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ABSTRACT
Predictive models play a pivotal role in education by aid-
ing learning, teaching, and assessment processes. However,
they have the potential to perpetuate educational inequali-
ties through algorithmic biases. This paper investigates how
behavioral differences across demographic groups of differ-
ent sizes propagate through the student success modeling
pipeline and how this affects the fairness of predictions. We
start by using Differential Sequence Mining to investigate
behavioral differences across demographics groups. We then
use Fisherian Random Invariance Tests on the layers of the
intervention prediction model to investigate how behavioral
differences affect the activations within the neural network
as well as the predicted outcomes. Both these pattern min-
ing methods are applied to the interaction data from two
inquiry-based environments: an interactive simulation and
an educational game. While both environments have an un-
balanced distribution of demographic attributes, only one
of them produces a biased predictive model. We find that
for the former environment, the fair model’s intermediate
layers do not discriminate between different demographic
groups. In contrast, for the second environment’s biased
model, the layers discriminate between demographic groups
rather than the target labels. Our findings indicate that
model bias arises primarily from a lack of representation of
behaviors rather than demographic attributes, though the
two remain closely interconnected.
https://github.com/epfl-ml4ed/behavioral-bias-investigation.
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1. INTRODUCTION
Predictive algorithms in digital learning environments have
been shown to be effective at identifying students at risk
of failure. This is vital to guide teachers towards those
who struggle the most, enabling timely interventions to pre-
vent them from falling behind [13, 19, 4]. Such algorithms
can be applied in the context of learners struggling with
specific tasks, concepts or activities [24, 4], or at a larger
scale to identify students at risk of general academic under-
achievement [2, 13, 19]. In short, they can play crucial roles
throughout the academic paths of students. Consequently,
in a society where disparities already exist across specific
communities [3, 10, 17, 20], it is essential to ensure that these
algorithms do not perpetuate or amplify existing biases, but
instead help to correct them. In this paper, we aim to un-
derstand how variances in small datasets propagate through
simple networks, and how it affects equalized odds. It has
been shown that nationality, country, socio-economic sta-
tus and cultural backgrounds are all demographic attributes
which can influence both learning strategies and expecta-
tions towards education (e.g. [3]). These differences may
be problematic as they may generate Data to Algorithm bi-
ases in machine learning pipelines where a mix of different
populations is present [12]. The algorithm developed during
COVID to predict GCSEs grades is an example of such a
problematic bias[18]. Students from disadvantaged socioe-
conomic backgrounds and regions were negatively impacted
while the wealthier and more privileged benefited from it.
Consequently, the government had to revert to relying solely
on teacher assessments [9]. This case underscores the impor-
tance of identifying and addressing biases, empowering pol-
icymakers and researchers to make informed decisions and
address ethical concerns raised by these biases.

This research aims to identify Data to Algorithm represen-
tational bias in small datasets which do not impact minority
groups, and understand how these biases propagate through-
out machine learning pipelines. This, to anticipate whether
specific sets of data will generate unfair predictions, to save
resources on retraining and mitigating unfair predictors, and
to understand why it happens such as to develop more suit-
able methods to mitigate biases. Specifically, in this paper,
we seek to answer three research questions: 1) Are under-
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represented groups at a disadvantage in student models? 2)
Can we verify that different demographics express different
behaviors on OELEs? 3)How do these differences affect fair
predictions and propagate through student models? To that
effect, we train and evaluate student models on behavioral
data from two different open ended learning environments
on populations from which we have demographic informa-
tion about region. We apply two pattern mining algorithms
(Differential Sequential Mining and Fischerian Random In-
variance) to the same behavioral data and to the outputs
of the different layers of the trained student models. We
show there exists behavioral differences across demographic
groups which lead both models to partially focus on these
rather than on the task they were trained on, therefore prop-
agating biases. We also show that demographic imbalance is
not the origin of the bias present in our models. Rather, the
lack of signal in the majority group is, whether due to the
heterogeneity of the dataset or to the blurrier data bound-
aries. We call it thus a signal bias and formally define it
throughout this paper. With this work, hope to emphasize
the importance of understanding the root of unfair behav-
ior, and specifically highlight the importance of focusing on
behavioral markers, in addition to demographic ones, when
correcting for demographic bias.

2. DATA AND METHODS
To study (i) the relations between demographics and be-
havior in-depth and (ii) how biases are propagated through
intervention prediction models, we employed the framework
illustrated in Fig 1. This framework consists of two phases:
Student Intervention Predictions and Behavioral Investiga-
tion. In the first stage, we collected data from two different
inquiry-based environments and extracted a range of be-
havioral indicators. We then trained models composed of
gated-recurrent units with Attention mechanisms and eval-
uated the accuracy and fairness of the resulting student
intervention classifiers. In the second stage, we compared
sub-populations of our datasets at three different points in
our student models, namely the: 1) Input level: behavioral
traces of student interactions, 2) Layers level: the output
values of the model’s layers, 3) Prediction level: the differ-
ences and similarities between the misclassified groups and
the groups they were classified as. In this section, we de-
scribe each of these phases in details. For both stages, we
use the same input features such that the analysis from one
stage to the other remains consistent.

