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ABSTRACT
Recent methods have sought to improve precision in ran-
domized controlled trials (RCTs) by utilizing data from large
observational datasets for covariate adjustment. For exam-
ple, consider an RCT aimed at evaluating a new algebra cur-
riculum, in which a few dozen schools are randomly assigned
to treatment (new curriculum) or control (standard curricu-
lum), and are evaluated according to subsequent scores on
a state standardized test. Suppose that in addition to the
RCT data, standardized test scores are also publicly avail-
able for all other schools in the state. Although not part of
the RCT, these observational test scores could be used to
increase precision in the RCT. Specifically, an outcome pre-
diction model can be trained on the auxiliary data and the
resulting predictions can be used as an additional covariate.
With these methods, the desired power is often achieved
with a smaller RCT. The necessary sample size depends on
how well a model trained on the observational data gener-
alizes to the RCT, which is typically unknown. We discuss
methods for obtaining a range of reasonable sample sizes for
designing such an RCT, using an efficacy trial for the Cog-
nitive Tutor Algebra I curriculum as an example. The range
is created by dividing the observational data into subgroups,
and calculating the necessary sample size if the RCT sam-
ple were to resemble each subgroup. These subgroups can be
defined by covariate values or by how well the observational
data is expected to help. In this way, we are able to generate
a range of plausible sample sizes. Computational efficiency

is a potential concern for our computation of auxiliary pre-
dictions, and we show how this issue can be addressed more
efficiently without significantly affecting the results.
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1. INTRODUCTION
Randomized controlled trials (RCTs) have long been consid-
ered the “gold standard” in causal inference; however, they
are often small and lead to estimates with high variance.
This is particularly relevant for RCTs investigating educa-
tional interventions, as their effects on common outcomes
of interest are often small [1, 3]. Recently, methods have
been developed to improve precision in RCTs through incor-
porating related available auxiliary observational data [2].
Specifically, observational data can be used to aid covariate
adjustment in the RCT, thereby improving precision.

In this paper, we introduce methods for performing power
calculations when auxiliary observational data will be used
for covariate adjustment. While auxiliary data is sometimes
used to estimate the variance of the outcome in typical power
calculations, here we discuss its impact on these calcula-
tions when its main purpose is covariate adjustment. Uti-
lizing auxiliary data in such a way can improve precision in
RCTs, and therefore decrease the sample size necessary to
achieve the desired power. However, the magnitude of the
decrease is entirely dependent on how predictive a model
trained on the auxiliary data will be for observations in the
future RCT data. If the auxiliary model generalizes well to
the RCT, the gains made in precision will be much larger
than if the auxiliary model is not predictive of the RCT out-
comes. If the auxiliary model is completely non-predictive
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in the RCT, there will be no improvement in precision. As
a result, knowledge about the predictive power of the aux-
iliary model on the RCT data is crucial for calculating the
necessary sample size. Since the RCT data is not available
ahead of time, our methods determine a range of reasonable
sample sizes using only the auxiliary observational data.

Specifically, we divide the auxiliary data into subgroups.
Our goal is to generate a range of plausible sample sizes,
created by considering the predictive power of the auxiliary
model on subsets of the observational data. This range pro-
vides a general idea of how predictive the auxiliary model
may be on the RCT data, assuming that the behavior of
the model on the RCT data resembles its behavior on some
subgroup of the observational data. These subgroups are
based on covariate values or predicted error. For each sub-
group, we calculate the sample size necessary to obtain the
desired power if the RCT data were to resemble the sub-
group. Taken together, the sample sizes obtained from a
variety of different subgroups serve as a range of reasonable
sample sizes for the RCT. In particular, this method also in-
corporates researcher knowledge about the RCT. If aspects
of the RCT sample are known ahead of time, such as cer-
tain covariate ranges, subgroups formed from observations
outside those ranges can be ignored or given lesser weight.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the general method of using auxiliary in-
formation to increase precision in an RCT. In particular, we
explain what this means for our ultimate goal of obtaining
a range of reasonable sample sizes. Section 3 explains our
method for generating this range, including how subgroups
can be formed, how power calculations are applied, and
available computational tools for performing these methods.
Section 4 explains the Cognitive Tutor Algebra I (CTAI) ef-
ficacy trial, and discusses the application of our methods to
that trial. Section 5 concludes.

