
Who Should I Help Next? Simulation of Office Hours
Queue Scheduling Strategy in a CS2 Course

Zhikai Gao
NC State University
zgao9@ncsu.edu

Gabriel Silva de Oliveira
NC State University

gsilvad@ncsu.edu

Damilola Babalola
NC State University

djbabalo@ncsu.edu
Collin Lynch

NC State University
cflynch@ncsu.edu

Sarah Heckman
NC State University

sarah_heckman@ncsu.edu

ABSTRACT
Promptly and properly addressing students’ help requests
during office hours is a critical challenge for large CS courses.
With a large amount of help requests, instructors often find
themselves facing a long office hours queue and need to de-
cide who to help next. Most instructors typically select
the earliest arrival students (FCFS), while some instructors
prioritize students who haven’t been helped recently to en-
sure fairness. To better understand and quantify how those
different strategies affect the queue and students’ experi-
ence, we simulated the office hours queue with four differ-
ent strategies under three different queue loads using the
students’ problem-solving behaviors as a guide. Our simu-
lation results show that when the queue is relaxed, differ-
ent strategies make no difference. When the queue is busy
or normal, prioritizing students who haven’t helped today
is the best strategy. Moreover, we also discussed how to
develop a strategy based on students’ code commit status,
and corresponding simulation results indicate those strate-
gies have no impact on the queue.

Keywords
Help-seeking, Office Hours, Queuing theory, Scheduling Al-
gorithm, Data Analysis, Simulation

1. INTRODUCTION
Efficiently addressing help requests during office hours is cru-
cial for a large CS course.[10, 9, 25, 7, 26, 27]. However,
instructors often receive large batches of requests within a
short time, especially near the assignment deadlines. With
limited time and resources, it is impossible to provide imme-
diate responses for all students, and instructors must decide
whom to help first without knowing how long that help will
take. In this work, We call this decision strategy the queue
scheduling strategy. In practice, the most popular queue
scheduling strategy is First Come First Serve(FCFS); this is

straightforward to execute and is expected to minimize over-
all wait times. However, sometimes students request help
repeatedly; in such cases, with FCFS, other students might
suffer a longer waiting time while others receive repeat sup-
port. To address this, instructors turn to priority schedul-
ing, focusing on students who haven’t been seen that day,
or who come rarely. Such priority scheduling can increase
fairness but can potentially prolong the overall waiting time.
The challenge thus is finding an effective tradeoff between
fairness and wait time by quantifying and measuring the im-
pact of switching different scheduling strategies and, more-
over, finding under different queue conditions which strategy
can achieve optimal queue performance, lower waiting times
overall, more requests addressed, and thus more students
helped.

If we can anticipate the complexity of student problems,
then it is possible to implement the shortest job first (SJF)
algorithm, where we prioritize quick answers and, thus, in
theory, work through requests more efficiently overall. The
SJF algorithm has been proven as a very common and ef-
ficient scheduling strategy in various domains[12, 2]. How-
ever, his approach is complicated by challenges we face in
estimating request time, ambiguous student requests, which
are common [10], and cancellations. Thus it is unclear whether
an SJF approach could be implemented reliably or, if it was,
whether it would yield benefits in practice. In this work, we
hypothesize that students’ coding behaviors before the re-
quest are accurate indicators of estimated interaction time,
and thus tried to build strategies based on students’ coding
features before they seek help, and finally run the simulation
with those features to see whether such a strategy is useful.
This research will first quantitatively measure the impact
of choosing different scheduling strategies and thus give in-
structors explicit guidance on who to select next during OH
under different circumstances. Moreover, Online office hours
systems can easily use our conclusion to automatically rec-
ommend the next student to help.

We aim to answer the following research questions:

• RQ1: Can we measure the impact of different exist-
ing queue selection/scheduling strategies under differ-
ent queue conditions?

• RQ3: Can we develop advanced scheduling strategies
by combining students’ code features as well?