2.1 Problem Formalization
Each student u in our data U always belongs to one of two
demographic groups d ∈ {m− or M+}. In general, we de-
note the minority group by lower− case letters with a −
underscored, and the majority group by UPPER+ case letters
overlined with a +. In each learning activity, the students
were required to interact with the simulation to solve the re-
quired tasks. We denote their behavior on the simulation as:
Su the sequence of their n interactions on the environment.
Based on their performances, the students were either as-
signed to the intervention group or the high understanding
group. We call the student model which we train to predict
their intervention needs based on their sequence of action Su

the classifier or student model. We call the model extracting
frequent interaction patterns from a specific group of users
the pattern mining algorithm. We mined both interaction
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Figure 1: (LEFT) Student Intervention Prediction pipeline.
behavioral clickstream data is fed into the GRU-Att net-
work which outputs the probability of a student belonging
to the high or interv. learners group based on post-test
performances. (BOTTOM) behavioral Investigation pipeline.
Differential Sequential mining is applied on the sequences
(BOTTOM-top), while simple FRI are applied to the output
values of each intermediate layer of the GRU-Att network
(BOTTOM-bottom).

patterns and output patterns. Interaction patterns are de-
fined as chronologically ordered subsequences of clicks, and
Output patterns specific value of a specific output layer. We
use pattern or trait to refer to both interaction patterns and
output patterns. Finally, we refer to signal as the presence
or degree of discernible differences or patterns between the
groups or categories that we aim to classify.

2.2 Open Ended Learning Environments
In the next subsections, we describe the Open Ended Learn-
ing Environments (OELEs) from which we extracted the se-
quences Su for each student u ∈ U , the learning indicators
ij ∈ SU = {i1, i2, ..., in−1, in}, and the mappings m linking
au to lu ∈ {high, interv.}.

2.2.1 Beer’s Law
Environment. PhET interactive simulations1 allow students
to explore scientific phenomena through exploring different
parameter configurations and observing their effect on var-
ious dependent variables. Interacting with the simulation
ideally enables students to infer the underlying principles
on their own through their inquiry process [22, 21]. In this
paper, we focused on the Beer’s Law simulation (see Figure
2, Appendix A.1) and the phenomenon of absorbance which
is influenced by 3 different independent variables. The task
designed to guide students’ inquiry was to rank 4 different
configurations in terms of absorbance (Figure 2, bottom).

1https://phet.colorado.edu/



Figure 2: (Top) Beer’s Law environment. (Bottom) Rank-
ing task the students need to complete with the help of the
simulation.

Data Collection. The dataset was collected in vocational
high school education classes in a European country. In to-
tal, 254 learners used the Beer’s Law simulation to rank 4
configurations. We collected their self-reported gender (fe-
males: 108, non-binary: 4, not-reported: 7, males: 135) and
the official language of their area2 (language− : 76, LAN-
GUAGE+ : 178). The study was approved by the institutional
ethics review board (HREC 064-2021)

Learning Indicators. We extracted the logs for each user
u ∈ U , and transformed them as done previously in [6] (See
Apprendix A.3).

Label Mapping. We defined the high understanding stu-
dents as those who understood the relationship between the
absorbance and at least two of the independent variable, and
the intervention (interv.) students as those who under-
stood the relationship between the dependent variable and
less than 2 independent variables as described in [6].

2.2.2 TugLet
Environment. TugLet [7] is an open ended learning game de-
signed to play in 2 modes: explore and challenge. Through
the exploration, the students need to uncover the weights
of 3 different characters through tug of war. In the chal-
lenge mode, they are tested on different tug-of-war configu-
rations. If they answer wrong, students are redirected to the
“explore” mode. Until then, they can freely switch between
modes at their discretion. The game ends when a player
successfully predicts the outcomes of eight consecutive con-
figurations (See Appendix A.2).

2As this study was conducted in a multi-lingual country,
the language area is officially considered as a demographic
attribute.

Figure 3: Tuglet in explore mode (left) and challenge (right).

For this study, a post-test consisting of 10 questions eval-
uated the extent to which players had acquired an under-
standing of the relationships among the various figure strengths.

