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ABSTRACT
Digital textbook (e-book) systems record student interactions
with textbooks as a sequence of events called EventStream
data. In the past, researchers extracted meaningful features
from EventStream, and utilized them as inputs for down-
stream tasks such as grade prediction and modeling of student
behavior. Previous research evaluated models that mainly
used statistical-based features derived from EventStream logs,
such as the number of operation types or access frequencies.
While these features are useful for providing certain insights,
they lack temporal information that captures fine-grained
differences in learning behaviors among different students.
This study proposes E2Vec, a novel feature representation
method based on word embeddings. The proposed method re-
gards operation logs and their time intervals for each student
as a string sequence of characters and generates a student
vector of learning activity features that incorporates time
information. We applied fastText to generate an embedding
vector for each of 305 students in a dataset from two years
of computer science courses. Then, we investigated the effec-
tiveness of E2Vec in an at-risk detection task, demonstrating
potential for generalizability and performance.
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1. INTRODUCTION
Digital textbook systems are widely used in educational
institutions and online educational services. They not only
provide learning materials to students but also collect logs of
student actions, such as moving between pages and adding
makers or memos, in the EventStream format. Various
studies have been conducted in the fields of Educational
Data Mining (EDM) and Learning Analytics (LA), ranging

from basic learning activity analysis to a deeper evaluation
towards personalized learning support. In such analyses of
e-book data, extracting useful features from EventStream
is a crucial aspect since the features are used as inputs of
downstream machine learning (ML) tasks, such as prediction
of grades or clustering of students based on their behavior.

Previous studies (see Section 2.1) used e-book EventStream
data to extract features consisting of the counts of various
actions (operations) [16, 5, 1, 23]. However, these types of
features do not consider the sequential or temporal informa-
tion of operations or the time intervals between operations.
Flanagan et al. [8] used features that consider sequential
operations, taking into account the order of operations, but
not the intervals between them. Therefore, it is not possible
to capture in detail the differences between how students
spent their time reading the learning materials.

Minematsu et al. [12] proposed CRE (contrastive learning
for reading behavior embedding), a method of feature embed-
ding of EventStream data. They used operation tokens and
timestamps as inputs of the embedding model. Subsequently,
student vectors generated with CRE yielded higher F1-score
than count-based features in downstream tasks. This model
is the basis for our proposed method; however, we introduce
a different unsupervised training model of embedding.

Our research purpose is to evaluate a more fine-grained
representation of learning activities that considers not only
the operations’ order, but also their intervals during student
learning. We propose a novel feature representation method
for EventStream based on word embedding. Our method
considers a set of operations and intervals between operations
as primitive symbols represented by individual characters. A
short learning activity, such as opening an e-book and reading
several pages by flipping them at certain time intervals, is
represented as a series of primitives, named unit. A sequence
of units represents a learning activity, action, over time.

A feature embedding model based on fastText [4], proposed
for effective word embedding, was trained using a large data-
set of actions. Embedding features are then acquired using
the trained model. We call the embedding model “E2Vec”
since EventStream data are vectorized. The resulting em-
bedding features are easy to use in various ML tasks.
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E2Vec aims to improve downstream tasks in education by pro-
viding features that were not considered much in prior work.
Our study empirically investigates whether features obtained
by E2Vec are effective for downstream tasks, evaluating
E2Vec on a task of predicting at-risk students. Specifically,
we explore three research questions:

RQ1 Does E2Vec represent learning activities in an appropri-
ate way, meaning that (a) units similar to each other
and (b) actions similar to each other are converted to
a similar vector embedding?

RQ2 How well do features generated by E2Vec perform when
used as inputs for downstream at-risk prediction tasks?

RQ3 How well do features produced by E2Vec generalize for
applications in different models?

2. RELATED WORK
2.1 Features Representing Learning Actions
Past research employed EventStream data to extract features
describing students’ learning activities in various ways.