Z. Gao, G. S. de Oliveira, D. Babalola, C. Lynch, and S. Heckman.
Who should i help next? simulation of office hours queue scheduling
strategy in a cs2 course. In B. Paaßen and C. D. Epp, editors, Pro-
ceedings of the 17th International Conference on Educational Data
Mining, pages 484–490, Atlanta, Georgia, USA, July 2024. Interna-
tional Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729866

https://doi.org/10.5281/zenodo.12729866


To address RQ1, we generated multiple sets of office hours
requests under three different queue load conditions, and
then simulated how the teacher would address them when
choosing different scheduling strategies; then we evaluated
the simulation queue through wait time, amount of resolved
requests, and amount of students who received help. Fi-
nally, to address RQ2, we collected students’ code commit
behavior data before they requested help, designed strategies
based on those commit features and repeated the simulation
to see if those strategies positively impacted the queue.

2. PRIOR WORK
Analyzing students’ behavior during office hours has become
popular in recent research. Marwan et al. identify two major
unproductive help-seeking behaviors: Help avoidance and
help abuse[19], which are also common challenges for office
hours. To address the help avoidance problem, instructors
start to host office hours online. In our previous work[9], we
conducted a comparison between the participation of online
and in-person office hours. They also investigated how stu-
dents’ characteristics relate to changes in the office hour for-
mat. The results indicated that online office hours tend to
be more motivating and well-received, particularly among
female students and students with low confidence. More-
over, Gao et al. [9], Ko et al. [15], and Zahn et al. [27]
all found that except for gender, students’ demographic fea-
tures have little to do with their help-seeking behaviors in
office hours. Prior studies of online learning have typically
discovered that academic performance is positively related
to help-seeking attendance; both Cloude [5] et al. and Guer-
rero et al. [13]’s research can confirm such a relationship.
Griffin et al. [11] aimed to pinpoint specific elements impact-
ing students’ utilization of office hours through their survey
at a major public university. They found that the only con-
sistent element influencing students’ engagement with office
hours is the value of feedback from instructional staff. Ryan
et al. also found that social competence is related to stu-
dents’ willingness to utilize office hours, where students with
weaker social skills tend to avoid help-seeking behaviors [22].
Macwilliam et al. changed their office hours place to a more
social place and witnessed an increase in attendance [18].

Although the online office hours addressed the help-avoidance
problem, the increasing requests combined with the unad-
dressed help-abuse problem caused extreme pressure in the
office hours queue. The increasingly long queue and wait
time have become one of the main complaints in large courses,
which in turn worsen the help-abuse problem[8]. To address
the long queue, researchers have proposed several solutions,
including group session[14] or split deadlines[4]. Although
each approach has its merits, they all have different limi-
tations or fairness concerns in practice. For instance, host-
ing office hours in groups made the debugging difficult since
students were not allowed to share code. Therefore, we pro-
posed to improve the queue by simply changing the schedul-
ing strategies, which are easy to implement with much fewer
restrictions.

This prior research mainly focuses on investigating who used
office hours more often and analyzing the behavior of of-
fice hours in isolation. Little research tried combining help-
seeking behavioral data with other learning activities like
coding behavior. Zsoldos-Marchis, [28]emphasizes the impor-

tance of cooperative problem-solving in helping students rec-
ognize the value of asking for help, especially when con-
fronted with challenging tasks, which, in turn, lowers the
tendency to give up. In our prior work[7] we have ana-
lyzed students’ coding behavior before, during, and after
they sought help in office hours and used a Markov model
to represent student’s action sequence; our findings indicate
that when students ask questions on addressing test failure,
they would be more active to change code before and while
waiting for help. Therefore, we believe that good coding be-
havior contributes to good help-seeking behaviors in return.

Researchers have rarely sought to investigate how teachers
select students to help in the office hours queue; thus we
aim to fill this gap in this work. In our prior study[8], we
tried to apply survival analysis to model students’ patience.
In this work, we utilized this approach to generate the wait
time for the simulation.