Data Collection. The dataset employed in our research was
obtained through a classroom-based experiment conducted
in multiple middle schools encompassing a total of 1746
participating students. We had partial information about
teacher-reported sex (146 females, 148 males, 1452 were not
reported) and country (country− : 468 and COUNTRY+ :
1278). We note that country− ranks 30+ places higher than
the COUNTRY+ on the Economic Complexity Index [1]. The
study was approved by the institutional ethics review board
(HREC 060-2020/04.09.2020)

Using the logs, we record each challenge or explore trial as:
1) the type of figures (large, medium, small or none) on
each sides of the cart ; 2) whether the configuration ended
in a tie or not (one-hot encoded, in challenge mode only),
3) whether the interaction was in explore mode, 4) whether
the answer was correct (challenge mode only).

Label Mapping. We defined the high understanding stu-
dents as those who received a score of 9 or higher on the
post-test. Indeed, to achieve such a high score, students
needed to understand all the relations between the charac-
ters. Consequently, the intervention (interv.) students
were those who received a score strictly lower than 9.

2.3 Student Success Prediction
2.3.1 Student Model Pipeline
For both OELEs, we used a simple network (GRU-Att) com-
prising of a Gated Recurrent Unit Cell followed by an Atten-
tion layer and a classification layer (Fig 1, top). We selected
this architecture as it resembled the ones used in prior works
on both datasets [6, 5]. We trained both classifiers to predict
intervention needs for each student.

2.3.2 Ground Truth
We use the labels high (0 / true negatives) and inter-

vention (interv.) (1 / true positives) for each student as
ground truth to train our predictors. Students are assigned
to the group interv. or high based on their performances
on their respective open ended learning environments, as de-
scribed to the paragraphs Label Mapping in Sections 2.2.1
and 2.2.2.

2.3.3 Model Evaluation
Due to the small size of both datasets, we used 10000 runs of
bootstrap sampling with replacement on the test set predic-
tions to compute our classification scores (areas under the
ROC curve, false positive rates, false negative rates and F1
scores) [16]. Indeed, computing the scores as the average



over folds would mean to compute the score on less than 10
instances per fold for the minority group. Specifically, we
computed classification performances over the whole popu-
lation U , the chosen minority group Um and its complemen-
tary majority group UM at each run. We reported the mean
and 95% confidence interval for each metric and each sub-
population over the 10000 bootstrapping runs. To compute
the False Positive Rates (FPR) and False Negative Rates
(FNR), we used the Youden statistical test to choose the op-
timal threshold to turn the raw predictions into high or in-
tervention predictions [23, 15]. We used both of these met-
rics to compute the F1 score and assess equalized odds [12].

2.4 Tools to Investigate Biases Across Demo-
graphics and Levels of Understanding

To analyze the behavioral patterns between different demo-
graphic subpopulations and the relationships of these pat-
terns to student success, we used Differential Sequence Min-
ing and Fischerian Random Invariance tests to analyse the
input sequences and outputs of the GRU and Attention lay-
ers of the models.

2.4.1 Pattern Mining
We employed two different pattern mining algorithms, the
first one focusing on the sequential nature of the behavioral
interactions and a second one focusing on analysing the out-
puts of the GRU and Attention layers of the network.

Differential Sequential Mining (DSM). We implemented the
DSM algorithm as described in [8] and implemented by [14]
to perform asymmetric comparisons. DSM is a three-step
comparative algorithm. We start by defining 2 non over-

lapping groups to compare: Um− and UM+ . Step 1 is applied
separately in each of these groups and consists in computing
the student support (s-support). For each possible pattern,
we count the proportion of students expressing that pat-
tern. We call the patterns with a s-support≥ 0.5 frequently
expressed by the population. Step 2 consists in computing
the interaction support for each pattern and each student,
that is to compute how many times that pattern appears
in each student’s interaction. Step 3 compares the distribu-
tion of i-supports of a pattern across the 2 non overlapping
groups of students with a fisherian random invariance test
to see if that pattern is significantly (p ≤ 0.05) more ex-
pressed in the group with the highest average i-support. In
doing so, we end up with 3 types of patterns: 1) the com-
mon interaction patterns: the patterns which are commonly

expressed in both Um− and UM+ , 2)/3) the patterns specific

to group Um−/UM+ : patterns that significantly appear more
in a group regardless of whether they are also present in a

majority of students in group UM+/Um− .

Fischerian Random Invariance Test To investigate the be-
havior of the student models, we compared the values of the
GRU and Attention layers output for different subgroups.
To that effect, we applied a Fischerian Random Invariance
test to each of the output values of the output vector in-
dividually, across 2 pre-defined subgroups of our users. We
ended up with 2 types of output patterns: 1) the specific
output patterns: output patterns which significantly vary
across subpopulations, 2) the common output patterns: out-
put patterns which do not significantly vary across different
subpopulations. (See Appendix B)

2.4.2 Comparison Protocol
Demographic attributes Finally, we denote LANGUAGE+ the
language region with the most students Ub and language−
the language region with the least students in Beer’s Law.
Similarly, we call COUNTRY+ the country represented by the
most students in Ut and country− the country with the
least amount of students in TugLet. We recall the majority
country has a lower socio-economic status than that of the
minority country. We focus on these demographic attributes
related to area for consistency across datasets. We analyzed
sex and gender on our github repository3.

