
Automatic Matchmaking in Two-Versus-Two Sports

Sören Rüttgers
Faculty of Technology

Bielefeld University
sruettgers@techfak.uni-

bielefeld.de

Ulrike Kuhl
Faculty of Technology

Bielefeld University
ukuhl@techfak.uni-

bielefeld.de

Benjamin Paaßen
Faculty of Technology

Bielefeld University
bpaassen@techfak.uni-

bielefeld.de

ABSTRACT
To train two-versus-two sports, it is beneficial to play regu-
larly with varying teammates and opponents of similar skill
level. However, even in small classes, it is almost impossible
for a human instructor to maintain an accurate overview of
each student’s skill development to optimize teams and pair-
ings accordingly. Therefore, we propose an educational data
mining approach to automated matchmaking. In particu-
lar, we trace all players’ skill levels via the glicko2 algorithm
and use the resulting skill ratings to optimize matchmak-
ing in an integer linear programming approach. We explain
the resulting matches in terms of ratings and counterfac-
tual explanations to enhance the transparency of the system
for instructors and players. In addition to the algorithm,
we provide an evaluation on synthetic data and in a field
study (N = 38) conducted in a course for the fast-paced
two-versus-two sport Roundnet. Our analyses show that
our proposed approach outperforms all baselines in terms of
minimizing skill gaps and ensuring variability among team-
mates and opponents. The subsequent field study corrobo-
rated the positive algorithmic evaluation by comparing the
experience of participants subjected either to our proposed
matchmaking approach or to a random baseline. Partici-
pants’ responses indicate that our approach was perceived
as more trustworthy, and the explanations associated with
it were deemed to be more actionable, useful, and of higher
quality.

Keywords
Matchmaking, Glicko, Roundnet, sports education, explain-
ability

1. INTRODUCTION
Two-versus-two (2v2) sports, like doubles tennis, are popu-
lar with millions of registered players in Germany alone [10].
Players typically meet in regular training sessions, where
an instructor distributes them into teams and pairs them
up against other teams [33]. However, team composition

and pair assignment (matchmaking, for short) is challeng-
ing: how does one ensure that each player is paired with the
optimal teammates and opponents to improve their skill?

We phrase the matchmaking problem as a combination of
two educational data mining problems: knowledge tracing,
i.e. estimating the skill development of each player over time
[1], and optimal group composition based on the skill esti-
mates. Most prior approaches address 1v1 sports. In such
cases, knowledge tracing can be performed via rating sys-
tems like ELO or glicko [12], and opponents of similar skill
can be matched via simple pairwise matching algorithms.
However, in a 2v2 sports setting, multiple objectives become
important: a) we want to minimize the skill gap between the
strongest and weakest players in a match such that all play-
ers can meaningfully contribute to the game and thus have
an opportunity to learn; b) we want opposing teams to have
similar skill levels; and c) we want to ensure that teammates
and opponents vary to prevent over-specialization. To our
knowledge, no prior matchmaking scheme has addressed this
multi-objective optimization for 2v2 sports.

We provide a novel, multi-objective optimization scheme for
2v2 sports. Specifically, our contributions are as follows:

1. We formalize the 2v2 matchmaking problem and prove
that 2v2 matchmaking is NP-hard.

2. We propose a heuristic by rewriting 2v2 matchmaking
as an integer linear program (ILP), for which efficient
heuristics exist (at least for usual class sizes of up to
40 players).

3. We implement an integrated system that traces skill
development via glicko2, performs matchmaking via
our proposed approach, and provides explanations for
the matchmaking in terms of ratings and counterfac-
tual explanations. The source code can be found at
https://github.com/sruettgers/automatic_matchm

aking.

4. We present two validations of our proposed approach,
one on synthetic data, as well as one in a field study
conducted within a Roundnet course with N = 38 par-
ticipants, verifying that our proposed scheme outper-
forms baselines in terms of objective and subjective
match quality as well as explainability. The study data
can be found at https://github.com/sruettgers/au
tomatic_matchmaking.