Okubo et al. [16] proposed the Active Learner Point (ALP)
as a feature representation of student activities in e-books
and other learning management systems. In ALP, learning
activities, such as the number of markers and memos or
attendance information, were scored in the range between 0
and 5. The scores were used for training a recurrent neural
network (RNN) model for a grade prediction task.

Chen et al. [5] researched early prediction of student grades
using several ML classifiers. They focused on 14 kinds of
operations in an e-book system, and extracted the number
of each kind of operation. The result showed that operations
with e-book memos positively correlated with the students’
academic achievement.

Akçapınar et al. [1] used features such as the total number
of events, total time spent in the e-book system, and the
number of “next page” events. Additionally, they used the
number of events longer than 3 seconds and shorter or equal
to 3 seconds. These were the only considered features that
involved time interval information between operations.

Flanagan et al. [8] used sequential features. They created
5-gram features from preprocessed logs and predicted the
performance in an open-book assessment. However, time
information was only used to determine whether an opera-
tion is recorded before or after starting the assessment, and
operations with intervals of less than 3 seconds were removed
in the preprocessing step.

Another possibility of using EventStream data is a pattern
analysis or clustering based on learning activities. Yin et
al. [24] performed k-means clustering of students based on
learning activities and analyzed the characteristics of each
cluster. Examples of features include total number of pages
read and the frequency of page flipping.

Overall, EventStream data can yield various features. A
common issue among previous studies is that they did not
fully exploit the potential of employing temporal information.
This study aims to address this gap in the literature.

2.2 Word Embedding
In Natural Language Processing (NLP), word embedding
models are used to provide feature representations for words
or documents. Word2vec [10] is one such well-known model,
obtaining distributed representations of words in training
text data. GloVe [18] and fastText [4] were proposed for
an improved representation. FastText can generate a vector
of words that does not exist in the training data using sub-
word information. (A subword is an n-gram of characters.)
Recently, these models have been combined with other ML
models for prediction and classification tasks – see below.

Umer et al. [22] proposed a 3-layer Convolutional Neural
Network (CNN) with fastText embedding for text classifi-
cation and marked higher accuracy than other models on
five datasets. Dharma et al. [7] compared the three word
embedding models – Word2vec, Glove, and fastText – using
text classification with CNN. Furthermore, Riza et al. [20]
used a long short term memory network and fastText for
emotion detection. Tiun et al [21] showed the effectiveness
of fastText in classification of functional and non-functional
requirements in software engineering.

Word embedding models were applied not only to NLP tasks
but also in other fields. An example is item2vec by Barkan
et al. [3]. This model learned distributed representations of
items that correspond to words in Word2vec. Moreover, in
bioinformatics, Ng et al. [14] proposed dna2vec which is a
method for feature generation using skip-gram.

To summarize, the value of feature embedding inspired by
word embedding has been recognized in various studies. We
propose a new feature embedding method based on the
fastText model for EDM. Then, we verify its effectiveness
for student learning logs from e-books.

3. THE PROPOSED METHOD
This section explains how we generate distributed represen-
tations of a student’s learning activity using EventStream.
Figure 1 illustrates our method. There are three main mod-
ules: Preprocessing, Embedding, and Aggregation. We call
the embedding by these series of processes “E2Vec,” and use
fastText [4] to acquire an embedding model. The details of
each module are explained in the following sections.

Figure 1: Overview of E2Vec.



3.1 BookRoll: Reading Data Collection Tool
We used an e-book system called BookRoll [15, 9] to collect
EventStream logs. Students access BookRoll to read a learn-
ing material via a web browser. There are various function
buttons whose usage is recorded, such as moving to the next
or previous page or adding markers.

To identify frequently occurring operations, we recorded
5,698,558 logs in BookRoll from 2021/04/01 to 2022/03/31 in
various courses. Table 1 shows the frequently used operations;
operations with less than 10,000 occurrences are grouped
under“OTHERS”. The log data indicate when, by whom, and
on which material the operation was performed (see Table 2).
The dataset used to determine these operations differs from
datasets in Section 4 used to evaluate our proposed method.