2. AUXILIARY INFORMATION FOR CO-
VARIATE ADJUSTMENT

In this section, we summarize how auxiliary information can
be leveraged to increase precision in RCTs. We assume that
an outcome of interest and a set of covariates are available
for both the RCT sample, as well as an auxiliary sample. As-
sume that there are N subjects in the RCT sample, indexed
by i = 1, ...N . We apply the potential outcomes framework
from Neyman [7] and Rubin [5]. Thus, yc

i and yt
i repre-

sent the potential outcomes if observation i was assigned to
control or treatment, respectively. The treatment effect for
observation i is τi = yt

i−yc
i . We wish to estimate the average

treatment effect, or 1
N

∑N
i=1 τi.

In particular, our approach for estimating the average treat-
ment effect will follow Gagnon-Bartsch et.al [2]. This ap-
proach requires an estimate of all of the potential outcomes
in the RCT. In order for our estimate of the average treat-
ment effect to remain unbiased, the potential outcomes for
observation i must be predicted independently of the treat-
ment assignment of observation i. Furthermore, the variance
of our overall estimate is directly related the mean squared
error (MSE) of the predicted potential outcomes. Our esti-
mate will be more precise if the MSE of the predicted po-
tential outcomes is small.

This approach of incorporating auxiliary data into RCT es-
timates has two main steps [2]. First, a model is fit to the
auxiliary data and predictions are made for the RCT obser-
vations using this auxiliary model. Second, these predictions
are adjusted for use specifically within the RCT data. The fi-
nal prediction for observation i may make use of all informa-
tion in the RCT dataset, except for the data on observation i
itself. This step can be thought of as a “re-calibration” step,
as the auxiliary predictions are re-calibrated for use on the
RCT data. In this particular approach, a single auxiliary-
model prediction is made for each observation in the RCT,
and then separate predicted potential outcomes are gener-
ated by refitting the model on the control units and the
treatment units separately. Thus, the auxiliary predictions
do not need to be on the same scale as the RCT outcome;
they do not even need to be correct in the absolute sense.
As long as they are predictive of the RCT outcome, the
re-calibration step will generate useful potential outcome
predictions. In particular, the re-calibration step may be
particularly necessary if nothing is known about the model
fit to the auxiliary data. In this scenario, there is no reason
to believe that the auxiliary predictions would be directly
applicable to the RCT outcomes.

However, our situation is slightly different. We divide the
auxiliary data into subgroups, and treat each subgroup as
the RCT and the remainder of the auxiliary data as the ob-
servational dataset. This would initially suggest that a new
auxiliary model should be fit for each subgroup, trained on
the auxiliary data without that subgroup. Clearly, this is
very computationally inefficient. Instead, we fit our initial
auxiliary model to the entire auxiliary dataset–including all
of the subgroups–and use a random forest as our prediction
method. There are two benefits to using a random forest.
First, it is reasonable to assume that if the random forest
was run on the entire auxiliary dataset, a re-calibration step
for a subgroup of the auxiliary dataset may be unnecessary.
Random forests are known to work well at the local level, so
it is plausible that the predictions may already be well cal-
ibrated to any particular subgroup, because that subgroup
was included in the original training data. This strategy is
further discussed within the context of the CTAI RCT in
Section 4.3. Second, a random forest naturally generates
out-of-bag predictions, meaning that we can easily obtain
an auxiliary prediction for observation i that is independent
of the treatment assignment of observation i. As mentioned
previously, this is crucial for the RCT estimator to be unbi-
ased.

3. OUR METHOD
In order to make sample size calculations, we need an esti-
mate of how well the auxiliary model predictions will per-
form when applied to the RCT data. Since the goal is to help
design the RCT, these calculations must be performed be-
fore any RCT data is obtained. Thus, we need a method to
estimate how well the auxiliary model will predict outcomes
in the RCT, without actually using the RCT data. Our solu-
tion to this tricky problem is to split the auxiliary data into
subgroups. For each subgroup, we estimate the sample size
required if the RCT data resembled the subgroup, using the
rest of the data as the auxiliary data. Taken together, these
sample sizes will provide a good range of reasonable sample
sizes for the RCT. In particular, if anything is known about



the covariate makeup of the RCT sample, more weight can
be placed on the estimates corresponding to subgroups with
similar covariates.

In the following section, we discuss three different methods
of creating subgroups (3.1), the application of power calcu-
lations to these subgroups (3.2), and our development of a
graphical user interface for users interested in implementing
these methods. (3.3).