3. DATASET
3.1 Course Information
We collected students’ office hours data from the Fall 2020
offering of a CS2 course taught at an R1, public US univer-
sity. Three hundred and three students were enrolled in the
course. The course teaches object-oriented programming in
Java, covering basic data structures, finite state machines,
recursion, and software engineering concepts. During the
Fall of 2020, the course was taught completely online due to
COVID-19. Throughout the semester, students are expected
to complete three guided projects (GP1, GP2, and GP3),
two large projects (P1 and P2), and 12 lab sessions. To man-
age students’ code submissions on those assignments, the
instructor integrated GitHub repositories into the course.

3.2 Office Hours Data
MyDigitalHand (MDH) [24], a ticketing system for help re-
quests, is used in the course to manage office hours. In order
to request help, students must use this system to fill out a
form, which will placed in the queue when the office hours
session is activated. When a teaching staff is ready to help
the next student, they can select a student in the queue and
inform them to enter the Zoom meeting and start the inter-
action. After the interaction ended(resolved), the teacher
would return to MDH, close the request ticket in the queue,
and be ready for the next request.

During the Fall semester of 2020, all office hours were per-
formed fully online through Zoom. In that semester, there
were 16 teaching staff were hired to host office hours sessions
for at least two hours per week. At the deadline week for
major projects, the teachers hosted extra office hours shifts
on demand.

In this study, we collected the request time, start time, can-
cel time, and the resolved time for each office hours help
request through the MDH system. We also defined the time
difference between request time and start time as wait time;
and the time difference between start time and resolved time
as interaction time.

We believe any communication of less than 10 seconds is
highly unlikely to resolve any issue, and thus removed them
from our dataset.



Figure 1: Survival Functions for Students’ Tolerable Wait
Time

4. METHODOLOGY
4.1 Tolerable Wait Time Model
In our previous study[8], we applied the survival analysis
on students’ wait time to model students’ patience in the
queue. Specifically, when we observe a student canceled the
request after waited t minutes, their max tolerable waiting
time for that request is t minutes; on the contrary, if a stu-
dent entered the OH interaction without cancellation after
waiting t minutes, their tolerable wait time is at least t min-
utes, which can be viewed as a right censored observation
in survival analysis. We used the Kaplan-Meir algorithm to
calculate the survival function S(t), which represents stu-
dents’ tolerable waiting time in a queue(in other words, S(t)
equals the probability that a student can still tolerate and
wait in the queue after waiting t minutes in the queue). the
resulting Survival Function is presented in 1

4.2 Simulated Requests
To effectively generate student requests, we need to address
four questions: (1) Who raised the request?; (2) When does
the request arrive?; (3) How long is the student willing to
wait in the queue?; and (4) What is the estimated interaction
time? To simplify the simulation process, we sampled and
generated each feature independently.

4.2.1 Request Author
In our simulation, several strategies require us to identify
the returning requests. Thus, we generated the author of
each request based on the frequency of returning requests.
Figure 2 shows that around half of the requests come from
someone who already made a request earlier on that day.
Therefore, for each request, we set them to be raised by a
new student at a probability of 0.5 and assign that request
with a new student ID; otherwise, we randomly choose to
assign a student who has raised any request before on that
day.

4.2.2 Arrival Time
We first calculated how frequently students normally arrive
in the queue; based on previous experience, students are
more likely to arrive when the shift first starts, so we have

Figure 2: Relationship between daily requests and returning
requests. 50% of the daily requests come from returning
students, regardless of the size of the daily requests.

Figure 3: Average arrival rate changes by shift time

reason to believe that the arrival frequency is related to how
long the shift has started. Therefore, we merged adjunct
shifts if the elapsed time between two shifts is less than
5 minutes, then we calculated the average number of stu-
dents arriving at the queue per minute(arrival rate λ), re-
sults showed in Figure 3, results indicate that for the first
five minutes, students are arriving more frequently as we
expected, and after that, the arrival rate stabilized at 0.1.
Also, we calculated the average arrival rate for the first five
minutes, which is 0.4.