Comparison groups To understand whether different demo-
graphics exhibited different inquiry behavior, we applied
each pattern mining to our features or output values to make
4 comparisons: comparison 1: Um−

high vs Um−
interv.: different un-

derstanding groups from the minority population, compari-

son 2: UM+

high vs UM+

interv: different understanding groups from

the majority population, comparison 3: Um−
high vs UM+

high: dif-
ferent demographics groups from the higher understanding

level population, comparison 4: Um−
interv vs UM+

interv: different
demographics groups from the interv. population. The
first two comparisons were used as sanity checks to evaluate
the potential discriminative potential (signal) between the
high and interv. groups. The third and fourth ones to
establish any differences there may be between two demo-
graphic groups of a same understanding level.

3. RESULTS
3.1 RQ1: Student Models Performances and

Biases
We trained and evaluated the models as described in Section
2.3.3. We ran a 10-fold cross validation on this grid: GRU
cells (4, 8, 16), Attention hidden size (4, 8, 16), epochs (30,
50). Based on ROC, GRU cell 16, Attention hidden size 16
and epochs 50 were the best parameters. Using bootrastrap-
ping (Section 2.3.3), we observed that the model trained
on the Beer’s Law dataset performed similarly across both

Ulanguage− and ULANGUAGE+ based on the bootstrapped AUC,
FPRs, FNRs and F1 scores as all confidence intervals over-
lap (Figure 4 (TOP)). Conversely, we noticed a significant
large (> 0.1) gap in the F1 score across demographic groups
in favour of Ucountry− with no overlap of the confidence in-
tervals (Figure 4 (BOTTOM)). Notably, the difference in
AUC across subpopulations was almost non-existent. This
was explained by the FPR being fairer to the country− stu-
dents while the FNR was fairer to the majority group. For
both datasets, a consequent demographic imbalance exists:
(Table 1). We would have expected both student models to
put these demographic minority groups at a disadvantage.
Yet, Beer’s Law model seemed fair while TugLet ’s model

was biased towards the majority UCOUNTRY+ group. In the
next subsection, we investigated the behavioral differences

3https://github.com/epfl-ml4ed/behavioral-bias-
investigation

Table 1: Statistics about representation and proportion of
higher understanding student in each demographic group.

group language− LANGUAGE+ country− COUNTRY+

% in the dataset 30 70 27 73
% of higher understanding 0.38 0.46 0.48 0.26
% of higher understanding (total) 0.44 0.32

https://github.com/epfl-ml4ed/behavioral-bias-investigation
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Table 2: Pattern mining results for Beer’s Law, where n°
stands for the number of the comparison (Section 2.4.1),
group A for the first comparison group, group B for the sec-
ond comparison group, X-specific for the patterns specific to
X, alg. for algorithm, DSM for Differential Sequence Mining,
and FRI for Fischerian Random Invariance test.

n° group A
[demo], [level]

group B
[demo], [level]

patterns
in common

A-
specific

B-
specific

alg.

Input Sequences

1 language− , high language− , interv. 21 6 0 DSM
2 LANGUAGE+ , high LANGUAGE+ , interv. 16 8 2 DSM
3 language− , high LANGUAGE+ , high 23 7 1 DSM
4 language− , interv. LANGUAGE+ , interv. 15 5 0 DSM

GRU layer

5 language− , high language− , interv. 16 0 0 FRI
6 LANGUAGE+ , high LANGUAGE+ , interv. 16 0 0 FRI
7 language− , high LANGUAGE+ , high 16 0 0 FRI
8 language− , interv. LANGUAGE+ , interv. 15 1 1 FRI

Attention Layer

9 language− , high language− , interv. 16 0 0 FRI
10 LANGUAGE+ , high LANGUAGE+ , interv. 16 0 0 FRI
11 language− , high LANGUAGE+ , high 16 0 0 FRI
12 language− , interv. LANGUAGE+ , interv. 15 5 5 FRI

Prediction Layer

13 FN language− , high 15 4 15 DSM
14 FN LANGUAGE+ , high 16 2 8 DSM
15 FP language− , interv. 21 1 1 DSM
16 FP LANGUAGE+ , interv. 16 9 2 DSM

across demographics and the output values they generated.
This, to understand where and why one of them resulted in
an unbiased model while the other one did not.