3.1 Subgroup Formation
The simplest method to split the auxiliary data into sub-
groups is to group observations based on the values of a
single categorical variable. This is particularly useful if the
RCT sample will all have the same level of a categorical vari-
able; for example, if we know ahead of time that the RCT
sample will only include charter schools. Alternatively, re-
searchers could create categorical variables that are combi-
nations of two or more covariates. However, this requires
more specific knowledge about combinations of covariates
that may appear in the RCT.

Alternatively, subgroups can also be generated according the
the values of numeric covariates. In our particular case, we
attempt to divide numeric covariates into 10 approximately
equally sized groups. However, there are some numeric co-
variates with little variation, such as those with many zeros
or missing values. In these cases, we create one subgroup
made up of all observations with the most common value,
and another subgroup made up of the remaining observa-
tions.

The final method groups observations according to the fol-
lowing process:

1. Fit an initial random forest on the auxiliary dataset.
Obtain the out-of-bag predictions.

2. Calculate the absolute value of the error of these pre-
dictions.

3. Fit a second random forest where the outcome is the
absolute value of the errors. Call out-of bag predictions
from this model the “predicted error.”

4. Split observations into groups based on the predicted
error.

By doing so, we separate observations according to how
predictive we would expect the auxiliary model to be for
that group. The second random forest is necessary in order
to avoid using each observation’s own error in determining
which group they should be placed in. Without this, ob-
servations that had initial high error just by chance would
always be classified into a high error group. The same would
be true for initial low error observations. By using the pre-
dicted error from a second random forest, we allow for the
possibility that observations with high error may have low
predicted error, or vice versa.

If an observation has high predicted error, that means that
the other observations in the auxiliary data are not helpful in

predicting outcomes for an observation with those covariate
values. Thus, this is the “worst-case scenario” for the auxil-
iary model. If the auxiliary model performs similarly on the
RCT data as it does to this subgroup, then the auxiliary data
will not be as helpful as we might have hoped. Conversely, if
the auxiliary model performs similarly on the RCT data as
it does on observations with low predicted error, then utiliz-
ing the auxiliary data should improve precision in the RCT
estimates – the “best-case scenario”.

3.2 Power Calculations
Once a subgroup has been defined, the next step is to de-
termine the sample size necessary to achieve the desired
power if the RCT sample resembled that subgroup. Assum-
ing equally sized treatment and control groups, the sample
size needed for each treatment group in an RCT to achieve
a specified Type I and Type II error rate is:

n = 2σ2 (ξ1−α/2 + ξ1−β)
2

∆2
A

where n is the necessary sample size for both the control and
treatment groups [11]. This equation is specific to RCTs de-
signed with complete or Bernoulli randomization. For other
experimental design, such as blocked or paired, this calcula-
tion would need to be adjusted accordingly 1.

In this equation, σ2 is the true variance of the outcome in
the population. If auxiliary data is not used for covariate
adjustment, this is typically estimated using the variance of
the outcome in a sample of the population. Since we are
using auxiliary observational data for covariate adjustment,
we use the variance of the residuals from the out-of-bag pre-
dictions obtained from the initial random forest. To give
intuition for this, we estimate the sample size required for
the approach outlined in [6], where the predictions are sub-
tracted off the outcomes and the resulting values are used in
a standard difference in means analysis. More complicated
methods of utilizing auxiliary data for covariate adjustment,
such as the approach in [2] will outperform this, so using the
variance of the residuals is sufficient for our purposes.

∆A is the effect size, which is typically set to 20% of the
standard deviation of outcome in the entire population. In
our case, we will use 20% of the standard deviation of the
outcome for each particular subgroup. ξ1−α/2 is the critical
value obtained from a normal distribution in order to obtain
a Type I error rate equal to α, assuming a one-sided test.
Similarly, ξ1−β is the critical value necessary for a Type II
error rate equal to β (i.e. power of 1−β). Following typical
conventions, we set α = 0.05 and β = 0.20.

3.3 Graphical User Interface
In order to help researchers who are designing an RCT and
intending to use observational data for covariate adjustment,

1The Cognitive Tutor Algebra I RCT used as an example in
this paper was a paired study. However, since our method
informs the design of an RCT, the design of the example
study is not relevant to our purposes.



