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ABSTRACT
The gold-standard for evaluating the effect of an educational
intervention on student outcomes is running a randomized
controlled trial (RCT). However, RCTs may often be small
due to logistical considerations, and resulting treatment ef-
fect estimates may lack precision. Recent methods improve
experimental precision by incorporating information from
large, observational, auxiliary data sets. Specifically, predic-
tions of the outcome of interest from a model fit on the aux-
iliary data can be used in covariate adjustment. Such auxil-
iary data, on students or schools not included in an RCT, but
with similar characteristics, is often available for educational
RCTs. This is the case for a trial evaluating the efficacy of
the Cognitive Tutor Algebra I curriculum (CTAI), an al-
ternative algebra curriculum that included a computerized
tutoring system. The Texas Education Agency (TEA) pro-
vides publicly available data on thousands of schools across
Texas, including the 44 schools randomized in the CTAI
study as well as nearly 3,000 additional, auxiliary schools.
We develop an auxiliary model predicting passing rates for
a standardized test in mathematics, which flexibly incorpo-
rates the 5,000 covariates available in the TEA data through
random forest modeling. We compare our approach, using
these auxiliary model predictions, to more standard estima-
tors of the effect of CTAI on schools’ mathematics passing
rates. We find that leveraging information from the auxil-

iary data increases precision beyond standard methods that
rely on the experimental sample alone, even for this paired
trial with a powerful baseline covariate. We additionally
demonstrate that working with auxiliary information pro-
vides practical benefits for analysis, beyond this increased
estimation precision.

Keywords
causal inference, data fusion, potential outcomes, RCT, co-
variate adjustment

1. INTRODUCTION
Educational policy decisions rely on the evaluation of prosp-
ective educational interventions. Randomized controlled tri-
als (RCTs) are considered the “gold-standard” for evaluat-
ing the effect of an intervention on educational outcomes
because they support unbiased estimation. However, RCTs
are often small due to cost and other logistical considera-
tions, which can result in effect estimation that is not precise
enough to support strong conclusions. This issue is exacer-
bated in educational experiments since the effects of educa-
tional interventions on common outcomes of interest (test
scores, graduation rates, etc.) are often small [10, 4].

A common approach to improving precision of experimental
estimates is using covariate adjustment to account for varia-
tion in the outcome that is not explained by the treatment.
The precision gained through covariate adjustment depends
on how predictive the covariates are of the outcome. Recent
work has shown that additional precision may be gained by
integrating auxiliary information into covariate adjustment.

There are a number of approaches for integrating auxiliary
information in RCT analyses to improve precision [15, 24,
1, 3, 13, 7, 5]. We focus on an approach that uses auxiliary
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data to construct a highly predictive covariate for the out-
come of interest in the RCT [5] (hereafter, “data integration
approach”). Consider a setting in which there is a large,
observational dataset that describes schools or students not
included in an RCT, but that have similar characteristics
to the RCT sample (“auxiliary data”). We assume that an
outcome of interest and covariates are available for both the
auxiliary and RCT samples. Then, one can fit a model with
the auxiliary data predicting the outcome of interest (“aux-
iliary model”). The predictions from this model, applied to
the experimental sample, can be a powerful covariate for
adjustment. The idea is that, since the auxiliary sample is
typically much larger than the experimental sample, high-
dimensional covariates can be accommodated and a model
of the outcome using the auxiliary data will be more predic-
tive of the outcome than a model based on the experimental
sample alone.

We apply this data integration approach to analyze a ran-
domized trial evaluating the efficacy of the Cognitive Tutor
Algebra I (CTAI) curriculum [14]. The CTAI study was
a paired trial that randomized a small number of schools
within different states. We focus on study schools in Texas
and are able to complement information on the trial schools
with extensive publicly-available data for 3,000 other schools
in the state. We first develop a model predicting schools’
performance on a mathematics standardized test with these
auxiliary schools. We combine the modern data integration
approach [5] with another recently developed design-based
estimator for paired trials [26], using predictions from the
auxiliary model as a covariate to estimate the average effect
of CTAI on school-level mathematics performance.