3.2 RQ2: behavioral differences
To understand whether different demographics exhibit dif-
ferent inquiry behavior, we applied Differential Sequence
Mining (DSM) to the four comparisons described in Section
2.4.1. We refer to these comparisons by their enumerated
number throughout the rest of this section, and refer to row
s by RS.

We started by examining the students from the Beer’s Law
dataset (Table 2). Through comparisons 1 and 2 (R1 and
R2), we found that there were 6 and 10 specific interac-
tion patterns between the high and interv. understand-
ing groups for language− and LANGUAGE+ respectively. This
let us extrapolate that a student model could perform well
because we interpreted the presence of multiple unique in-
teraction patterns in each group as indicating that there
was likely sufficient signal to differentiate between target
groups. All interaction patterns from the high understand-
ing students involved actions in (sub)optimal conditions while
the few interaction patterns from the interv. students were
actions made in a non observable state (see Section 2.2.1).
Through comparisons 3 and 4 (R3 and R4), we found that
Ulanguage− stood out with 13 specific interaction patterns of
its own from the LANGUAGE+ population which only had 1
specific interaction pattern. This, showing that there were
demographic behavioral differences in this dataset too. For
example, the students u ∈ Ulanguage− differentiated them-
selves by changing parameters or taking breaks in a coher-
ent or optimal state. These differences suggested that the
student models would work better for Ulanguage− while the
higher number of differences across understanding levels in

ULANGUAGE+ indicated the opposite. These contradicting con-
clusions meant that both effects could potentially counter-
balance each other. We carried out the same analysis on
the TugLet dataset (Table 3). Once again, we saw through

comparison 1 and 2 (R1 and R2) that there are a lot of differ-
ences (28) between the high and intervention understand-

ing groups for both Ucountry− and UCOUNTRY+ . This indicated
again that potentially helpful signal to differentiate the two
target groups (high and intervention) is present in the
dataset. No matter the demographic-understanding level, all
interaction patterns specific to a group were from the chal-
lenge mode (see Section 2.2.2). Only the high understand-
ing students managed to answer a tie question correctly and
go on to the next “challenge” questions. Furthermore, we
found demographic behavioral differences for students with a
similar understanding, but different demographic attributes.
This time, the odds were in favour of the minority Ulanguage−

subpopulation as we observed through comparisons 3 and 4
(row 3 and 4) that only the Ucountry− subpopulation stood

out and differentiated itself from UCOUNTRY+ subpopulation
with 13 specific interaction patterns, all levels of understand-
ing considered. We noted that for all datasets and all sub-
groups, all patterns specific to a group were present, to a
lesser extent, in the complementary group too.

In short, both datasets presented demographic behavioral dif-
ferences across students with a similar level of understand-
ing. Through DSM comparisons, we found that both Ulanguage−

and ULANGUAGE+ populations had their own specific interaction
patterns in the Beer’s Law dataset, but only the minority
Ucountry− population stood out in the TugLet dataset.

3.3 RQ3: Layer Propagations
To understand the behavioral differences uncovered by DSM,
we dived into the analysis of the GRU and Attention lay-
ers and conducted the same four comparisons as listed in
Section 2.4.1, this time applying the Fisherian Random In-
variance test (results shown on the GRU layer, Attention
layer, and Prediction layer sections of tables 2 and 3).

We started with the Beer’s Law dataset (Table 2) and con-
ducted comparisons 1, 2 and 3 as sanity checks on both the
GRU (rows 5, 6, 7) and Attention layers (rows 9, 10, 11).
At first, it seemed that the discriminating power of the algo-
rithm must have laid on the linear layer as none of the poten-
tial output patterns were specific to any particular groups.
However, when conducting comparison 4 (rows 8 and 12), we
found that the differences across the interv. students from
different demographic groups were exacerbated through the
network. Delving further into our analysis, we found that
the false negative instances (FN) were the most different to
the high understanding students from the minority group
(row 13 Table 2) with 19 traits specific to either one of the
groups. The false positive instances (FP), on the other hand,
were the most different to the interv. students from the
majority group (row 16). This indicated that the algorithm
may tend to focus on the majority group when identifying
the high understanding group. This in line with the findings
from research question 2 (Section 3.2) where we found that

ULANGUAGE+

high had more specific interaction patterns (7) than

the Ulanguage−
high (1) (rows 1, 2). It also indicated that the al-

gorithm focused on the minority group to identify interv.

students. As before, this followed the Ulanguage− population

standing out from the ULANGUAGE+ population as seen from the
comparison on the input sequences through DSM (rows 3,
4).