S. Rüttgers, U. Kuhl, and B. Paaßen. Automatic matchmaking in
two-versus-two sports. In B. Paaßen and C. D. Epp, editors, Pro-
ceedings of the 17th International Conference on Educational Data
Mining, pages 458–468, Atlanta, Georgia, USA, July 2024. Interna-
tional Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729860

https://github.com/sruettgers/automatic_matchmaking
https://github.com/sruettgers/automatic_matchmaking
https://github.com/sruettgers/automatic_matchmaking
https://github.com/sruettgers/automatic_matchmaking
https://doi.org/10.5281/zenodo.12729860


2. BACKGROUND AND RELATED WORK
Data mining approaches are prevalent in various aspects of
sports to support the decisions of trainers and managers.
Examples include talent identification [27, 36, 18], evaluat-
ing and improving training regimens [6, 17, 39], assessing
the potential for injury [31, 29, 37], and predicting competi-
tive performance [28, 34, 7]. More related to our work, some
prior approaches also used machine learning and statistical-
based approaches to aid managerial decisions by evaluat-
ing potential candidate contributions to a team’s forecasted
winning percentage [43], estimating team performance and
predicting transfer outcomes [16], and exploring the impact
of match history on predicting athletic success [23].

While these approaches offer promising insights, their practi-
cal usability remains constrained. On the one hand, the cur-
rent research landscape predominantly revolves around ma-
jor sports disciplines such as American football [43] or soc-
cer [16], leveraging the abundance of available data. How-
ever, there remains a notable gap in addressing the specific
needs of sports education settings that often rely on small
player pools. In other words, there is a gap in educational
data mining research for sports.

Additionally, empirical assessments that explain matchmak-
ing to the players themselves are lacking. This is a critical
oversight, as user-centric evaluations are important to build
trust and acceptance for decision support systems [4], es-
pecially in educational contexts. Our current work aims to
address these gaps by presenting an approach for 2v2 match-
making in small player pools that is extended by an inter-
pretable user interface, and validated on synthetic data as
well as in the field.

As with many matchmaking schemes, our proposed algo-
rithm requires as input a knowledge tracing system. Knowl-
edge tracing, under the label of “skill rating”, has a long
tradition in sports, beginning with counting past victories
and losses (accumulative rating) and continuing with adjus-
tive rating systems like Elo and glicko in chess [11, 12, 35].
Adjustive rating systems aim to model the skill of a player
i at time t with one number θi,t and the probability pi,j,t of
winning against another player j via

pi,j,t =
1

1 + exp(−β · [θi,t − θj,t])
, (1)

where the slope β depends on the specific rating system.
After each game, θi is updated by adding K · (yi,j,t − pi,j,t),
where k is a system-specific factor and yi,j,t is the outcome
of the game (1 for win, 0 for loss). In the classic FIDE
variant of the Elo system, K = 10 and β = log(10)/400,
with ratings starting at θi,0 = 1500 [11]. Our approach is
agnostic regarding the specific choice of rating system. In
our experiments, we employ a variant of glicko2 [13].

The adjustive rating systems listed above only handle 1v1
games with binary outcomes. By contrast, we consider 2v2
games with a multi-valued outcome, namely the difference in
points between the winning and losing teams (margin of vic-
tory). Kovalchik [20] reviews several extensions of adjustive
rating systems to margin-of-victory outcomes. In this work,
we employ the logistic transformation. Further, Williams
[41] reviews a number of extensions of adjustive rating sys-

tems for teams. We use the composite team approach, i.e.,
we build a composite skill rating for each team from the
ratings of the participating players and then distribute the
resulting skill update to the team members.

Once ratings are computed, we can use them for matchmak-
ing. Early work in this domain has focused on matchmak-
ing for tournaments, such as the Swiss system for chess [46].
Most recent work is focused on matchmaking for online video
games, where logged-in players shall be matched against
other players of similar skill while minimizing the amount
of waiting time until a game starts [26]. To our knowledge,
no matchmaking algorithm to date has addressed the prob-
lem of 2v2 matchmaking in small player pools. That is the
challenge we address in this work.

We propose to take an educational data mining view on
the matchmaking problem and consider it as an optimiza-
tion task, using knowledge tracing models as input. Several
prior works in educational data mining have focused on op-
timizing the distribution of students into groups [2, 9, 45].
These works assume that students work collaboratively on
a group project, where a high diversity of skills and simi-
larity of interests may be the objective [9, 45]. Empirical
investigations assessing the efficacy of grouping strategies in
educational settings suggest a nuanced relationship between
group composition in terms of individual ability and student
performance. On the one hand, there appears to be a ten-
dency for low-ability students to perform better in heteroge-
neous groups featuring a variety of ability levels [44, 32]. On
the other hand, educational settings that group students ac-
cording to their skill level have shown to improve individual
academic success [19], with particular benefits for average-
[32] and high–performing [5] students. In line with these
empirical insights, Agrawal et al. [2] emphasize the impor-
tance of minimizing skill differences while maintaining some
variation in ability. This approach allows less skilled team
members to learn from their more advanced peers, whereas
more skilled team members can learn by teaching.

