models for the blob figures learning data (repre-

sented by the bars). 

5. DISCUSSIONS 
The present study incorporated spacing features and attentional fac-

tors into LKT models to examine the influence of training sequence 

(interleaving vs. blocking) on category learning. Through cross-

validation, we evaluated the model fit and examined the correla-

tions between model predictions and human data during both 

learning sessions and posttests. Results from model fitting analyses 

on two datasets emphasize the crucial role of both spacing and at-

tentional factors in understanding the effects of training sequences 

(interleaving and blocking) on category learning. Notably, in-

stances where the training sequence results in a reversed 

performance trend between the learning session and posttest high-

light the importance of both attentional factors and the spacing 

features. The finding aligns with and supports the validity of the 

two-stage framework [31]. 

Our findings suggest that basic logistic knowledge tracing models, 

including AFM and PFA, effectively predict learners’ category 

learning performance during learning sessions but encounter chal-

lenges when forecasting posttest performance. This aligns with 

research examining the efficacy of Bayesian Knowledge Tracing 

(BKT) and the AFM in monitoring student learning and predicting 

future performance [13, 25, 27]. Researchers found that despite 

AFM, BKT, and BKT-F (BKT with forgetting) have the ability to 

capture qualitative learning trends across sessions and achieve ac-

ceptable fit metrics, all models fall short in capturing the spacing 

effect over multiple sessions [27]. Surprisingly, the BKT- F, which 

has a mechanism accounting for forgetting and thus should predict 

the benefits of spacing failed to make accurate predictions on 



subsequent performance after the manipulation of spacing intervals 

during initial learning. 

After incorporating spacing features (recency and ppe) into both the 

AFM and PFA models, there was an improvement in model fit for 

bird category learning data, while the improvement was not as pro-

nounced in the blob figures learning data regarding the R2, AUC, 

and RMSE values. This discrepancy may be attributed to differ-

ences in experimental design. In the bird category learning 

experiment, which involved 10 bird categories, the manipulation of 

spacing intervals (wide vs. narrow) may have provided more vari-

ability in the data, allowing the spacing features to have a more 

pronounced effect on model fit. Whereas the blob figures learning 

experiment, with only 3 categories in each sequence resulted in un-

intentionally narrower spacing intervals, may have had less 

variability in the spacing effect, thus resulting in a less significant 

improvement in model fit. 

A shared advantage of integrating spacing features into the AFM 

across both datasets is the enhanced correlation between model pre-

dictions and human data, particularly in posttest predictions. This 

improvement is especially noticeable when a reverse performance 

pattern occurs between the learning session and the posttest. The 

rationale behind this lies in the nature of interleaved and blocked 

sequences. In blocking, performance during the learning session 

may be artificially inflated due to the ease of guessing correctly 

(lack of spacing). In contrast, interleaving sequences, despite po-

tential challenges during the learning session, benefit from the 

spacing effect, resulting in superior posttest performance compared 

to blocked items. Therefore, the inclusion of spacing features helps 

capture these differences in spacing between the two training se-

quences, leading to more accurate performance predictions on the 

posttest. 

Although the inclusion of attentional factors did not boost the over-

all model fit significantly, it did contribute to enhanced predictions 

of the posttest fit. This enhancement stems from the role of atten-

tional factors, which use counts of prior comparisons (whether 

same or different) to indicate the training sequence. Notably, inter-

leaving involves more between-category comparisons, while 

blocking entails more within-category comparisons. Thus, both 

spacing and attentional factors play a crucial role in capturing learn-

ers’ performance across different sequences (interleaving and 

blocking) in category learning.  

In future research, there is a need to expand the application of at-

tentional factors and spacing within AFM models to a broader 

range of datasets, ensuring the model’s efficacy across diverse ed-

ucational contexts. Besides, conducting comparative analyses with 

other knowledge tracing models, such as the BKT and BKT-F, is 

imperative to validate the distinctive contributions of the new 

model and identify potential areas for further enhancement. Addi-

tionally, the current datasets only feature short retention intervals, 

with the posttest immediately following the learning session. Fu-

ture investigations should explore the adaptability of the model to 

longer retention intervals and diverse learning sequences, thereby 

enhancing the model’s practical utility. 
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