Table 1: Operations in BookRoll and their correspondence to
the primitive symbols.

Operation name Function Primitive

NEXT move to the next page N

PREV move to the previous page P

OPEN open textbook O

ADD MARKER draw a marker A

CLOSE close textbook C

PAGE JUMP go to the specified page J

GET IT feedback on understanding G

the page contents

OTHERS low-frequent operations E

short interval 1 to 10 seconds interval s

between two operations

medium interval 10 to 300 seconds interval m

long interval over 300 seconds interval l

3.2 Preprocessing
During the preprocessing phase, EventStream is converted
into string representations. In NLP, a word is composed
of several characters, a sentence consists of several words,
and several sentences form documents. To apply fastText
to EventStream data, we define primitive, unit and action
corresponding to “character,”“word,” and “sentence,” in NLP,
respectively. An action is a sequence of several units. Each
unit consists of a series of several primitives. A primitive
corresponds to single character (a symbol) defined in Table 1.

Table 3 shows the definition and examples of primitve, unit
and action. Preprocessing is done by the following rules:

1. EventStream log is divided by the student ID and by the
content ID. Therefore, a unit is made from operations
of a student on a lecture material.

2. Frequent operations (see Table 1) are converted into the
corresponding primitive symbols (N,P,O,A,C, J,G ∈
P ); other operations are all replaced by E ∈ P .

3. Insert s,m, l ∈ P between two primitives, correspond-
ing to time interval between two operations. If the
interval between two operations is less than 1 second,
none of the interval symbols are inserted.

4. A unit (u) is a sequence of primitives consisting of
EventStream log up to 1 minute long.

5. Maximal length of a unit is 15 primitives. If there are
15 or more primitives within 1 minute, append ’ ’ to

tail of the unit and treat 15-th primitive as head of
the next unit. If 15-th primitive is s,m, l ∈ P , treat
16-th primitive as the head of the next unit.

6. An action (a) is a sequence of several units.

7. If time interval of two operations exceeds 5 minutes,
the actions are separated. That is, the preceding unit
is the tail of the current action followed by the next
action which begins with a new unit.

To acquire the embedding of learning activities in a short
time, we designed an unit to contain primitives for up to
1 minute or 15 primitives. The maximum length setting
prevents our preprocessing from generating too long units,
as the percentage of units reaching max length (15) was
increased when using 3 or 5 minutes instead of 1 minute.
To characterize a learning activity sequence consisting of a
series of units, actions were separated when long intervals
were observed between two successive operations.

Based on the preprocessing, EventStream of a lecture course
was converted into sequences of actions student by student.
For instance, the EventStream in Table 2 was converted into
the following action sequence Asample.

Asample = {{OsNmNNm, PsAl}
::::::::::::::::

, {N, . . .}
::::::

, . . .}

: unit
::

: action

The first action consists of two units: OsNmNNm and
PsAl. Then, a new action which begins with primitive “N”
is generated as there is an interval longer than 5 minutes
between the event of “ADD MARKER” and subsequent
“NEXT” (see Table 2). Note that the number of actions is
different among students. Some students have up to 400
actions representing their learning activities.

3.3 Embedding
We used fastText, a well-known model for word embedding
in NLP, to generate distributed representation of actions.
FastText generates not only the embedding vectors of words
learned thus far but also unknown words. The advantage
of using the fastText model is that it can generate similar
vectors for two syntactically similar words. Although the fast-
Text model is widely used and many pretrained models are
publicly available, our proposed action sequences have mean-
ings different from those of natural languages. Therefore, we
trained fastText with actions from EventStream.