3. METHOD
Our goal is to distribute a set of n students into teams of
two and match opposing teams, such that a) the skill gap be-
tween the strongest and weakest player in a match is small,
b) skill differences between opposing teams are small, and c)
teammates and opponents vary. More precisely, we define a
match as a vector m⃗ = (i, j, r, s) of four different player in-
dices in the range 1, . . . , n, where i and j indicate the players
on the first team and r, s indicate the players on the second
team. Further, let C : {1, . . . , n}4 → R be a function that
quantifies the cost of a match, in the sense that it quantifies
how much our three constraints a), b), and c) are violated.
Then, our formal optimization problem is given as

min
m⃗1,...,m⃗K∈{1,...,n}4

K∑
k=1

C(m⃗k) (2)

such that |set(m⃗k)| = 4 ∀k
set(m⃗k) ∩ set(m⃗l) = ∅ ∀k ̸= l,

where set(i, j, r, s) := {i, j, r, s} is an operator to translate
matches into sets and K ≤ n/4 is the number of matches
we want to be played. In other words, we wish to partition
the players onto K matches (potentially with some players



left over), such that the sum over the cost of all matches is
minimized and no player participates in multiple matches.
We call this the 2v2 matchmaking problem.

In the following, we first formally define our cost function,
then prove that the 2vs2 matchmaking problem is NP-hard,
and finally present our solution approach, namely translat-
ing the 2v2 matchmaking problem into an integer linear pro-
gram for which efficient heuristics are available.

3.1 Cost Function
Our cost function has three parts. a) We wish to punish
the skill gap between the strongest and weakest player in
a match. More precisely, given a match (i, j, r, s), we de-
fine Ca(i, j, r, s) = max{θi, θj , θr, θs} − min{θi, θj , θr, θs}.
b) We wish to punish skill differences between teams. We
do so via the difference in team ratings. We define the
team rating as two-thirds of the higher rating inside the
team plus one-third of the lower rating inside the team, i.e.
θij := 2

3
max{θi, θj}+ 1

3
min{θi, θj}. Our hypothesis is that

the stronger player in a team affects the team’s performance
more, hence the higher weight. Additionally, we performed
pilot testing with different weightings and found that this
weighting predicted game outcomes best. The cost, then, is
defined as Cb(i, j, r, s) = |θij − θrs|. c) We wish to punish
if the same people play together. In general, we punish a
repetition of teammates with a value of 64, and a repetition
of opponents (or crossover from opponent to teammate and
vice versa) with a value of 16. For each step into the past,
we discount these values with a factor of 0.5 and set values
below 1 to zero. For example, if match (i, j, r, s) occurs in
round 1 and match (i, x, j, y) in round 2, then, in round 3,
match (i, j, u, v) would have cost Cc(i, j, u, v) = 16 + 1

2
· 64.

The values and decays can be adjusted depending on how
strictly and how long repetitions should be avoided. Gen-
erally speaking, the smaller the player pool, the smaller the
decay factor should be to permit repetitions earlier again.

Next, we pre-process all costs to magnify values that are
above a certain, adjustable threshold. This pre-processing
is defined as ϕ(x, ϵ) = 0.01·x if x < ϵ and ϕ(x, ϵ) = x−0.99·ϵ,
otherwise (so-called leaky rectified linear unit). Finally, we
set our overall cost function to

C(m⃗) = wa · ϕ
(
Ca(m⃗), ϵa

)2
(3)

+wb · ϕ
(
Cb(m⃗), ϵb

)2
+wc · ϕ

(
Cc(m⃗), ϵc

)2
,

meaning a weighted sum of squares after pre-processing. In
our experiments, the weights wa, wb, and wc, as well as the
thresholds ϵa, ϵb, and ϵc were manually set by the instruc-
tor after pilot testing (Table 1). However, our approach is
agnostic to the specific parameter settings or the choice of
cost function. Future work may consider omitting the pre-
processing, setting the weights automatically, or investigate
multi-objective optimization to avoid weights altogether.