The behavioral differences propagated more subtly through
the TugLet student model. As the network processed the fea-

tures, it improved at differentiating Ucountry−
interv. from Ucountry−

high

(rows 5, 9), but regressed at differentiating UCOUNTRY+

interv. from

UCOUNTRY+

high (Table 3, rows 6, 10): the number of output val-
ues significantly different across understanding levels went
from 5 in the GRU layer down to 0 in the Attention layer.
Furthermore, we found that the student model improved

at differentiating the majority UCOUNTRY+ from the minority
Ucountry− . Indeed, a majority (≥ 12 out of 16) of the output
values for the GRU and Attention layers were significantly
different across demographic groups of similar understand-
ing levels. In other words, it improved at differentiating de-
mographic groups throughout the network and regressed at
differentiating understanding levels for the majority group

U COUNTRY+ . We continued with the analysis of the output val-
ues of the last layer of our GRU-Att : the raw predictions.
From comparisons 1 and 2 on the input sequences (Section
3.2), we noticed that the interv. groups have more specific
traits than the high understanding groups. More specifi-
cally, the interv. group from Ucountry− is the one with the
most specific traits, as can also be noticed through com-
parison 4. This may have led the algorithm to over-focus on

Ucountry−
interv. to determine whether someone belonged to the in-

terv. group. This is consistent with the application of DSM
to compare the false positive instances (FP), comparison 7
and 8 in Table 3. Indeed, we find that the FP are the clos-

est to the users u ∈ Ucountry−
interv. . In essence, they were almost

indistinguishable from one another as none of the output
values activated significantly differently (row 15). Similarly,

the instances from u ∈ UCOUNTRY+

interv. did not stand out from
the FP even though the FP instances had their own spe-
cific traits (row 16). Similarly, when doing the comparison
with the false negative instances (FN), we found that the

students u ∈ UCOUNTRY+

high were the closest to the FN (row 14)

which was consistent with the students u ∈ Ucountry−
high being

the least distinctive group, leading the algorithm to focus
on its counterpart from the majority population.

In summary, our analysis revealed that Beer’s Law’s layers
yielded consistent outputs across different levels of under-
standing, with a slight increase in signal observed among the
demographic group with a interv. level. Additionally, we
find that the TugLet model increased the signal to differenti-
ate demographic groups and reduced that used to differentiate

understanding levels from the majority UCOUNTRY+ .

4. DISCUSSION AND CONCLUSION
Open Ended Learning Environments’ advantages are two-
fold: they enable students to learn specific scientific con-
cepts on top of training transversal skills such as inquiry
learning. Using behavioral traces on such environments to
predict early student success or struggle has become rou-
tine [21]. Unfortunately, some of these predictive models
may be biased towards certain demographic groups. In this
paper, our primary focus was to gain a better understanding
of how demographics, behavioral interactions and represen-
tation proportions played a role in shallow student mod-
els’ fairness. We conducted our investigation using small
datasets obtained from two different open-ended learning en-
vironments, namely, Beer’s Law and TugLet which were im-

Table 3: Pattern mining results for TUGLET, where n° stands
for the number of the comparison (Section 2.4.1), group A for
the first comparison group, group B for the second compar-
ison group, X-specific for the patterns specific to X, alg. for
algorithm, DSM for Differential Sequence Mining, and FRI
for Fischerian Random Invariance test.

n° group A
[demo], [level]

group B
[demo], [level]

patterns
in common

A-
specific

B-
specific

alg.

Input Sequences

1 country− , high country− , interv. 24 7 21 DSM
2 COUNTRY+ , high COUNTRY+ , interv. 25 11 17 DSM
3 country− , high COUNTRY+ , high 24 3 0 DSM
4 country− , interv. COUNTRY+ , interv. 32 10 0 DSM

GRU layer

5 country− , high country− , interv. 9 7 7 FRI
6 COUNTRY+ , high COUNTRY+ , interv. 11 5 5 FRI
7 country− , high COUNTRY+ , high 4 12 12 FRI
8 country− , interv. COUNTRY+ , interv. 2 14 14 FRI

Attention Layer

9 country− , high country− , interv. 5 11 11 FRI
10 COUNTRY+ , high COUNTRY+ , interv. 16 0 0 FRI
11 country− , high COUNTRY+ , high 1 15 15 FRI
12 country− , interv. COUNTRY+ , interv. 1 15 15 FRI

Prediction Layer

13 FN country− , high 24 0 5 DSM
14 FN COUNTRY+ , high 25 0 1 DSM
15 FP country− , interv. 35 0 0 DSM
16 FP COUNTRY+ , interv. 32 12 0 DSM

Figure 4: Mean and 95% confidence interval of the AUC,
FNR, FPR and F1 score across: (TOP) the entire popula-
tion language− and LANGUAGE+ on the Beer’s Law dataset,
(BOTTOM) the entire population, country− and COUNTRY+

on the TugLet dataset

plemented in high- and middle-school settings respectively.
Despite the considerable differences between these educa-
tional contexts, both datasets contained valuable informa-
tion including students’ short-term behavioral sequences of
interaction and demographic attributes. In both cases, the
primary objective of the student models was to identify stu-
dents at risk of academic challenges solely based on their
behavioral interactions with the platform, thereby enabling
timely intervention and support between their course activi-
ties and the final evaluation. Using both these environments,
we answered the following research questions: 1) Are under-
represented groups at a disadvantage in student models?, 2)
Can we verify that different demographics express different
behaviors on OELEs?, 3) How do these differences affect fair
predictions and propagate through student models?