3.3.1 Training fastText
We followed the training strategy of fastText model based on
skipgram negative sampling [11]. Let A = {a1, a2, ..., an} be
a set of actions generated from EventStream in the training
dataset. As explained earlier, an action consists of a sequence
of units such that each unit is also an element in the set of A.
After training the fastText model, distributed representations
for each unit in A are obtained. In our implementation, we
set the number of dimensions of the embedding vectors to
100. Regarding the other configurations, we followed the
default settings in Meta Research Python module [19] except
for the minimal number of appearance parameter and epoch.
We set the parameter to 1, whereas the default setting was
5, and epoch was set to 30.



Table 2: Sample of EventStream of a student.

userid contentsid operationname pageno marker memo length devicecode eventtime

u1 c1 OPEN 1 0 pc 2022-04-06 13:00:00

u1 c1 NEXT 1 0 pc 2022-04-06 13:00:10

u1 c1 NEXT 2 0 pc 2022-04-06 13:00:24

u1 c1 NEXT 3 0 pc 2022-04-06 13:00:24

u1 c1 PREV 3 0 pc 2022-04-06 13:01:22

u1 c1 ADD MARKER 2 marked text 0 pc 2022-04-06 13:01:30

u1 c1 NEXT 2 0 pc 2022-04-06 13:14:21

Table 3: Definitions of elements.
word definition example

primitive an operation or a time interval between two operations N, P, s

unit sequence of primitives in short span or sequence of 15 primitives and ’ ’ Nm, PsAl, NNNs...N

action sequence of units Nm PsAl ...

3.3.2 Generating Action Vectors
The trained fastText model converts a given unit into its
embedding representation. Let ui be an embedding vector
of an unit. The action vector va is calculated by using
Equation (1).

va =
1

m

m∑
i=1

ui

|ui|
(1)

Note that va is generated student-by-student, and the num-
ber of dimensions is the same as that of ui. Therefore, we
can obtain an embedded representation corresponding to
each student’s learning activity, action.

3.4 Aggregation
Learning activities of a student over a specific period are
represented by a set of actions. We introduce an idea of
“Bag of Words” [25] to obtain a feature representation of the
entire learning activity during the period, namely “Bag of
Actions.” This step consists of creating a CodeBook using
the data for training the fastText model.

3.4.1 Making a CodeBook
First, it is necessary to create a CodeBook using the dataset
A = {a1, a2, ..., an} used for training the fastText model.

1. Remove duplicate actions in A and treat it as A′.

2. Generate embedding vectors for all actions in A′.

3. Perform k-means++ clustering [2] for the embedding
vectors.

4. Store the centroid of each cluster as a CodeWord, which
becomes an element of CodeBook.

The similarity between vectors was measured using cosine
similarity.

3.4.2 Bag of Actions
This is the last step needed to generate student vectors by
E2Vec. Inspired by the Bag-of-Visual-Words approach [6]
used in computer vision research, the proposed approach
generates a histogram representation of actions based on the
CodeBook. Figure 2 shows the process to aggregate one
student’s action vectors as corresponding student vector.

In summary, a student vector represents the characteristics of
a student’s learning activities as a histogram of actions over
time. Its elements reflect operational patterns in the learning
materials. Note that, in the proposed method, temporal
information is considered in action and unit. Therefore,
we can expect to obtain a more detailed representation of
learning activities than by simply aggregating the number of
events, as in previous studies.

Figure 2: Aggregation process of student actions.

4. DATASETS
We used EventStream logs of 6 courses that used BookRoll
and students’ grade information. Table 4 describes each
course. The notations A and D represent the type of courses,
and 2020, 2021, and 2022 represent the years in which the
course was held. These courses were held for computer
science course students in Kyushu University.

The duration of each lecture session was 90 min. Course A is
held in two consecutive lectures in one day, thus we described
the lecture time of course A as 180 min. Logs recorded in and
out of lecture time are used without distinction. ALL-2020
is a concatenation of A-2020 and D-2020, which were used
only for training fastText and making the CodeBook, not for
predicting grades of students in A-2020 and D-2020.