Based on those preliminary findings, we opted for three dif-
ferent arrival frequencies, representing three different queue
load conditions. Specifically, each queue load has a stabi-
lized arrival rate λ; for the first five minutes of each shift,
the arrival rate increased to 4λ. We defined the queue load
as busy, normal, and relaxed when λ equals 0.15, 0.1, and
0.05.

With the rules and arrival rates above, we generate stu-
dents’ request time using Poisson Arrival Process [3], since
each student arrival event is independent of each other and
thus future arrivals are independent of the current queue



length(students can’t see how many people in the queue be-
fore they raise request). Such a method is popularly used in
queue simulation as well.[16, 21, 1]

4.2.3 Generate Estimated Interaction Time
Interaction time is generated based on the distribution of
real interaction time data; specifically, we randomly select a
real request with an interaction time longer than 10 seconds
and set the target requests to the same amount.

4.2.4 Generate Estimated Max Wait Time
We used the derived survival function in section 4.1 to gen-
erate the maximum wait time for each request. Firstly we
generate a random number p between 0 and 1; then, we try
to calculate the largest number t, where S(t) > p. Then we
say t is the maximum amount of time students are willing
to wait in queue for that request.

4.3 Simulation and Evaluations
For our simulation, we used the same shift schedule in 2020-
10-08, which is the deadline for a major project and is con-
sidered one of the busiest OH days. The first shift starts at
9 AM, and the last one ends at 8 PM. During the shift, there
were only three breaks(11:15-11:45,1:00-1:30, and 2:30-3:00).
We repeatedly generated requests on that day 100 times un-
der three different queue load conditions. Thus, we have a
total of 300 sets of requests generated for simulation.

For each set of generated requests, we simulated the queue
process on when each request was raised, canceled, started,
and completed. Between a request is completed and the
next one starts, we randomly set an elapsed time in a range
of 0-60 seconds to simulate the time the teacher fills the
feedback form on MDH or takes a short break. We repeat
the simulation for each set of requests with four different
strategies.

• FCFS: This scheduling strategy is the most common
strategy, as we discussed. The instructor would strictly
select the request that comes the earliest to resolve
under this strategy. This strategy should result in a
lower overall wait time.

• New Student First (NSF): In this strategy, the teacher
will first examine students in the queue and choose
those who have not yet received any help on the given
day; if the teacher couldn’t find one, they would choose
students based on FCFS. This strategy gives priority
to students who haven’t been helped on that day, and
thus should help to increase the amount of daily helped
students.

The next two strategies aim to find a trade-off between FCFS
and NSF. Generally, we still give priority to students who
haven’t got any help yet, but in order to avoid extreme wait
time, we would give a higher priority to students who have
waited a certain amount of time in the queue.

• Long Wait First (LWF): In this strategy, we first choose
the earliest request which has been in queue for at least
t minutes, where survival function in RQ1 S(t) < 0.8;
if such request doesn’t exist, we switch to NSF instead.

• Very Long Wait First (VLWF): In this strategy, we first
choose the earliest request which has been in queue
for at least t minutes, where survival function in RQ1
S(t) < 0.5; if such request doesn’t exist, we switch to
NSF instead.

Each simulation was evaluated based on the following met-
rics: AVG/Median wait time, percentage of long wait re-
quests(>2h), percentage of resolved requests, and percent-
age of students who received help. Then we compared those
metrics among three queue load conditions and performed
Mann–Whitney U tests[20] to identify any significant differ-
ence in those metrics between any pair of strategies.