For the first research question, we trained and assessed two
GRU-Att models and observed whether the under repre-
sented demographic groups were treated unfairly by our al-
gorithms. With Beer’s Law, we found that there were no
treatment differences across language regions. On the con-
trary, for TugLet, we found performance discrepancies across



the minority and majority countries, unexpectedly in favour
of the minority group. To understand why that was, we
applied Differential Sequence Mining (DSM) to the behav-
ioral sequences of interactions and identified demographical
differences in both datasets, answering research question 2.

Specifically, we found that both Ulanguage− and ULANGUAGE+

had distinctive interaction patterns that differentiated them
from the other demographic group. However, in the case
of TugLet, only the minority Ucountry− stood out with its
own specific interaction patterns. If we assumed that the
potential biases which could propagate through this paper’s
pipeline are Data to Algorithm biases [12], it is coherent
with the former Beer’s Law model not presenting any signifi-
cant biases as both groups standing out meant they counter
balanced each other; and coherent with the latter TugLet
model favoring the minority group. Through our analyses,
we found that this bias wouldn’t be a representational bias
as described in [12], but a variation which we called sig-
nal bias: where one of the two groups has more distinctive
traits than the other no matter if they represent the ma-
jority of the dataset. More formally, we defined signal as
the presence or degree of discernible differences or patterns
between the groups that we aim to classify. Consequently, a
dataset with high signal contains substantial variations or
distinct characteristics among the groups, making it easier
to use these differences as input features for classification
tasks. On the other hand, a dataset with low signal lacks
clear or specific traits that differentiate the groups, posing
challenges in accurately classifying them due to the absence
of pronounced differences.

To verify the signal bias hypothesis, we investigated how
the found demographical differences propagated through the
network via Fischerian Random Invariance tests and an-
swered research question 3. We found that the only differ-
entiating signal in the Beer’s Law model was between the
interv. understanding students of different demographic

groups (ULANGUAGE+

interv. versus Ulanguage−
interv. ), implying that either

the final predictive signal must be found in the classifica-
tion layer, or that the differentiating signal is a composition-
signal of different subgroups. That is, that there are no traits
common to the majority of all u ∈ Uinterv. or u ∈ Uhigh, but
rather that there exists multiple possible strategies in ei-
ther u ∈ Uhigh or u ∈ Uinterv., none of them being used
by a majority of the students, all of them being used by
the algorithm to make its final prediction. This explains
the null number of output patterns separating u ∈ Uinterv.
from u ∈ Uhigh, and the better-than-random performances
of the student model. On the other hand, we found that
the TugLet model seemed to be better at separating stu-
dents from different demographic groups rather than from
different understanding levels: the target at hand. This is in
line with our hypothesis about signal biases: original be-
havioral differences across demographics are easier to learn
than these of different understanding levels, as the signal is
stronger across demographic attributes than understanding
levels. Consequently, it focuses on these differences rather
than on what it was trained for. This was strengthened
by our analysis of the misclassified instances that showed
that the algorithm focused on the minority Ucountry− group
when classifying interv. understanding students, the ma-
jority target group of our dataset. Again, using the minor-
ity group to classify instances which majoritarily belong to

the other demographic group led to the biased treatment
of that other group. In short, we found that in neither of
our datasets was the demographical minority group put at a
disadvantage. Surprisingly, the TugLet model even favoured
the underrepresented country− population.