Table 5 shows the distribution of student grades in four
courses that were used as training or test data of at-risk
prediction. Five grades are possible, from A to F. F means
failing a course, while others pass a course. In our study, we
treated grades A and B as no-risk, and C, D, F as at-risk.



Table 4: Information about the courses.
Course Students Logs Weeks Minutes

A-2020 60 142,754 7 180

A-2021 54 130,330 8 180

A-2022 52 197,389 8 180

D-2020 69 253,597 14 90

D-2021 106 287,073 15 90

D-2022 93 282,478 16 90

ALL-2020 129 396,351 – –

Table 5: Distribution of students’ grades.

Course A B C D F No-risk At-risk

A-2021 9 11 10 18 6 20 34

A-2022 17 6 5 22 2 23 29

D-2021 60 3 6 4 33 63 43

D-2022 50 10 8 8 17 60 33

We collected the data after the review of the university’s
Ethical Committee. In addition, students were offered that
their data can be used for research, and they declared their
intention to opt-in or opt-out for this use of data.

5. UNIT VECTOR ANALYSIS (RQ1A)
In this study, we verify which units are similar to each
other in the vector representation and find similarities and
differences between the vectors of known and unknown units.
To generate unit vectors, we used fastText trained with
AALL−2020. fastText learned 33963 units in AALL−2020.

5.1 Method
As an example demonstration, we calculated similarity be-
tween Nm – the most frequent unit generated from students’
activity – and all the units in AALL−2020. For comparison,
the same calculation was performed forNNNNsNmNsNsP l
– unlike Nm, this unit was not trained by fastText. The
former unit is in AALL−2020 and AD−2022. The latter is not
in AALL−2020, but is included in AD−2022.

In addition, we calculated cosine similarity between each of
two units and all the units in AD−2022 and evaluated the
distribution of cosine similarities.

5.2 Result
Table 6 and Table 7 shows the unit similarity results. E2Vec
generated embedding vectors with high similarity (≥ 0.7)
when units had common subwords – i.e., high-similarity units
have common subwords (subword is a sequence of primitives).
Nm and its highly similar actions share the subword Nm. A
common subword implies that two units are created for the
same order of operations and similar time intervals.

In addition, Figure 3 is a histogram of the similarity between
the two selected units and all 25076 units in D-2022. One
unit has fewer similar units and many dissimilar units in the
course activities of students on the learning materials. This
shows that not only features with high similarity but also
features with low similarity were generated.

Overall, these results suggest that the similarity between

Table 6: The most similar units to Nm.

unit similarity

NmONm 0.835

NmOsCNm 0.734

NmGPNm 0.706

NmENm 0.703

Table 7: The most similar units to NNNNsNmNsNsPl.

unit similarity

NNNNsNmNsNsPm 0.937

NNNsNmNsPl 0.894

NNNsNmNs 0.863

NNNNNsNmNs 0.855

Figure 3: Histogram of cosine similarity between Nm or
NNNNsNmNsNsPl and 25076 units in D-2022.

learning activities in a short time is preserved in distributed
representations of units generated with fastText. Also, dis-
similar activities converted into discriminative features. This
is a property of a good feature generator, which should pro-
duce highly similar features for similar inputs and highly
discriminative features for those that are not.

6. ACTION VECTOR ANALYSIS (RQ1B)
A vector of an action a = u1, u2, ... , um is generated
from unit vectors {u1,u2, ...,um}. In our method, the
CodeBook is made to aggregate one student’s actions to
student vector. In the process of making the CodeBook,
k-means++ clustering is performed with the set of action
vectors. In this section, we describe the study of action
vectors. We evaluated the result of clustering and sought to
find the features of action vectors.

6.1 Method
We used fastText, which was trained using AALL−2020. It
has 19979 actions, of which 14016 were unique. In this study,
k-means++ clustering was performed using AALL−2020. The
number of clusters k was set to 10.