3.2 Integer Linear Programming Approach
Given the cost function, the 2v2 matchmaking problem (2) is
fully specified. If this were a 1v1 matchmaking problem, the
problem could now be solved efficiently via the Hungarian
algorithm. Unfortunately, though, the 2v2 matchmaking

Table 1: The weights wa, wb, wc and thresholds ϵa, ϵb, ϵc for
the three cost criteria as used in Eq. (3).

criterion weight w threshold ϵ

a) skill gap 1 23
b) balance 0.45 199
c) variety 2.25 0

problem is NP-hard, meaning there is no known way to solve
it efficiently. We can prove the NP-hardness by reduction of
the 4-partition problem onto our problem.

Theorem 1. The 2v2 matchmaking problem is NP-hard.

Proof. Refer to Appendix A.

Given that our problem is NP-hard, only heuristics are pos-
sible. To obtain such heuristics, we re-write the 2v2 match-
making problem as an integer linear program (ILP). For
ILPs, a host of efficient approximation heuristics exist, espe-
cially for binary ILPs [25, 42]. We propose a particular ILP
formulation for the 2v2 matchmaking problem that already
permits us to perform substantial pre-processing, hence sim-
plifying the solution. In particular, let M1, . . . ,MQ be all
possible subsets of exactly four players from our overall set.
Note that Q is n choose 4 or n · (n− 1) · (n− 2) · (n− 3)/24.
Therefore, the subsets M1, . . . ,MQ are still efficiently pre-
computable for moderate choices of n (in our case, we con-
sider only cases up to n = 40 players). Further, let cq be the
minimum cost that can be achieved by arranging the play-
ers in Mq into matches. More precisely, if Mq = {i, j, r, s},
then cq = min{C(i, j, r, s), C(i, r, j, s), C(i, s, j, r)}. Finally,
let A be an n · Q matrix, where ai,q = 1 if i ∈ Mq and
ai,q = 0, otherwise. Then, we obtain the following ILP:

min
x⃗∈{0,1}Q

c⃗T · x⃗ (4)

such that A · x⃗ ≤ 1⃗,

1⃗T · x⃗ = K,

where xk = 1 expresses that the qth subset is part of our
solution. This ILP is equivalent to the 2v2 matchmaking
problem because: 1) The objective function c⃗T · x⃗ sums the
cost of all matches in our solution and is thus equivalent
to the objective function in (2). 2) The multiplication of
the ith row of A and x⃗ represents the number of matches
in our solution that player i is part of. Hence, the first
side constraint ensures that no player participates in more
than one match. 3) The second side constraint ensures that
exactly K matches are selected.

3.3 User Interface and Explanations
To communicate the matchmaking result to the players, we
use a user interface with three parts (refer to Figure 1).
The first part displays the matches for the next round (top
left), directly guiding players’ actions. The second part dis-
plays the current ratings of the players (bottom left), thus
explaining the matches in terms of rating differences. The
final part provides a variant of a counterfactual explanation,



Figure 1: The components of the user interface of our proposed matchmaking system. Note that the displayed names are fictional
to preserve anonymity. Top Left: The matches for the next round. Bottom left: The current ratings of the players. Right: A
counterfactual explanation, where two players are swapped, resulting in worse costs overall.

which have been shown to provide greater user satisfaction
and trust compared to causal explanations [8, 40] (right).
In particular, we consider the current worst match in terms
of one of the cost criteria and consider the counterfactual
case of switching one player to another match to improve
the cost. However, we also display how this change nec-
essarily increases the overall cost, either by worsening the
cost of another criterion for the original match or by in-
creasing the cost of the match the player was switched to.
This design choice enhances usability, as prior work indi-
cates greater usability of counterfactuals when they exhibit
minimal changes [21].

4. EXPERIMENTS
We present two experiments. Our first experiment compares
our proposed ILP-based solution approach against several
baselines on synthetic data. Our second experiment is a
field study of the integrated skill tracking, matchmaking,
and explanation system in an actual Roundnet course. The
source code of our experiments can be found at https://gi
thub.com/sruettgers/automatic_matchmaking.

4.1 Algorithmic Evaluation
In this experiment, we wish to investigate two questions:
A) Does our suggested ILP solution approach yield lower
cost function values compared to baseline approaches, and
B) how does our proposed approach scale with class size in
terms of runtime?

Experimental Setup: For each matchmaking algorithm, we
simulated 10 runs of players starting with normally dis-
tributed skill values, then being matched by the algorithm,
playing against each other, gaining or losing skill as deter-
mined by the glicko2 algorithm, and being matched again
for four consecutive rounds. This yielded 40 matchmaking
rounds overall. For each matchmaking round, we evaluate
the cost functions Ca, Cb, and Cc from Section 3.1, as well
as the overall cost C in (3). The weights wa, wb, wc and
thresholds ϵa, ϵb, ϵc chosen in the experiments are listed in

Table 1. All experiments were performed on a consumer-
grade desktop PC with an AMD Ryzen 5 1600 CPU (2017)
and 32 GB RAM.