Table 1: Initial and Re-calibrated MSE
Outcome Model MSE

Decile Outcome Variance Not Re-calibrated Re-calibrated
1 46.7 9.8 9.3
2 101.8 24.0 23.9
3 138.6 25.1 25.1
4 216.5 41.3 40.5
5 195.3 54.8 54.1
6 263.7 57.9 57.5
7 253.8 62.4 62.0
8 317.7 97.4 96.8
9 559.1 188.3 188.0
10 934.9 512.1 505.5

we designed a Shiny app implementing these methods 2. Re-
searchers can create their own subgroups using any of the
three methods described previously and can calculate the
resulting sample sizes. In addition, the app contains a few
features aimed at helping researchers determine which sub-
groups to investigate. For example, the app displays the top
20 covariates based on variable importance scores, which is
a good starting point for researchers unable to decide how to
create subgroups. It also calculates the correlations between
any numeric variables, which can help researchers avoid cre-
ating many similar subgroups by splitting on highly corre-
lated variables.

Once the subgroups of interest have been determined, the
user can also specify the effect size, α, and β. We use an
effect size of 0.2 multiplied by the standard deviation of
the subgroup, α = 0.05, and β = 0.20 in this paper, but
researchers who wish to test the impact of changing these
parameters can easily do so. Lastly, the app allows the user
to investigate the distribution of covariates in any formed
subgroup. Some subgroups may result in initially surprising
sample size recommendations, so the goal of this feature is
to provide more insight into particular subgroups. For in-
stance, if observations in one subgroup tended to have miss-
ing values in a specific covariate, this feature would allow
the user to recognize that.

4. EXAMPLE: COGNITIVE TUTOR ALGE-
BRA I

4.1 Cognitive Tutor Algebra I
In this section, we illustrate how these methods can be ap-
plied in practice, using an efficacy trial for the Cognitive
Tutor Algebra I (CTAI) curriculum as an example. This
analysis can be run on a local machine with a 16 GB M2 pro-
cessor with 8 cores in approximately 30 minutes3. CTAI was
a new technology-based algebra curriculum that included
personalized automated tutoring software [4]. Schools were
randomized to either implement CTAI (treatment) or use
their standard algebra curriculum (control) for the 2007/8
and 2008/9 schools years, and the treatment groups were
compared using subsequent mathematics test scores. We fo-
cus on the 44 Texas schools randomized in the CTAI study,

2The code for the app can be found at https://github.
com/jaylinlowe/dRCTpower
3The code for the analysis can be found at https://github.
com/jaylinlowe/power-aux-rct.

because there is large, publicly available data for all schools
in Texas published by the Texas Education Agency, includ-
ing school-level standardized test scores. Thus, this provides
a setting where there is a related observational dataset for
covariate adjustment. The analysis in this paper does not
relate to the original analysis of the study. Rather, we use
the CTAI study as a concrete example of how a range of
reasonable sample sizes can be obtained had the researchers
intended to use these covariate adjustment methods.

For this analysis, we use campus-level Academic Excellence
Indicator System (AEIS) data for all middle and high schools
in Texas, including campus finance, staff, student, Texas As-
sessment and Knowledge and SKILLS (TAKS), and other
performance data [10, 8]. TAKS was a standardized test
administered to all students in Texas. We use data from
the 2006/7 school year as predictors and use the 2008 math
TAKS passing rate as the outcome of interest4. The AEIS
data includes the 44 schools included in the CTAI study,
in addition to 2,903 other schools, which we treat as the
auxiliary data. We remove columns for which there is lit-
tle variation between schools and for which more than 60 %
of the values are missing. There are 2,778 possible predic-
tors for schools in the auxiliary data after removing these
columns.

As is typical with publicly available data, there was a consid-
erable number of missing values. Some values were masked
due to student privacy concerns. For instance, values were
masked if they were too close to 0 or 100, or if they were de-
rived from five or fewer students [9]. We replaced the near-0
or 100 masked values with the corresponding value, but were
still left with a considerable number of missing values. After
exploring various methods for addressing missing data, we
ultimately determined that the best course of action was to
replace the missing values with the column means. For ev-
ery covariate with some missing values, an additional binary
covariate was generated to indicate whether the value in the
original covariate was missing.