We calculated the maximum, mean, and variance of the
length of actions in each cluster. The length of action a is, in
other words, the number of units that constitute a. A long
sequence of units indicates that students execute sequential
operations on learning materials in BookRoll.



6.2 Result
Table 8 shows the quantitative analysis of clusters. Cluster
numbers are sorted by max length of actions. From the
actions length in each cluster, c0 and c1 contains actions
that consist of small number of units. The maximum length
action in this cluster had only 8 and 9 units. Other clusters
involved actions, which consists of large number of units.
However, the mean of the length of actions in each cluster
was less than 10. Also, It can be observed that the actions
in the same cluster have similar unit and sequences of units.
For example, one cluster have sequences composed only of
multiple Ns. These sequences indicated that the student
clicked the NEXT multiple times per second. On the other
hand, some actions do not have similar units to other actions
in the same cluster; and similar actions in different clusters.

Table 8: Descriptive statistics of clusters.
cluster c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

max 8 9 19 23 24 30 33 34 37 64

mean 1.8 2.0 4.0 3.3 3.2 3.5 3.9 7.0 5.0 6.3

variance 1.04 0.93 9.91 6.78 5.67 8.04 9.40 28.6 24.9 37.7

#action 1261 1471 818 1280 1139 1063 915 1859 1118 3092

7. AT-RISK PREDICTION (RQ2, RQ3)
In this study, we performed at-risk prediction as an appli-
cation of student vectors generated by E2Vec. This is a
binary classification task. In our setting, classification mod-
els trained with all the student vectors and their grades of
cx, predicted all the students’ grades of course cy from the
student vectors of cy. The ground truth of this task is stu-
dent’s final grade of cy. At-risk are treated as positive and
no-risk as negative classes. This evaluation aims to verify
the following hypotheses.

h1: The student vectors generated by E2Vec are effective as
an input of classification models for at-risk prediction.

h2: fastText trained with logs from several courses is able
to perform predictions for various courses.

h3: Accurate predictions can be made regardless of the
combination of train and test lecture courses by using
the proposed method.

h1 corresponds to RQ2. h2 and h3 are related to RQ3.

7.1 Method
We used four classification models: Random Forest Classifier
(RFC), Support Vector Machine (SVM), Ada-Boost classifier
(ADA), and k-Nearest Neighbor classifier (KNN), all from
the Scikit-learn library [17]. We aimed to verify that E2Vec
features are suitable as input of different classification models.
Two courses are selected from the four courses in Table 5.
We represent the training course as X and test course as
Y . The at-risk prediction process involves three steps: the
generation of student vectors, training of the classification
model, and prediction. This process is illustrated in Figure 4.

7.1.1 The Generation of Student Vectors
We used the proposed method and two comparison methods
to generate vectors of all students in X and Y , and used
these vectors as input of classification models.

Figure 4: At-risk prediction process (the graphs only illustrate
different distributions; the values are not expected to be read).

1. E2Vec
fastText trained with ALL-2020 was treated as basic
model and compared models trained with A-2020 and
D-2020 used to verify h2. The number of centroids k
was selected from [10, 100]. k was corresponds to the
size of CodeBook and student vector. The compared
models’ dimensions were set to 100.

2. Operation Count Feature (OC)
One student vector was formed by counting the number
of each operation in Table 1 and normalizing to norm 1.
Thus, the dimension of student vectors were 7.

7.1.2 Training Classification Model
To tune the hyperparameters of the classification model, we
performed a grid search with 3-fold cross validation with
training data. This was implemented using the scikit-learn
module GridSearchCV. Students in X were split into three
sets, two of which were treated as training data, and the other
as validation data. The score of the one-hyperparameter set
model was the mean of 3 F1-scores in each validation. The
parameter set with the highest score was selected. In the
prediction, the selected model and the default parameter
model were used. In our implementation, the random states
of the models were fixed at 42 to ensure reproducibility.