4.4 Simulate with Coding Features
Implementing an SJF-based selection strategy requires reli-
ably estimating students’ problems, something which is not
possible based on their requests alone [10]. In this study,
we instead examine the code commit behavior before the
request was raised and analyze their correlation to interac-
tion time. Specifically, we calculated the number of commits
within 1 hour before the request was raised, the elapsed time
between the latest commit and the request time, and the line
of change (LOC) in the latest commit. Then we calculated
the Pearson correlation coefficient[6] between those code fea-
tures and the request’s interaction time.

We hypothesize that good coding behavior represents stu-
dents are more actively seeking answers to their questions,
and thus the communication should be more effective dur-
ing office hours interaction, which should result in a shorter
interaction time. Therefore, we build three more strategies:
(1) Choose students with the highest commit frequency be-
fore the request (2)Choose students with the lowest elapsed
time between the last commit and raised request (3) Choose
the students with the largest LOC in the latest commit.

We repeated the simulations with those new strategies un-
der normal load conditions. We reused the data generated
in RQ2 after first generating the commit status (the met-
rics above) for each request. Therefore, we generate those
metrics for each simulated request by copying the metric in
a random real request, and of course, the interaction time
needs to be set correspondingly.

5. RESULTS
5.1 RQ1 Results
For RQ1, we simulated the queue under three different types
of load conditions. We found that when the queue was busy
(λ = 0.15), on average, 45% of the requests would get re-
solved for all four strategies (see Figure4(a)), and we didn’t

Table 1: Simulation results for overall average/median wait
time(in minutes)

Busy Normal Relax
strategy AVG MED AVG MED AVG MED
FCFS 81.0 77.6 50.6 44.4 17.6 7.3
NSF 76.6 68.5 48.2 37.2 17.7 6.7
LWF 81.1 77.8 50.6 42.3 17.9 6.7
VLWF 80.7 70.9 50.4 37.5 18.0 6.8



(a) Percentage of resolved re-
quests

(b) Percentage of students re-
ceived help

Figure 4: Simulation results for busy load queue

(a) busy load (b) normal load

Figure 5: Simulation Results: Percentage of long wait re-
quests

find any significant difference (p > 0.05 for all pairs). How-
ever, when we calculated the percentage of students who
received help, the NSF strategy appears to be significantly
higher than the other three (p < 0.01); on average, around
65% of the students would receive help if the teacher used
the NSF strategy, while only around 54% of the students
would receive help if one of the other three strategies was
applied (as shown in Figure4(b)). Figure5(a) tells us that
NSF has a slightly lower percentage of long wait requests
than FCFS, 22% of requests in FCFS and 20% of requests
in NSF are longer than 2 hours; however, such difference is
not significant (p = 0.09).

When the queue was at normal load (λ = 0.10), we ob-
served similar results with the busy load condition in Figure
6 and Figure 5(b). No significant difference in the percent-
age of resolved requests was found among all four strategies
(p > 0.05 for all pairs); on average, 65% of the requests
would get resolved no matter which scheduling strategy was
applied. When the teacher applied the FCFS strategy, 70%
of the students would at least receive one help on average,
while when the scheduling strategy changed to NSF, this
percentage would increase to 82%, and such difference is sig-
nificant as well (p < 0.01). Moreover, we observed a slight
increase in long wait requests when choosing NSF (6%) com-
pared with FCFS (4%); this difference is not significant as
well (p = 0.10).

We also found that when the queue was relaxed(λ = 0.05),
the percentage of long wait requests was almost always 0.
We did not observe any significant difference in those metrics
among all four strategies (all p > 0.05).Therefore, choosing

(a) Percentage of resolved re-
quests

(b) Percentage of students re-
ceived help

Figure 6: Simulation results for normal load queue

(a) Percentage of resolved re-
quests

(b) Percentage of students re-
ceived help

Figure 7: Simulation results for relaxed load queue

any different strategy would not affect the amount of re-
solved requests or students who received help (see Figure
7).