Through our three research questions, we found that a sig-
nal bias might be the origin of these unfairness. Indeed,
the groups which stood out the most from the other ones
and had more differentiating interaction patterns between
their target groups (here understanding levels) appear to be
at an advantage over the others, no matter whether they
are the majority or minority group. Thus, we uncovered
signal biases which occur when the overrepresentations of
distinctive traits seems to lead models to focus on these dif-
ferences. They thus overfit on the signal which prevents
them from generalizing well to the rest of the data. As
representational biases might be mitigated through demo-
graphical resampling methods [12, 11], we hypothesize that
its variation signal bias may be mitigated through behavioral
resampling, according to how close/far away an instance is
from the students carrying the most signal. Through this
study, we thus draw attention on the importance of focus-
ing on behavioral differences in addition to the demographic
differences. Focusing on the Ucountry− students as a whole
would not have changed the proportion of signal for that
particular population as they already make up 73% of the
data. A cleaner approach would be to cluster separately the
higher and interv. students within a same demographic
group in order to find idiosyncratic traits across understand-
ing levels rather than across demographic ones. We would
then optimize the way the clusters are rebalanced based on
the signal measured across understanding levels before the
model is trained. Without such a deep analysis, the risks
of adding noise and therefore letting the algorithm over fo-
cus even more on the population with the largest signal will
increase.

Nonetheless, we temper our conclusions by the limited realm
of our investigation. A deeper investigation through more
OELEs, different tasks, different populations, multi-target
classifiers, and higher imbalance ratios would be required
to generalize these findings. Furthermore, small noise and
differences have a much greater impact on the classification
performances which means that these conclusions could but
may not be generalized to very large datasets. For these
reasons, whether signal biases can be present in much larger
datasets is still an open question. Finally, though this study
has its limitation, we emphasize that considering behavioral
biases is as important as considering demographic biases to
hopefully offer equal education opportunities to the students
and teachers we work to help.
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APPENDIX
A. OELES
A.1 Beer’s Law
In this simulation, the students can turn on the laser, change
the wavelength of the laser, change the nature of the solution
in the task and its concentration, change the width of the
flask, change the dependent variable. Concentration, width
and wavelength sliders can be directly changed by a clik on
the desired value, or can be dragged to observe the contin-
uous change. The independent variables influencing the ab-
sorbance are the width, concentration, and the wavelength
of a laser. Their relationship with the dependent variable
are linear, linear and colour-related respectively. The task
designed to guide students’ inquiry was to rank 4 different
configurations in terms of absorbance (Figure 2, bottom).
They cannot just input the numbers into the simulation,
as they are outside the allowed range on the environment.
Thus, to successfully complete this task, students needed to
plug in the numbers of the 4 configurations into the formula
they extracted during their exploration.

A.2 Tuglet
Tuglet is a choice-based assessment in the form of a game
designed to assess students’ inquiry strategies, in which stu-
dents need to uncover the strengths of 3 characters through
tug-of-war tests. The core concept of the game revolves
around a tug-of-war scenario featuring two teams, each com-
posed of figures with varying strengths categorized as large:
3, medium: 2, and small: 1 (Figure 3). Learners are given
the choice to play in two distinct modes: the “explore”mode
enables them to simulate different team compositions of up
to 4 figures on each side of the cart and observe the resulting
outcomes of tug-of-war matchups. The“challenge”mode, on
the other hand, presents them with the task of predicting
the outcome of specific tug-of-war scenarios followed by feed-
back indicating the correctness of the answer. In the event
of an incorrect prediction, players are redirected to the “ex-
plore” mode for further exploration. Importantly, players
retain the freedom to switch between modes at their dis-
cretion. The game ends when a player successfully predicts
the outcomes of eight consecutive tug-of-war configurations,
each progressively more challenging.

A.3 Feature processing - Beer’s Law
Features are similarly processed as in [6]. In particular,
each click is characterized by: 1) the duration the student
pressed on their mouse button , 2) the nature of the action
(width, concentration, wavelength of the laser, type of so-
lution, “other”, “break”) and 3) the configuration status of
the system based on its usefulness to sucessfully complete
the ranking task (optimal, suboptimal, coherent, or not ob-
servable). Breaks (time intervals between the clicks) are not
explicitly recorded by the PhET environment. Therefore,
still following the methodology described in [6], we inserted
the 40% longest breaks in the interaction sequences as the
shortest ones might be the logistic consequences of setting
up an experiment and moving the mouse, rather than re-
flecting [6]. In short, the features used per students were
thus sequential where each in ∈ Su summarized a click into
one vector.

B. FISCHERIAN RANDOM INVARIANCE
TEST

Algorithm 1 Fischerian Random Variance test over G1 and
G2, for n bootstrap runs

Require: G1 ∩G2 = ∅
µ1 ← mean(G1)
µ2 ← mean(G2)
δ(µ) = |µ1 − µ2|
n1 ← size(G1)
n2 ← size(G2)
g ← G1 ∪G2

c← 0
for run← 1 to n do

Ga ← {} ▷ randomly assign n1 values from G to Ga

for a← 1 to n1 do
ra ← random(size(g)− r1 + 1)
Ga.insert(G[ra])

end for
Gb = G \Ga

µa ← mean(Ga)
µb ← mean(Gb)
if |µa − µb| ≥ c then

c← c+ 1
end if

end for
p← c

n
return p
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