Algorithms: We considered the following matchmaking al-
gorithms: Random permutes the list of players randomly
and then assigns the first four players to the first match, the
next four to the next match, and so on. This approach is
likely to perform well in terms of Cc, because players vary a
lot, but badly in terms of Ca and Cb. Fixed order sorts the
players according to their skill rating and then assigns the
first four players to the first match, the next four to the next
match, and so on. This approach is likely to perform well in
terms of Ca and Cb, because skill differences are likely to be
small, but badly in terms of Cc, because the same players are
likely to be matched each time. DoubleSymmetric optimizes
the assignment of teammates and the assignment of teams
independently of each other. Each is a classic assignment
problem, which can be efficiently solved via the Hungarian
algorithm [22]. The problem is that the team assignment
may limit the abilities of the algorithm to match balanced
opponents, such that the overall difference in maximum and
minimum skill Ca, as well as the skill difference between
teams Cb may be negatively affected. MiniZinc is a formal
language for constraint programming [30]. We expressed the
2v2 matchmaking problem (2) in MiniZinc and then applied
the gecode solver. ILP SciPy refers to our proposed ILP for-
mulation (4), solved via the solver in the scipy package [38].
ILP MiniZinc refers to our proposed ILP formulation (4),
solved via the COIN-BC solver in MiniZinc.

Results: Figure 2 displays the overall costs we obtained
with each approach as box plots. We observe that the cost
function values obtained via ILP approaches were signifi-
cantly lower compared to the other approaches (p < 0.05
in a Wilcoxon signed rank test), but that both SciPy and
MiniZinc achieved roughly the same results on the ILP for-
mulation (4). Table 2 lists the results for the single cost
criteria. As expected, random achieves the best results in
terms of the variety criterion Cc, but the worst results on the
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Figure 2: The overall cost (3) for the matches generated via each matchmaking algorithm for 24 players (left) and 40 players
(right).

Table 2: Mean pre-processed and squared cost for each cost
criterion ϕ(Ca, ϵa)2, ϕ(Cb, ϵb)2, and ϕ(Cb, ϵb)2 as well as the
overall cost C from Eq. (3) for each matchmaking algorithm
for the 40 simulated 24 player rounds. The weights wa, wb,
wc and thresholds ϵa, ϵb, ϵc are listed in Table 1.

algorithm ϕ(Ca,ϵa)2 ϕ(Cb,ϵb)2 ϕ(Cc,ϵc)2 C

Random 212744 390424 26730 629899
FixedOrder 3433 8293 170560 182286
DoubleSymm. 13941 55305 19848 89094
Minizinc 12545 6581 22362 41487
ILP scipy 16433 4677 12216 33326
ILP Minizinc 16433 4677 12216 33326

skill difference criteria Ca and Cb. Conversely, FixedOrder
achieves the best values in terms of Ca but performs par-
ticularly poorly in terms of variety Cc. DoubleSymmetric
does not perform particularly well on any measure, whereas
Minizinc performs reasonably close to optimal but is out-
performed by the ILP results in Cb and Cc.

Figure 3 displays box plots for the runtimes of all algorithms.
We observe that, as expected, the random and fixed order
baselines were the fastest, with DoubleSymmetric close be-
hind. For 24 players, ILP SciPy is the third-fastest but be-
comes by far the slowest solver for 40 players. This is due to
an approximately exponential runtime scaling. Overall, the
ILP Minizinc solver appears to be the most reliable choice
to achieve the best results while maintaining a fast runtime.

4.2 Field Study
In our field study, we compared the proposed matchmaking
approach with a random baseline and evaluated user sat-
isfaction with the match quality, as well as the perceived
goodness, efficacy, and trustworthiness of the provided ex-
planation utility.

Roundnet: The study was performed in a Roundnet course
at Bielefeld University, Germany. Roundnet is a 2v2 sport
played with a round net in the center. One team starts
passing the ball with up to three alternating touches before
the ball has to be played onto the net and the other team’s
turn begins. If a team fails to play the ball onto the net

within three touches, the opposing team receives a point.
The round ends once a team reaches 15 points.