[5, 18] show that the data integration approach essentially
cannot harm precision, so the question becomes whether the
approach is worth the additional effort, compared to the pos-
sible precision gain, in different settings. While [5, 18] have
shown the efficacy of the data integration approach across
a number of relevant settings, the setting in this paper has
not been previously evaluated with this method and is of
interest to educational researchers. First, the CTAI study is
a field experiment, while previous evaluations of the data in-
tegration method focus on EdTech A/B testing. Second, the
CTAI study is a paired trial, where the schools were paired
based on baseline characteristics, making it a powerful de-
sign, which should already improve precision over Bernoulli
randomization. Finally, a pretest score – the performance
on the outcome assessment of interest, before the treatment
was applied – is available. The pretest score is often a highly
prognostic covariate in educational trials, so one may not ex-
pect to be able to improve precision much beyond adjusting
with the pretest alone. Thus, the CTAI study is a setting for
which one may not expect data integration to provide con-
siderable precision gains, and therefore would not be worth
the additional effort. However, we find that incorporating
auxiliary information does considerably improve precision
beyond standard adjustment methods using the trial data
alone, including adjusting with the pretest score.

Beyond the possible gain in precision, an advantage of lever-
aging auxiliary information in effect estimation is that any
kind of pre-processing or modeling can be done with the aux-
iliary data, as long as the experimental outcomes are not

touched. Thus, the auxiliary data can be thought of as a
“sandbox,”where the data may be explored without the risk
of undermining the experimental design. In contrast, analy-
ses of experimental data typically must be pre-specified, and
should not be changed once the experimental data is in hand
[2, 12]. We demonstrate this benefit of this flexibility with
the auxiliary school data – evaluating different approaches
to accounting for missing values, predictive algorithms, and
covariate selection. We find that random forest models per-
formed as well as more sophisticated machine learning al-
gorithms and have the added benefits of being easy to fit
and offering model interpretation. The auxiliary model it-
self provides interesting information about the relationship
between predictors and the outcome. Thus, working with
auxiliary data offers the additional benefit of complementing
the RCT analysis with insights gained from an exploratory
observational analysis.

Thus, this work complements that of [5, 18, 26], making
two primary contributions. First, we demonstrate the effec-
tiveness of their data integration approach in practice, in a
new and relevant setting – a paired field trial with a highly
predictive pre-treatment covariate. Second, we articulate
in detail the process of implementing the data integration
approach given a trial and relevant, publicly available, ob-
servational data, which highlights practical benefits to the
approach beyond simply a gain in statistical efficiency.

This paper is organized as follows. Section 2 describes the
CTAI study and the focus of our re-analysis of the study.
Section 3 presents relevant notation, mode of inference, and
causal estimators used in our analysis of the CTAI study.
Section 4 details how we developed auxiliary models with
publicly available data for use in covariate adjustment. Sec-
tion 5 discusses the results comparing different covariate ad-
justment strategies for treatment effect estimation with the
CTAI study. Section 6 concludes.

2. COGNITIVE TUTOR ALGEBRA I
STUDY

In this section, we describe the CTAI study [14] and the an-
alytical data available in more detail. CTAI, published by
Carnegie Learning, Inc., was an alternative Algebra I cur-
riculum which incorporated individualized student instruc-
tion through computerized tutoring. The study included
147 middle and high schools across seven states, which were
pair matched within states based on school characteristics.
Within each pair, schools were randomly assigned to imple-
ment CTAI or to continue Algebra I instruction as usual for
two years (the 2007/08 and 2008/9 school years). See [14]
for a detailed discussion of the design and implementation
of the trial.

For the purposes of the current analysis, we focus on the
44 study schools in Texas, which include six pairs of high
schools and 16 pairs of middle schools.1 This focus on Texas
schools is due to the availability of data on thousands of mid-
dle and high schools in Texas for years preceding and after

1The purpose of the re-analysis is to demonstrate the meth-
ods discussed and compare them to common methods, not to
make any comparisons between our results and the original
study analysis.



the study period. Specifically, the Texas Education Agency
(TEA) published the Academic Excellence Indicator Sys-
tem (AEIS) from 2003 to 2011, which includes thousands
of school-level measures each year, including information on
student and teacher demographics, school finances, and stu-
dent outcomes [21].