Moreover, we repeated the simulation with 20 different ar-
rival rates λ, ranging from 0.05 to 0.10, and found that
when λ > 0.06, the significant difference in the percent-
age of helped students exists (p < 0.05). In other words,
when λ > 0.06, choosing NSF over FCFS can significantly
increase the percentage of students who receive help.

Table 1 summarized the average and median wait time for
all simulations. We did not find any significant difference
in students’ wait time when choosing different scheduling
strategies (all pair p > 0.05). Under a busy queue, students
would wait in the queue for around 80 minutes on average;
when the queue load is normal, the average wait time drops
to 50 minutes; and when the load is relaxed, the average
wait time is only 18 minutes. In summary, the choice of
scheduling strategies does not significantly impact students’
overall wait time.

In summary, our simulation results indicated that under a
normal or busy queue load, choosing the next student based
on the NSF strategy could greatly increase the number of
students receiving help without prolonging the waiting time,
and thus, it is the optimal strategy. When the arrival rate λ
drops to 0.6 students per minute, the queue becomes relaxed,
and the choice of scheduling strategy does not affect the
queue at all.

5.2 RQ2 Results



We tracked students’ code commits before they raised a re-
quest and while they waited in the queue and calculated the
Pearson correlation of their code features and the interaction
time for each request. Results are in Table 2, and we could
not find any correlation between the requests’ interaction
time and any code commit features.

We then simulated the normal load again with the strate-
gies listed in section 4.4. However, the results show that
compared with the FCFS strategy, using code commit fea-
tures strategies does not yield any significant difference in
resolved requests, helped students, long wait requests, and
overall wait time.

6. LIMITATIONS
We defined the three types of queue load conditions by three
different arrival rates; although the designated value of those
arrival rates can be supported by our preliminary research
and actual student data, it is still a simplified model of es-
timating when students arrive at the queue. In practice,
students’ arrival time could be influenced by the time of the
day, their personal schedules, or other factors we cannot col-
lect or measure. Moreover, our data come from one semester
from a single course, and the results might only be limited
to such courses. In the future, we need to verify our results
in more semesters as well.

7. CONCLUSIONS AND DISCUSSIONS
In RQ1, we find that the choice of scheduling strategy does
not affect the total number of resolved requests. When the
queue is busy or normal, the NSF strategy would signifi-
cantly increase the number of students who received help by
10%. And since the NSF strategy does not have a significant
impact on the overall wait time or the percentage of long
wait requests, we believe that this is the optimal strategy
when the queue is normal or busy (when λ > 0.06). How-
ever, when we had a relatively relaxed (when λ < 0.06) office
hours queue, our findings suggest no matter which strategy
is applied, most of the requests (>80%) would get resolved,
and there is no difference among those four strategies. In-
structors could choose FCFS as their scheduling strategy
since it is the easiest one to implement.

In RQ2, we could not find any relationship between the
help requests’ interaction time, and the corresponding com-
mit behavior before the request is raised. Therefore, when
choosing the next students to help based on those features,
we failed to build strategies for SJF scheduling. In other
words, we could not find the requests that could be quickly
resolved based on the commit features. So it is not a sur-
prise to us that when simulated with those strategies, the
performance is not better than FCFS at all. However, there
are still other potential coding behaviors we can utilize in
the future; we can identify some efficient coding behaviors
and explore their relationship with the OH interaction time;

Table 2: RQ2 Pearson Correlation with interaction times

code feature r p-value
commit frequency before 0.0035 0.913
last commit elapse time -0.0017 0.984

last commit LOC 0.0098 0.852

should we find any effective predictor for the interaction
time, it is highly possible to develop a SJF strategy and
thus potentially achieve a higher number of daily resolved
request.

We recommend the instructors use NSF for online office
hours queue scheduling. However, when the office hours
are hosted in person, FCFS is more appropriate. Based on
instructors’ observation, students rarely return to in-person
office hours on the same day because of the cost of going
to a physical queue. Therefore, the NSF’s advantage disap-
pears for in-person office hours settings. Secondly, since the
students can actually see who is in the queue, they would
definitely complain once they see someone arrive late but
get help early.