Study Setup: Participants (N = 38) were recruited during
four consecutive sessions of a weekly Roundnet course in a
sports hall at Bielefeld University. The course was open to
all university students and employees. While demographic
data was not recorded to avoid the risk of making survey
responses re-identifiable, the course population were mostly
students in an age range 19-25. Participants were free to
participate in neither, one (n = 20), two (n = 3), three
(n = 6), or all four (n = 9) sessions. Two sessions used
the proposed matchmaking system, two the random baseline
(unknown to the participants).

Each session lasted 90 minutes. At the start, the instruc-
tor explained the study and handed out information sheets.
Next, automatic matchmaking (using the proposed approach
or the random baseline) was performed and the generated
matches with explanations were displayed on a 44” com-
puter screen (refer to Section 3.3). After matches were com-
pleted, the instructor entered the results into a laptop and
skill parameters were updated using glicko2 [13] with logistic
transformation to account for the margin of victory [20] and
composite team extension to distribute rating adjustments
to single team members [41]. The matchmaking, playing,
and rating steps were repeated for three additional rounds.
After the four rounds of Roundnet, participants filled out
a paper survey and were compensated with 20 EUR. The
study was approved beforehand by the ethics board of Biele-
feld University.

Evaluation Measures: The paper survey included the Expla-
nation Goodness Checklist and the Trust Scale, both pro-
posed by Hoffman et al. [14], and an adapted version of the
System Causability Scale by Holzinger et al. [15]. Specif-
ically, we excluded the item “I could change the level of
detail on demand” in our version because this item did not
apply. Further, to evaluate participants’ subjective impres-
sions of the matching quality, we included two items per
cost criterion from Section 3.1. All items (and full survey
results) are listed in Appendix B. The significance of differ-
ences between groups was evaluated using a non-parametric
Mann-Whitney U test.
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Figure 3: The runtime of all matchmaking algorithms for 24 players (left) and 40 players (right) for a single round.

Results: The full results across all survey items are listed in
Appendix B. We provide a summary of the most important
results in the following.

On the explanation goodness checklist, participants respon-
ded favorably on most items in both conditions.In terms of
statistically significant differences between groups, partici-
pants in the optimized condition agreed significantly more
that the explanations were actionable (89% in the optimized
condition vs. 71% in the random condition) and helped them
to understand how the tool works (91% in the optimized
condition vs. 68% in the random condition).

On the trust scale, participants overwhelmingly agreed or
strongly agreed that the tool could perform the task bet-
ter than a human novice (88% in the optimized condition,
and 77% in the random condition) and was efficient (86%
in the optimized condition, and 94% in the random condi-
tion). 57% of participants in the optimized condition, and
42% of participants in the random condition indicated agree-
ment or strong agreement toward the items assessing the
reliability of the tool. This strong indication of agreement
between scales instills confidence in the consistency and re-
liability of the overall results. Results on the item asking
for predictability of the tool were less positive, again to a
comparable extent between both groups (75% in the opti-
mized group, 73% in the random group): in both cases, a
majority in both groups gave either “neutral”, “disagree”, or
“strongly disagree” responses concerning the notion that the
tool was very predictable. The statistical analysis of differ-
ences between groups revealed a more positive evaluation of
the optimized matchings compared to random. The partici-
pants’ responses indicated that they liked using the system
more in the optimized condition, were less wary of it, felt
more safe, and more confident in the tool compared to the
random condition.

On the System Causability Scale, again, participants over-
whelmingly judged both conditions favorably, in terms of
explanation presentation, sort of information provided, and
helpfulness of explanations to understand causality. The
majority of participants in both groups also agreed with the
notion that most people would learn to understand the ex-
planations quickly. The only item eliciting a more balanced
distribution (45% neutral and 15% disagree or strongly dis-

agree for the optimized condition; 19% neutral and 27% dis-
agree or strongly disagree for the random condition) con-
cerned the extent to which the presented data included all
relevant known causal factors with sufficient precision and
granularity, which is, arguably, the most demanding. In
terms of significant effects, partcipants rated the optimized
condition as significantly more consistent (84% agreement
or strong agreement) compared to the random condition
(59% agreement or strong agreement). Similarly, partici-
pants found the explanations in the optimized condition sig-
nificantly more consistent and usable with their knowledge
base (89% agreement or strong agreement in the optimized
condition vs. 72% agreement or strong agreement in the ran-
dom condition).

In terms of subjective quality of the matchmaking, partici-
pants agreed that all players as well as opposing players had
similar skill in their matches for the optimized condition
(45% agreement or more) but not in the random condition
(58% disagreement or more). The difference between con-
ditions was significant. In terms of player variability, the
difference between conditions was less pronounced.