We estimate the average effect of CTAI on schools’ pass-
ing rates for the 8th or 9th grade mathematics section of
the Texas Assessment of Knowledge and Skills (TAKS) in
2008 [23]. TAKS was a standardized exam administered
each year, with school-level results reported in the AEIS.
Students were considered to have “met standards” or passed
the math TAKS in 8th and 9th grade if they answered 60%
or more of the 50 questions correctly [21].

The AEIS provides a rich source of information on the 44
schools in the CTAI study, as well as a large set of auxiliary
schools, including a relevant educational outcome. There-
fore, the CTAI study provides a nice example for incorpo-
rating auxiliary data in an RCT analysis in practice.

3. CAUSAL FRAMEWORK AND
ESTIMATION

The CTAI study is a pair randomized experiment. In this
trial design, units are matched into pairs, and within each
pair one unit is randomly assigned to treatment and then
the other is automatically assigned to control. Consider such
a randomized experiment with N pairs of schools, indexed
i = 1, ..., N (resulting in 2N total schools in the experiment).
Within each pair, we arbitrarily label the schools as the
“first” or “second” school, indexed by k = 1, 2. We define
a binary treatment assignment as Ti = 1 if the first school
in pair i was assigned treatment (and therefore, the second
control), and Ti = 0 if the first school was assigned control,
where P (Ti = 1) = 1

2
.

The inference in this paper operates under the Neyman-
Rubin model [19, 17] (also called the “potential outcomes
framework”), a common, non-parametric causal model. The
only source of stochasticity in this model comes from the ran-
domized treatment assignment, whose distribution is known
in an RCT. The analysis follows the approach of [26] and [5],
which we summarize briefly in the remainder of this section.

We assume that each school has two, fixed potential out-
comes, yt

ik and yc
ik, which would be observed if the school

was assigned to the treatment or control group, respectively.
Therefore, the observed outcome for the first school in pair
i is Yi1 = Tiy

t
i1 + (1 − Ti)y

c
i1, and for the second is Yi2 =

(1 − Ti)y
t
i2 + Tiy

c
i2. Define the average, within pair treat-

ment effect as τi = 1
2
(yt

i1 − yc
i1 + yt

i2 − yc
i2). Our target

estimand is the average treatment effect over all schools in
the experimental sample (ATE), defined as:

τ̄ =
1

N

N∑
i=1

τi

It is also useful to define two quantities: v
(1)
i = yt

i1−yc
i2 and

v
(2)
i = yt

i2 − yc
i1, so that τi =

1
2
(v

(1)
i + v

(2)
i ). Also note that

v
(1)
i is observed if Ti = 1 and v

(2)
i is observed if Ti = 0.

A common estimator for the ATE is the difference-in-means,
or the difference in the mean outcome between the treat-
ment and the control group. In a paired experiment the
difference-in-means estimator can also be written as: τ̂DM =
1
N

∑N
i=1(2Ti − 1)(Yi1 − Yi2). [26] propose a design-based

estimator for paired trials that incorporates covariate ad-
justment, typically improving precision over the difference-
in-means estimator, without adding bias. Their estimator,
which is related to previous work such as [1, 25, 16], is de-
fined as follows:

τ̂ =
1

N

N∑
i=1

(2Ti − 1)[(Yi1 − Yi2)− d̂i],

where di = 1
2
(v

(1)
i − v

(2)
i ), and d̂i is any estimate of that

value. As long as d̂i ⊥ Ti, τ̂ is an unbiased estimator of
τ̄ . Therefore, the authors estimate d̂i by sample-splitting
[26, 1]. Specifically, they suggest fitting an imputation al-
gorithm for di with all of the other pairs, excluding pair
i. We will refer to τ̂ as the “sample-splitting estimator” for
the remainder of the paper. Let xi represent a vector of
covariates for the two schools in pair i.2 Denote the leave-
one-pair-out imputation algorithm for pair i as d̂−i(·), so the

estimate d̂i = d̂−i(xi). While we represent d̂−i(·) as a single
imputation algorithm, in practice it involves combining pre-

dictions of v
(1)
i and v

(2)
i (see [26]), which becomes relevant

for variance estimation as described in Section 5.