Furthermore, one possible solution to address the long queue
during office hours is to make the waiting time productive
for students. For example, tools like CodeHelp[17, 23] can
utilize the LLM to automatically generate answers to stu-
dents’ coding questions without directly revealing solutions.
Thus, instructors could view it as an option to assist stu-
dents while they are waiting.

Moreover, what is ‘fairness’ is still a complicated question
when choosing the next student to help. In this work, we
focus on ensuring every student who needs help receives at
least one office hour interaction in a given day. On the other
hand, we also need to consider how much effort each student
committed to their question before they sought help; it is
unfair to help students exploit office hours for debugging
support while keeping students who truly tried everything
and are still struggling to wait in the queue. Therefore,
in the future, we will try to evaluate students’ efforts and
struggles through their coding activity, and provide a more
‘fair’ scheduling strategy for instructors to use.

8. ACKNOWLEDGEMENTS
This material is based upon work supported by NSF under
grants #1821475“Concert: Coordinating Educational Inter-
actions for Student Engagement” Collin F. Lynch, Tiffany
Barnes, and Sarah Heckman (Co-PIs).

9. REFERENCES
[1] S. L. Albin. On poisson approximations for

superposition arrival processes in queues. Management
Science, 28(2):126–137, 1982.

[2] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, A. B.
Darem, and Suresha. An improved sjf scheduling
algorithm in cloud computing environment. In 2016
International Conference on Electrical, Electronics,
Communication, Computer and Optimization
Techniques (ICEECCOT), pages 208–212, 2016.

[3] V. Benes. On queues with poisson arrivals. The Annals
of Mathematical Statistics, pages 670–677, 1957.

[4] H. Chen, A. Li, G. Challen, and K. Cunningham.
Implementation of split deadlines in a large cs1 course.
In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1, SIGCSE 2024,
page 193–199, New York, NY, USA, 2024. Association
for Computing Machinery.

[5] E. B. Cloude, R. S. Baker, and E. Fouh. Online



help-seeking occurring in multiple computer-mediated
conversations affects grades in an introductory
programming course. In LAK23: 13th International
Learning Analytics and Knowledge Conference,
LAK2023, page 378–387, New York, NY, USA, 2023.
Association for Computing Machinery.

[6] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty,
J. Chen, Y. Huang, and I. Cohen. Pearson correlation
coefficient. Noise reduction in speech processing, pages
1–4, 2009.

[7] Z. Gao, B. Erickson, Y. Xu, C. Lynch, S. Heckman,
and T. Barnes. You asked, now what? modeling
students’ help-seeking and coding actions from request
to resolution. Journal of Educational Data Mining,
14(3):109–131, Dec. 2022.

[8] Z. Gao, A. Gaweda, C. Lynch, S. Heckman,
D. Babalola, and G. Silva de Oliveira. Using survival
analysis to model students’ patience in online office
hour queues. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education
V. 2, SIGCSE 2024, page 1646–1647, New York, NY,
USA, 2024. Association for Computing Machinery.

[9] Z. Gao, S. Heckman, and C. Lynch. Who uses office
hours? a comparison of in-person and virtual office
hours utilization. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education
V. 1, SIGCSE 2022, page 300–306, New York, NY,
USA, 2022. Association for Computing Machinery.

[10] Z. Gao, C. Lynch, S. Heckman, and T. Barnes.
Automatically classifying student help requests: a
multi-year analysis. In Proceedings of The 14th
International Conference on Educational Data Mining,
EDM ’21, pages 81–92, 2021.

[11] W. Griffin, S. D. Cohen, R. Berndtson, K. M. Burson,
K. M. Camper, Y. Chen, and M. A. Smith. Starting
the conversation: An exploratory study of factors that
influence student office hour use. College Teaching,
62(3):94–99, 2014.