5. DISCUSSION AND CONCLUSION
In this paper, we proposed an educational data mining solu-
tion to the matchmaking problem in 2v2 sports. In particu-
lar, we propose to trace players’ knowledge via glicko2 and
then perform the matchmaking based on the estimated skill
values for all players. We showed that, in contrast to 1v1
sports, the 2v2 matchmaking problem is NP-hard, but that
efficient heuristics are possible by rephrasing the problem as
an integer linear program (ILP). In simulation studies, we
showed that this ILP formulation yielded matches with sig-
nificantly lower costs while remaining acceptable in terms of
runtime, at least for up to 40 players.

In a field study with N = 38 participants, we evaluated an
integrated system of knowledge tracing, matchmaking, and
counterfactual explanations of the matchmaking, in com-
parison to a random baseline with the same user interface.
It is noteworthy that participants generally perceived ex-
planations positively, even in the random condition. This
not only indicates that the user interface and explanation
design were indeed suitable (see Section 3.3). It also under-
scores the effectiveness of the selected explanation format,
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Figure 4: Actual cost function values for the optimized and
random conditions in the field study. Top left: overall cost.
Top right: Rating difference between strongest and weakest
player (a). Bottom left: Rating difference between opposing
teams (b). Bottom right: Player variance (c).

i.e., counterfactual explanations, aligning with the widely
accepted notion that this approach offers users valuable in-
sights into systems by closely resembling the way humans
themselves reason [8]. Even in the random condition, par-
ticipants found the explanations to be complete, sufficiently
detailed, and satisfying (Fig. 5), showcasing the intuitive
access provided by them. This aspect, while seemingly bene-
ficial, warrants caution: counterfactuals may, paradoxically,
be misleading due to their intuitive appeal [24]. Indeed,
participants in both groups gave comparable judgments on
a subset of items in the Trust scale (refer to Figure 6), indi-
cating that they perceived the tool to have superior perfor-
mance than a novice user and to work efficiently, indepen-
dent of the underlying matchmaking mechanism. While the
absence of a group effect on these items defies conclusive in-
terpretation, it may strengthen the hypothesis that explain-
ability fosters misplaced trust in a less-than-ideal system.

However, we also find multiple significant differences be-
tween conditions, suggesting that users can recognize differ-
ences between the underlying systems. In particular, users
were significantly less wary of the proposed matchmaking
system, liked to use it more for decision making, felt more
safe relying on the tool, were more confident that it worked
well, found the explanations more consistent, and felt more
able to use the explanations with their knowledge base. Ac-
cordingly, there is some evidence that users are indeed able
to recognize whether the system underlying the explanations
warrants their trust. We found that participants recognized
that the proposed matchmaking system reduced skill differ-
ences inside matches and skill differences between opposing
teams significantly compared to the random baseline. We
note, however, that many ratings were also favorable in the
control condition, indicating that the mere fact of having
automatic matchmaking with intuitive and easily accessible

explanations was already deemed helpful.

Finally, participants recognized differences in matchmaking
quality between optimized and random condition: The pro-
posed system achieved considerably smaller skill gaps within
matches and between opposing teams (refer to Figure 4),
which was recognized by the participants (refer to Figure 8).
However, both conditions achieved variability between team-
mates and opponents, which the subjective ratings by par-
ticipants reflect (i.e. there was no significant difference in
perceived player variability between conditions).

Limitations: We believe that our experiments show encour-
aging results and indicate that the proposed matchmaking
approach is applicable for actual matchmaking in 2v2 sports.
Nonetheless, some limitations remain. First, some of our
cost-function design choices may be specific to our setting
and may need to be changed in other contexts. Second,
we only explored a glicko2 system for knowledge tracing.
Other knowledge tracing approaches may be more suitable
(e.g. yield more accurate predictions). Third, we focused
on counterfactual explanations for the matchmaking, while
other types of explanations (e.g. of the skill ratings) may also
be helpful. Fourth, our study was too short to meaningfully
investigate whether matchmaking had a positive effect on
skill acquisition. Future work should perform longitudinal
studies to compare the learning effect of automatic match-
making.