The precision of the estimator depends on the mean squared
error (MSE) of d̂i – the smaller the MSE, the greater the
precision. Incorporating information from a large auxiliary
data source to fit d̂−i(·) can decrease the MSE of d̂i beyond
using the trial sample and covariates alone. Let ŷr(·) denote
some prediction algorithm developed on the auxiliary data
(“auxiliary model”), predicting the outcome of interest in the
RCT with predictors that are available in the RCT. Then,
one can generate predictions based on this auxiliary model,
for the schools in the RCT, and treat these predictions xr

i =
ŷr(xi) as a covariate to impute d̂i [5]. Because ŷr(·) is fit on
schools outside of the RCT sample and xi are measured pre-
treatment, xr

i is also a pre-treatment covariate. Therefore,
the auxiliary predictions can be used to generate imputation
models, d̂−i(·), without introducing bias.

This data integration approach provides a researcher consid-
erable flexibility. First, the properties of the sample-splitting
estimator discussed do not depend on what kind of impu-
tation algorithm is used for d̂−i(·) nor the auxiliary model,
ŷr(·). It does not even require that the either model is cor-
rectly specified. Additionally, all that is required to develop
an auxiliary model is the outcome of interest and covariates
that are available for the RCT. Notably, the treatment need
not be present in the auxiliary data. We take advantage
of the flexibility allowed for auxiliary model development in
our analysis of the CTAI study, as described in the following
section.

4. DEVELOPING AN AUXILIARY MODEL
2xi could be a vector that appends the covariates for both
schools in a pair or represent a pair-level summary of the
covariates. See [26] for a discussion.



The first step of the data integration approach [5] is de-
veloping a predictive model with the auxiliary data. Here,
we discuss this process in detail, highlighting insights we
expect will be useful to others developing similar models,
and also presenting some interesting empirical findings. As
mentioned previously, [5] make no assumptions about the
auxiliary model, so we are free to do essentially anything we
want with the auxiliary data, the only goal being to predict
the outcome of interest accurately.

4.1 Auxiliary Texas School Data
The CTAI study included both middle and high schools be-
cause students take Algebra I across a range of grades. For
the sake of this analysis, we assume that students take Alge-
bra I in 8th grade (middle school) or 9th grade (high school).
Therefore, we define high schools as those whose school type
is labeled as “Secondary” or “Both” (meaning middle and
high school) in the AEIS data and are not missing the 2008
9th grade math TAKS passing rate. We define all other
schools for which the 2008 8th grade math TAKS passing
rate is available as middle schools.3 This results in 1,436
middle and 1,467 high schools for model development.

We use campus-level AEIS data from the 2003/4 through
2006/7 school years, including campus finance, staff, stu-
dent, TAKS, and other performance data.4 We additionally
include variables that we believe were measured at baseline
(pre-treatment) in the 2007/2008 school year including fi-
nancial, staff, and student demographic data. We remove
columns for which there is little variation between schools
or for which more than 60% of the values are missing. There
are 3,745 and 4,440 possible predictors for middle and high
schools, respectively, after removing these columns.

Our outcome of interest is the 8th grade math TAKS pass-
ing rate for middle schools and the 9th grade math TAKS
passing rate for high schools, which we will refer to collec-
tively as the “math TAKS passing rate” for the remainder
of the paper. There are relevant distinctions between the
outcome for the auxiliary middle schools and high schools
– the average 2008 TAKS passing rate for middle schools is
around 79%, while it is 63% for high schools.