[12] H. Gu, R. Yu, Z. Li, X. Wang, and F. Zhou. Esdi:
Entanglement scheduling and distribution in the
quantum internet. In 2023 32nd International
Conference on Computer Communications and
Networks (ICCCN), pages 1–10. IEEE, 2023.

[13] M. Guerrero and A. B. Rod. Engaging in office hours:
A study of student-faculty interaction and academic
performance. Journal of Political Science Education,
9(4):403–416, 2013.

[14] J. R. Hott, M. Floryan, and N. Basit. Towards more
efficient office hours for large courses: Using cosine
similarity to efficiently construct student help groups.
In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 2, SIGCSE 2024,
page 1684–1685, New York, NY, USA, 2024.
Association for Computing Machinery.

[15] S.-H. Ko and K. Stephens-Martinez. What drives
students to office hours: Individual differences and
similarities. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1,
SIGCSE 2023, page 959–965, New York, NY, USA,
2023. Association for Computing Machinery.

[16] M. A. Lariviere and J. A. Van Mieghem. Strategically
seeking service: How competition can generate poisson

arrivals. Manufacturing & Service Operations
Management, 6(1):23–40, 2004.

[17] M. Liffiton, B. E. Sheese, J. Savelka, and P. Denny.
Codehelp: Using large language models with
guardrails for scalable support in programming
classes. In Proceedings of the 23rd Koli Calling
International Conference on Computing Education
Research, pages 1–11, 2023.

[18] T. M. MacWilliam and D. J. Malan. Scaling office
hours: managing live q&a in large courses. 2012.

[19] S. Marwan, A. Dombe, and T. W. Price. Unproductive
help-seeking in programming: What it is and how to
address it. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science
Education, ITiCSE ’20, page 54–60, New York, NY,
USA, 2020. Association for Computing Machinery.

[20] P. E. McKnight and J. Najab. Mann-whitney u test.
The Corsini encyclopedia of psychology, pages 1–1,
2010.

[21] D. R. McNeil. A solution to the fixed-cycle traffic light
problem for compound poisson arrivals. Journal of
Applied Probability, 5(3):624–635, 1968.

[22] A. M. Ryan and P. R. Pintrich. ” should i ask for
help?” the role of motivation and attitudes in
adolescents’ help seeking in math class. Journal of
educational psychology, 89(2):329, 1997.

[23] B. Sheese, M. Liffiton, J. Savelka, and P. Denny.
Patterns of student help-seeking when using a large
language model-powered programming assistant. In
Proceedings of the 26th Australasian Computing
Education Conference, ACE ’24, page 49–57, New
York, NY, USA, 2024. Association for Computing
Machinery.

[24] A. J. Smith, K. E. Boyer, J. Forbes, S. Heckman, and
K. Mayer-Patel. My digital hand: A tool for scaling
up one-to-one peer teaching in support of computer
science learning. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’17, page 549–554, New York, NY,
USA, 2017. Association for Computing Machinery.

[25] M. Smith, Y. Chen, R. Berndtson, K. M. Burson, and
W. Griffin. ” office hours are kind of weird”:
Reclaiming a resource to foster student-faculty
interaction. InSight: A Journal of Scholarly Teaching,
12:14–29, 2017.

[26] M. Zahn, I. Gransbury, S. Heckman, and
L. Battestilli. Assessment of self-identified learning
struggles in cs2 programming assignments. In
Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1,
ITiCSE 2023, page 264–270, New York, NY, USA,
2023. Association for Computing Machinery.

[27] M. Zahn and S. Heckman. Observations on student
help-seeking behaviors in introductory computer
science courses. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education
V. 2, SIGCSE 2023, page 1380, New York, NY, USA,
2023. Association for Computing Machinery.

[28] I. Zsoldos-Marchis. Influence of cooperative problem
solving on students’control and help-seeking strategies
during mathematical problem solving. Acta Didactica
Napocensia, 7(3), 2014.