Impact and Ethics: We hope that our proposed matchmak-
ing algorithm provides a varied set of teammates and op-
ponents of comparable skill for all players, thus enhancing
their skill acquisition in 2v2 sports as well as their enjoy-
ment of the game. Nonetheless, practitioners should also be
aware of potential drawbacks. By making skill ratings very
transparent during the entire training process, players may
get more competitive and more focused on improving their
ranking, rather than their actual skill or being good team-
mates and opponents. More broadly, the extrinsic motiva-
tion of improving the rating may replace intrinsic motivation
and thus hurt learning as well as enjoyment of the game. In
such cases, randomized matchmaking may be preferable.

Still, in our present investigation, participants consistently
perceived our method as a valuable, actionable, and use-
ful tool for matchmaking in the context of a sports course.
The validation of our tool in a real-life setting greatly en-
hances its value, affirming its effectiveness and dependability
in practical scenarios. Thus, our work extends the research
landscape by presenting a decision support system for skill
rating and matchmaking in the realm of sports education, a
context that presents unique challenges such as small player
pools and the absence of large pre-existing databases.
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APPENDIX
A. NP-HARDNESS PROOF

Theorem 2. The 2v2 matchmaking problem is NP-hard.

Proof. Refer to Appendix A. Consider the 4-partition
problem: Given n real numbers w1, . . . , wn where n is di-
visible by four; does there exist a partition of these num-
bers into K = n/4 subsets S1, . . . , SK , such that the sum of
the numbers in each set is equal? This problem is NP-hard
[3]. We can convert such a 4-partition problem into a 2v2
matchmaking problem with n players, K = n/4, and cost

function C(i, j, r, s) =
(
wi + wj + wr + ws

)2
. Further, let

W :=
∑n

i=1 wi. Our claim is now: the 4-partition problem
is solvable if and only if our 2v2 matchmaking problem is
solved with the objective function value K · (W/K)2.

For the forward direction, let S1, . . . , SK be a solution to the
4-partition problem. Then, the numbers in each set must
sum to the same number, meaning the sum is W/K in each
case. Further, let Sk = {wi, wj , wr, ws} and construct a cor-
responding match m⃗k = (i, j, r, s). Accordingly, m⃗1, . . . , m⃗K

is a solution to the 2v2 matchmaking problem with objective
function value K · (W/K)2.

For the backward direction, consider the following continu-
ous relaxation of the 2v2 matchmaking problem:

min
x1,...,xK∈R

K∑
k=1

x2
k such that

K∑
k=1

xk = W.

In other words, xk represents the sum of the numbers in the
kth match. The side constraint ensures that the sum of all
numbers remains W and the objective function corresponds
to the objective function of the 2v2 matchmaking problem.

This relaxation is a convex optimization problem with the
unique global optimum x1 = . . . = xK = W/K. There-
fore, it is impossible to achieve a lower objective function
value than K · (W/K)2 in our 2v2 matchmaking problem
and the only way to achieve this value is to have matches
where all contained numbers add up to W/K. Now, let
m⃗1, . . . , m⃗K be such a solution. We can translate each match
m⃗k = (i, j, r, s) into a set Sk = {wi, wj , wr, ws} and the re-
sulting S1, . . . , SK are by construction a solution to the 4-
partition problem.

In other words: If we could solve the 2v2 matchmaking prob-
lem efficiently, we could also solve the 4-partition problem
efficiently. And because the 4-partition problem is NP-hard,
so is the 2v2 matchmaking problem.

B. FULL SURVEY RESULTS
Figures 5, 6, 7, and 8 show the full results of the survey in
the field study. Asterisks denote statistical significance of
group differences with p < .05.

Figure 5: Results of the paper survey for the Explanation
Goodness Checklist [14]. Blue bars show the proportion of
participants per group responding “Yes”, red bars illustrate
the proportion of participants responding “No” to a given
item.

Figure 6: Results of the paper survey for the Trust Scale [14],
evaluated on a 5-point Likert scale ranging from “strongly
agree” to “strongly disagree”. Bars illustrate the proportion
of participants responding with either positive (blue shades),
neutral (gray), or negative valence (red shades).



Figure 7: Results of the paper survey for our adapted ver-
sion of the System Causability Scale[15], evaluated on a 5-
point Likert scale ranging from “strongly agree” to “strongly
disagree”. Bars illustrate the proportion of participants re-
sponding with either positive (blue shades), neutral (gray),
or negative valence (red shades).

Figure 8: Results of the paper survey for the match qual-
ity evaluation, assessed on a 5-point Likert scale ranging
from “strongly agree” to “strongly disagree”. Bars illustrate
the proportion of participants responding with either posi-
tive (blue shades), neutral (gray), or negative valence (red
shades).