4.2 Defining Subgroups for Auxiliary Schools
We apply the sample size calculation method, employing all
three methods discussed previously to generate subgroups,
for a total for 566 subgroups. Out of these, 556 subgroups

4The downloaded TAKS files and preprocessing code
can be found at https://github.com/jaylinlowe/
power-aux-rct.



are formed by dividing on the values of a single covariate.
These covariates are chosen based from the covariates with
high variable importance scores from the random forests.
Specifically, we take the top 40 covariates from the random
forest used to fit the auxiliary model and the top 40 covari-
ates from the second random forest predicting the absolute
value of the errors. Perhaps surprisingly, there were only
6 duplicates in this set of covariates, giving us a set of 74
unique covariates. This means that the variables important
for predicting the outcomes were not the most important
variables when predicting the error. In this particular case,
the variables important for predicting error tended to be the
covariates capturing where missing values had been present.
The variables important in the initial auxiliary model are
what we would expect–covariates such as the general TAKS
passing rate, the TAKS mathematics passing rate, and other
similar covariates.

The remaining 10 subgroups are generated from the pre-
dicted error of a second random forest, as outlined for the
third method in the previous section. We did not possess
any specific knowledge about what ranges of covariate values
will be present in the RCT, but researchers with this knowl-
edge should include subgroups formed from those covariates
as well.

In our example, subgroups are only defined by the value of
a single covariate. Users interested in considering subgroups
that are a combination of multiple covariates may do so,
but they must create their own categorical covariate that
captures these divisions.

4.3 Re-calibration Considerations
Prior to performing the sample size calculations for the CTA
study, we first show that running a different random forest
for each subgroup is unnecessary. As discussed previously,
approaches for incorporating observational data into RCT
estimates may have a re-calibration step that adjusts the
auxiliary predictions for use on the RCT data. Since we
are treating each subgroup as the RCT and the remainder
of the observational data as the auxiliary model, we would
need to generate a new random forest each time that was
trained on the auxiliary data without the subgroup and then
re-calibrate those predictions to the RCT. However, in or-
der for our estimate of the average treatment effect to be
valid and still unbiased, all we need is for each prediction to
be independent of that observation’s treatment assignment.
We argued previously that this re-calibration step may be
unnecessary in our case. Since we are running a random
forest on the entire auxiliary dataset, it is reasonable to as-
sume that the re-calibration may already be taken care of
within the random forest predictions. Additionally, we can
use the out-of-bag predictions so that our predictions remain
independent of each observation’s treatment assignment. In
this section, we show that running a single random forest on
the entire auxiliary dataset is sufficient for the CTA dataset,
by demonstrating that a re-calibration step would have very
little, if any, impact.

Table 1 displays the initial and re-calibrated MSE values for
10 subgroups. These 10 subgroups were formed based on
predicted error, as discussed in Section 3.1. Observations in
the first decile represent those with low predicted error—the

Table 2: Sample Sizes for Best and Worst Case Scenarios

Auxiliary Data?
Decile Yes No

1 19 92
2 47 200
3 50 272
4 81 424
5 108 382
6 113 516
7 123 497
8 191 622
9 370 1094
10 998 1829

“best-case scenario,” while observations in the tenth decile
represent the “worst-case scenario”. For each subgroup, we
calculate the initial MSE based on the out-of-bag predic-
tions from the random forest with all of the auxiliary data.
Using only the subgroup data, we fit a least squares model
using the auxiliary prediction as a covariate. The predic-
tions from the least squares model are then used to calcu-
late the re-calibrated MSE. If this MSE is similar, it means
that any patterns within the subgroup were captured in the
overall random forest. If it is significantly different, then
the random forest is failing to inherently re-calibrate to that
subgroup.

Table 1 shows that the re-calibrated MSE is very similar to
the initial MSE. This tells us that the least squares model
does not significantly improve the predictions. We repeated
this process for other subgroups as well, and the results
generally suggest that using a single random forest is fairly
equivalent, in addition to being much less computationally
intensive.

4.4 Results
Thus, we can make estimates of the necessary sample size
for all 566 subgroups, using only one random forest. Table 2
displays the sample size needed to achieve the desired power
if the auxiliary data is used for covariate adjustment (sec-
ond column) compared to the necessary sample size if we
had used a simple difference in means estimator, without
incorporating auxiliary data (third column). As discussed
previously, observations are divided into deciles based on
predicted error, with the observations making up the first
decile representing those for which the auxiliary model per-
forms well, and those in the later deciles representing ob-
servations where the predictive power is low. Clearly, in-
corporating auxiliary observational data has the potential
to decrease the necessary sample size substantially in all
scenarios. As expected, sample size increases for the later
deciles, while remaining low for the earlier ones.