4.2 Model Development
As mentioned, our goal is to develop an auxiliary model
that will predict the outcome of interest with high accu-
racy. Therefore, we evaluate the model using MSE and R2

for development. Additionally, given that there are relevant
distinctions between middle and high schools outcomes in
the AEIS data, we develop an auxiliary model based on the
performance of prediction algorithms fit separately on mid-
dle and high schools.

A common feature of publicly available data is the presence
of data suppression or masking in order to preserve indi-
vidual privacy. Indeed, the AEIS masks school-level assess-
ment outcomes such as passing rates that are either based on

3Applying this definition to the schools in the CTAI study
resulted in the same classifications of middle versus high
schools as the original study.
4See reference code at https://github.com/manncz/
aeis-aux-rct for a full list of AEIS data sets used.

Table 1: Cross-validation (10-fold) mean squared error (MSE)
and R2 for models predicting the 2008 TAKS passing rate, fit
on the auxiliary Texas schools with either (1) OLS with only
the 2007 TAKS passing rate (pretest) or random forest with
all available predictors. Models were fit separately on middle
schools and high schools.

Middle Schools High Schools
Model MSE R2 MSE R2

Pretest (OLS) 85.3 0.54 206.5 0.56
All Predictors (RF) 65.6 0.65 128.2 0.72

fewer than 5 students, reveal that nearly all or no students
passed, or are outside of a reasonable range for the measure
[22]. We replace the masked indicators that either all or no
students passed an assessment with 100 or 0, respectively.
However, this masking still results in a substantial number
of missing values. As mentioned previously, we only include
schools which are not missing the 2008 math TAKS passing
rate. We explore two routes for addressing missing data in
the predictors: 1) simple mean imputation and 2) imputa-
tion using random forests (with the missForest package in
R [20]). For both options, we additionally generate variables
indicating whether a school’s value was originally missing for
each column. We evaluate these two approaches based on
the MSE and R2 of predictions resulting from fitting both
random forests and neural nets for middle and high schools.
We find that using random forest missing value imputation
did not improve model performance meaningfully over sim-
ple mean imputation, while taking substantially more com-
puting power and time. Therefore, after centering and scal-
ing all variables (separately for middle and high schools),
we replace all missing values with 0. Including the unique
set of missing value indicators for each school type results
in a total of 4,787 and 5,711 predictors for middle and high
schools, respectively.

Any modeling approach can be used for the auxiliary model,
allowing for any kind of sophisticated, black-box modeling.
We take advantage of this flexibility to evaluate different al-
gorithms and subsets of predictors to predict the 2008 math
TAKS passing rate.

First, we evaluate different sets of predictors to include in
the auxiliary model. Commonly with educational outcomes,
one would expect that a pretest score, or the performance
on the outcome measure before the treatment was applied,
could explain much of the variance in the post-treatment
outcome. We use the 2007 math TAKS passing rate (8th
grade for middle schools and 9th grade for high schools)
as a pretest, and will refer to it as such for the remainder
of the paper. This pretest score is thus accounting for the
scores of previous students taking the same test, with the
same teachers, in the same school. Table 1 shows that the
pretest alone explains more than 50% of the variance in the
2008 TAKS passing rates for middle and high schools, using
OLS. However, including the full set of predictors in a ran-
dom forest model reduces the unexplained variance by an
additional 10-15%. We also evaluate other sets of predictors
in between these two extremes including all possible TAKS
outcomes from previous years and and only the top 20 pre-
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Figure 1: Top 15 predictors, ranked by variable importance,
for the 2008 8th grade math TAKS passing rate in auxiliary
middle schools according to a random forest algorithm fit
with all possible predictors. Bars represent the % increase in
MSE for each predictor. The pretest score is highlighted with
lighter green. Any “TAKS” variable represents the passing
rate, and TAKS-I is a version of the test with accommoda-
tions. Numbers in parentheses indicate the year.

dictors in terms of variable importance. We find that using
all predictors out-performed other options.

We additionally explore using random forests versus neural
nets to predict passing rates [11, 9]. Based on the MSE and
R2 of the resulting predictions, we find that the random
forest models consistently out-perform the neural nets, for
different model specifications and sets of predictors. Also,
the default parameters in the randomForest package in R

perform essentially as well as any further tuning.

Thus, we conducted extensive model development, evaluat-
ing difference approaches to accommodating missing values,
covariate selection, and algorithm selection. Based on these
steps for model development, the final auxiliary model uses
random forests and all available predictors, fit separately on
middle and high schools.

4.3 Model Interpretation
In general, random forests have the practical advantages of
offering model interpretation in the form of variable impor-
tance and requiring little tuning, so we recommend them for
fitting an auxiliary model. The ability to interpret which
variables most influence the algorithm’s predictive perfor-
mance allows the researcher to evaluate a model on its pre-
dictive properties as well as whether it makes some sense
from an educational standpoint. The goal is to develop
an auxiliary model that will predict the outcomes in the
RCT sample well. For this to be the case, there needs to
be some overlap in the characteristics of the auxiliary and
RCT schools and the relationship between the predictors
and outcome needs to be similar between the auxiliary and
RCT schools. Therefore, the variable importance could give
an idea of whether the auxiliary model is relevant for the
RCT schools.

We complete such an investigation with the auxiliary Texas
schools in the AEIS data. Figures 1 and 2 display the top

Math TAKS - All Grades - Males (07)
All TAKS - All Grades - Males (07)
Campus Group Mean Total # of Staff (07/8)
Math TAKS - 9th Grade (07)
Math TAKS & TAKS-I - All Grades - Males (07)
All TAKS - All Grades - Females (07)
% of Students in Special Education (07/8)
% 10th Graders (06/7)
Campus Group Mean Total # of Students (07/8)
% 10th Graders (07/8)
All TAKS & TAKS-I - All Grades (07)
% 9th Graders (07/8)
Math TAKS & TAKS-I - All Grades (07)
Math TAKS - All Grades (07)
All TAKS - All Grades (07)

051015

Figure 2: Top 15 predictors, ranked by variable importance,
for the 2008 9th grade math TAKS passing rate in auxil-
iary high schools according to a random forest algorithm fit
with all possible predictors. Bars represent the % increase in
MSE for each predictor. The pretest score is highlighted with
lighter green. Any “TAKS” variable represents the passing
rate and TAKS-I is a version of the test with accommoda-
tions. Numbers in parentheses indicate the year of an exam
or school year. “Campus Group” is a group of 40 comparison
schools with similar demographic characteristics.

15 predictors, in terms of variable importance for random
forest models fit on the auxiliary middle schools and high
schools, respectively. The variable importance is based on a
random forest algorithm fit with all possible predictors on
the 2008 TAKS passing rate. The bars represent the percent
increase in MSE for each predictor (a common measure of
variable importance [6]). The pretest score is highlighted
with a lighter colored bar.

The variable importance validates that the auxiliary models
are picking up on expected predictors for the math TAKS
passing rate. The top predictors for both types of schools
include passing rates on the previous years’ TAKS, both
for the mathematics section and for the test overall (which
also includes reading, writing, science, and social studies,
depending on the grade). The overall school performance
was important for both middle and high schools, indicating
that a general school environment or resources are relevant
even for performance within a specific grade. Additionally,
even though the overall TAKS performance is important,
indicators of the reading TAKS do not show up among the
top predictors, which further validates that the model is
picking up on mathematical performance.

We additionally find interesting differences between predict-
ing the 8th and 9th grade math TAKS passing rates. For
high schools, the top predictors included demographic vari-
ables from the 2007/8 school year, such as the percent of 9th
or 10th graders in a school, the percent of students in special
education programs, and the number of students and staff,
in addition to TAKS passing rates (Figure 2). For middle
schools, the top 15 predictors are primarily different TAKS
passing rates (math or overall), either for all grades or for
7th graders from the previous year (Figure 1). The previ-
ous year’s passing rate for 8th graders (pretest) is a strong
predictor as well, but these findings indicate that the actual



cohort of students (who where in 7th grade in 2007 and 8th
grade in 2008) was highly important. On the other hand,
it is not possible to follow the cohort of 8th graders in 2007
who became 9th graders in 2008 with the given data, so
other types of predictors rise in importance when predicting
the outcome for high schools.