Table 3 displays the same information, but for subgroups
based on the values of a categorical variable and a numeric
variable. The first two rows contain the necessary sample
size with and without auxiliary data for charter schools (sec-
ond row) and non-charter schools (first row). The remain-
ing 10 rows contain the results for subgroups formed by
splitting on the value of a numeric covariate. Specifically,
these were created by forming 10 approximately equally-



Table 3: Example Sample Sizes for Other Subgroups

Auxiliary Data?
Subgroup Definition Yes No
Not a Charter School 170 610

Charter School 745 2059
7 - 43% pass TAKS 377 746
43 - 52 % pass TAKS 299 435
52- 58 % pass TAKS 253 325
58 - 63 % pass TAKS 181 232
63 - 66 % pass TAKS 523 542
66 - 71 % pass TAKS 141 172
71 - 75 % pass TAKS 109 148
75 - 79 % pass TAKS 89 102
79 - 85 % pass TAKS 72 80
85 - 100 % pass TAKS 60 80

sized groups based on the 2007 overall TAKS passing rate
across all grades. For instance, the third row details the
recommended sample sizes if the RCT sample resembled
schools with a TAKS passing rate between 7 percent and
43 percent (inclusive). In all cases, incorporating the aux-
iliary data reduces the recommended sample size, although
its usefulness varies by subgroup. Interestingly, the calcu-
lated sample sizes are highest for the 63% to 66% TAKS
passing rate group, suggesting that the auxiliary model does
not make good predictions for this group. We also see that
the model generalizes much better to non-charter schools
than to charter schools. These are only two examples of
variables that could be utilized to create subgroups; how-
ever, the range of sample sizes they suggest is substantial.
Clearly, specific knowledge about the RCT population would
be particularly helpful in this case.

5. DISCUSSION
In this paper, we discussed methods for obtaining a range
of reasonable sample sizes for designing an RCT when aux-
iliary observational data will be leveraged for covariate ad-
justment. We apply these methods to the Cognitive Tutor
Algebra I RCT, and demonstrate that in many cases, the
sample size could be reduced significantly if researchers are
willing to assume that the RCT population resembles spe-
cific subgroups of the observational data. While these meth-
ods are applicable to any RCT design context where related
observational data is available, they are particularly useful
in education research, since observational data is often avail-
able and RCTs are often small. We demonstrate that these
calculations may be performed without re-running a new
prediction algorithm for each subgroup, although the im-
pact of this may vary depending on the particular dataset.
Despite this, we have reason to believe that if a random for-
est is run on the entire auxiliary dataset, then the out-of-bag
predictions can be used without re-calibration.

However, the power calculation method will only be useful
if practitioners have access to auxiliary data with a couple
of characteristics. Namely, researchers must have access to
a large, observational dataset containing covariates and the
same outcome of interest as the RCT. This dataset must be
substantially larger than the RCT, otherwise the data in-
tegration procedure will likely not provide precision gains.
Notably, while this sample size calculation method requires

that the outcome of interest be present in the auxiliary data,
this is not generally true of the data integration approach
[2]. Instead, the auxiliary dataset need only contain an out-
come variable that is predictive of (highly correlated with)
the RCT outcome. Therefore, the requirement to have the
outcome of interest available in the auxiliary data may be
relaxed if the researcher is willing to assume that the auxil-
iary model is similarly predictive of the RCT outcome and
the outcome present in the auxiliary dataset. Lastly, the re-
searcher must be willing to assume that there is some portion
of the auxiliary data that will provide a reasonable estimate
of how the auxiliary model will perform on the RCT data.
This is not a difficult assumption to make, but if no such
portion exists in the observational data, this approach could
generate overly optimistic sample sizes.

The main contribution of this paper is to suggest methods
to create a reasonable range of sample sizes. However, this
approach should be used with care. In particular, in the
absence of very strong evidence, researchers should be es-
pecially careful about believing that the RCT sample will
resemble any one specific subgroup in the auxiliary data. If
they are mistaken, the estimated sample size calculated for
that subgroup may be a poor estimate for the needed RCT
sample size. We cannot know exactly what the RCT sam-
ple will look like ahead of time, so researchers should take
a larger range of sample sizes into account. Furthermore,
one should not blindly choose the most optimistic sample
size, as this would likely result in an under-powered study.
Depending on context, researchers may wish to focus on the
more conservative end of the range. When used with cau-
tion, these methods can provide baseline guidance into how
to design an RCT when observational data will be used for
covariate adjustment.
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