We gained interesting insights from the auxiliary model de-
velopment, which would not be possible with the small trial
data. The variable importance, in particular, provides ob-
servational results that can frame or complement treatment
effect estimation results from the RCT.

5. TREATMENT EFFECT ESTIMATION
We compare the estimated precision of point estimates for
the effect of CTAI on the 2008 school-level math TAKS pass-
ing rate, with different approaches to covariate adjustment.
We estimate the average effect for all 44 Texas schools in the
study (not separating middle and high schools). As a base-
line, we estimate the ATE using no covariate adjustment,
or in other words, with the difference-in-means estimator
τ̂DM .5 We compare this to the sample-splitting estimator
using three different imputation models for d̂−i(·): (1) OLS
with the pretest score for the RCT sample only; (2) random
forests with all covariates available from the AEIS data for
the RCT sample only; (3) OLS with the auxiliary predic-
tions. The first two imputation algorithms use only informa-
tion from the RCT, while the last incorporates information
from the auxiliary Texas schools using the auxiliary model
described in the previous section.

To estimate the variance of the difference-in-means point es-
timator, we use the typical variance estimator for a paired
t-test [8]: V̂(τ̂DM ) = 1

N(N−1)

∑N
i=1(τ̂i − τ̂DM )2, where τ̂i =

(2Ti−1)(Yi1−Yi2). We use the variance estimator proposed
in [26] to estimate the variance of the sample-splitting esti-

mator: V̂(τ̂) = 1
N

∑N
i=1(Vi − V̂i)

2, where Vi = Tiv
(1)
i + (1−

Ti)v
(2)
i and V̂i = Tiv̂

(1)
i +(1−Ti)v̂

(2)
i . We compare the preci-

sion of point estimators in terms of their estimated relative
efficiency, the ratio of their estimated variances.

Tables 2 and 3 display the results, with Table 2 showing the
point and variance estimates and Table 3 showing the rela-
tive efficiency compared to two estimators. Table 3 includes
the relative efficiency of each point estimator, as compared
to the baseline, difference-in-means estimator (“vs. None”)
and to the estimator that only includes the pretest as a co-
variate (“vs. Pretest”). A relative efficiency greater than one
indicates that the point estimator is more precise than the
comparison estimator, while a relative efficiency less than
one indicates that it is less precise. The estimated relative
efficiency can also be interpreted as an estimated propor-
tional change in effective sample size.

As shown in Table 3, we find that adjusting for the pretest
alone greatly improves precision – using the sample-splitting
estimator with the pretest alone (“Pretest”) instead of the

5[26] show that if leave-one-out mean imputation is used

as d̂−i(·), then the sample splitting estimator is equivalent
to the difference-in-means estimator, so τ̂DM can also be
thought of as the sample splitting estimator that uses no
covariates.

Table 2: Point and variance estimates of the ATE for the
CTAI study, using different covariate adjustment approaches.
“None” is the difference-in-means estimator (τ̂DM ). The rest
use the sample-splitting estimator with different models to
impute di. “Pretest” uses OLS with the 2007 math TAKS
passing rate. “All Covs” uses random forests with all covari-
ates in the trial sample only. “Auxiliary Prediction”uses OLS
with the auxiliary prediction as the only covariate.

Covariates Used
For Adjustment Point Est. Var Est.

None -6.82 9.82
Pretest -2.04 5.66
All Covs (RCT) -5.90 8.03
Auxiliary Prediction -3.77 4.13

Table 3: Relative efficiency of the point estimates, compared
to using no covariate adjustment, or only the pretest in the
RCT sample for covariate adjustment. Relative efficiency is
calculated as V̂(τ̂A)/V̂(τ̂B), where τ̂A is is the estimator indi-
cated in the column header, and τ̂B is indicated by the row.

Covariates Used Relative Efficiency
For Adjustment vs. None vs. Pretest

None 1.00 0.58
Pretest 1.74 1.00
All Covs (RCT) 1.22 0.70
Auxiliary Prediction 2.38 1.37

difference-in-means estimator (“None”) is equivalent to in-
creasing the sample size by 74%. On the other hand, at-
tempting to improve on this using only the RCT data can
actually be counter-productive. When we use all covari-
ates and random forest model within the RCT sample alone
to impute di (“All Covs (RCT)”), the resulting effect esti-
mate is less precise than the estimate adjusting for only the
pretest. Although including all possible covariates decreased
prediction MSE in the auxiliary data, the trial data is so
small that the imputation model with all covariates is noisy,
and therefore hurts precision. However, using the auxiliary
predictions, which encode information from the full set of
covariates, in effect estimation (“Auxiliary Prediction”) far
outperforms the difference-in-means estimator and improves
even beyond adjusting for the pretest. We find that leverag-
ing information from the large, publicly available, auxiliary
data, rather than adjusting with the pretest score in the
experimental sample alone is equivalent to increasing the
sample size by 37%.

6. DISCUSSION
In this paper, we apply a recent approach to integrating
auxiliary information in the analysis of an RCT to an ed-
ucational trial, using publicly available data [5]. We found
that working with large data on almost 3,000 auxiliary Texas
schools allowed us to uncover patterns that would be difficult
to find with the Texas CTAI trial sample alone (44 schools).
We were able to thoroughly explore different pre-processing
and prediction strategies with the auxiliary data. We prefer



using the random forest algorithm because it is simple to im-
plement in R and provides model interpretation via variable
importance. Using the resulting auxiliary predictions for
the trial sample in covariate adjustment resulted in a more
precise treatment effect estimate than covariate adjustment
using information from the trial schools alone. Even with
a powerful experimental design (paired), and a powerful co-
variate (pretest), we still find considerable gains to including
auxiliary information in estimation.

Developing an auxiliary model is additional work. However,
even beyond the gain in precision, we find that what one can
learn about the outcome and covariates more than makes up
for the added effort. First, we were able to uncover the im-
portance of the cohort of students for predicting future per-
formance in middle schools, which was not possible in the
trial sample alone given the small size. We were also able to
determine an approach to handle missing values, which are
common in publicly available data, based only on the pre-
dictive performance of the auxiliary model. Being able to fit
a models with high dimensional covariates using the auxil-
iary schools also had implications for covariate selection. If
researchers had to pre-specify covariates for adjustment, it
would only be reasonable to choose a small number to avoid
model over-specification. Selecting an ideal set of highly
predictive covariates a-priori could be more difficult than
obtaining auxiliary data and fitting a random forest model
on it, as we did. If one does not select covariates a-priori
but instead tries to select covariates based on the trial data
alone, we find that precision can actually suffer. On the
other hand, leveraging the thousands of auxiliary schools,
we were able to reliably evaluate different sets of covariates
with cross validation. Therefore, in this example, we find
considerable practical gains from modeling with auxiliary
data.

This work evaluates the data integration approach on one
trial. However, one may expect that there would not be
much room to improve efficiency for treatment effect esti-
mation with the CTAI study, given the paired design and
powerful available baseline covariate. Therefore, the fact
that we find considerable efficiency gains from the data in-
tegration approach in this trail is promising, indicating that
the approach could be efficacious in other educational field
trails as well, especially ones with less powerful designs or
available pre-treatment covariates. We hope these promising
results can encourage educational researchers to employ the
methods in their trail analyses, which will continue to de-
velop evidence regarding the efficacy of the data integration
approach.

7. SUPPORTING CODE
All code used in auxiliary model development and explo-
ration can be found on GitHub at https://github.com/

ashhhleywang/Stats-Research-Project. Code for process-
ing AEIS data, fitting a final auxiliary model, and all chap-
ter results can be found on GitHub at https://github.com/
manncz/aeis-aux-rct. Full replication data is not provided
to protect the identities of the schools included in the CTAI
study.
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