7.1.3 Prediction
In this step, two trained classification models (the selected
parameter set model and the default parameter model) pre-
dicted all students in Y as at-risk or not with the student
vector. The output of the classification model is a binary list
of labels. Label 1 indicates that the student is predicted to be
at-risk. For the evaluation, we calculated F1-score using the
predicted labels and ground truth. Table 9 to 11 show only
the higher F1-score of each model’s (tuned hyperparameters
model and default hyperparameters model) evaluation.

7.2 Result
Table 9 shows the result of prediction for A-2022, trained
on A-2021. Table 10 represents prediction results of D-2022,
with classifiers trained on D-2021. These are the cases when
the model was trained with past student information and
predicted students on the same course in the following years.
This is a typical application of at-risk prediction.



Table 9: Prediction F1-scores. Train: A-2021, Test: A-2022.

models E2Veck10 E2Veck100 E2VecA E2VecD OC

RFC 0.68 0.72 0.68 0.71 0.60

SVC 0.70 0.69 0.72 0.61 0.72

ADA 0.63 0.60 0.62 0.54 0.57

KNN 0.63 0.49 0.54 0.42 0.63

Table 10: Prediction F1-scores. Train: D-2021, Test: D-2022.

models E2Veck10 E2Veck100 E2VecA E2VecD OC

RFC 0.65 0.64 0.63 0.61 0.63

SVC 0.59 0.62 0.62 0.60 0.61

ADA 0.68 0.68 0.63 0.62 0.56

KNN 0.45 0.35 0.30 0.35 0.56

In these typical cases, the proposed E2Vec method yielded
equivalent or higher F1-scores compared to Operation Count
Feature, which scored better only in one case (KNN for course
D). Additionally, E2Veck10 and E2Veck100 were trained using
ALL-2020. The prediction results using these models were
not much lower than those of E2VecA and E2VecD trained
with only A-2020 and D-2020. The predicted A-2022 students
with RFC and E2Veck100 scored 0.72. It achieved a better
F1-score than E2VecA (0.68).

Therefore, for verifying h1, the proposed method is effective
when used as the embedding method for at-risk prediction.
Also, for h2, fastText trained with several courses can be
used without declining of prediction quality compared to
when trained with one course.

Table 11 shows the result of prediction with RFC for all
combinations of training and test courses. The sets of training
and test data are represented as (Train, Test). As a result,
in most cases, predictions using the same course data such
as (A-2021, A-2022), (A-2022, A-2021), (D-2021, D-2022)
and (D-2022, D-2021) achieved high F1-scores. In particular,
the F1-score of the prediction for (D-2022, D-2021) with
E2Veck100 is 0.85. However, the predictions for some datasets
had lower F1-scores. For example, prediction of (D-2021,
A-2022) with E2Veck100 scored 0.24. It was much lower than
the Operation Count Feature’s score of 0.73.

Table 11: F1-score of at-risk Prediction with RFC.
Train Test E2Veck10 E2Veck100 E2VecA E2VecD OC

A-2021 A-2022 0.68 0.72 0.68 0.71 0.60

D-2021 0.55 0.60 0.58 0.59 0.52

D-2022 0.49 0.53 0.53 0.53 0.50

A-2022 A-2021 0.69 0.71 0.69 0.70 0.63

D-2021 0.69 0.67 0.76 0.75 0.68

D-2022 0.48 0.51 0.59 0.61 0.36

D-2021 A-2021 0.63 0.53 0.41 0.41 0.74

A-2022 0.63 0.24 0.24 0.24 0.73

D-2022 0.65 0.64 0.63 0.61 0.63

D-2022 A-2021 0.54 0.59 0.56 0.56 0.74

A-2022 0.47 0.38 0.41 0.29 0.67

D-2021 0.80 0.85 0.85 0.86 0.81

Based on these results, training data of the classifiers affected
the result of prediction using feature vectors generated by
the proposed model. In other words, h3 was rejected. When
training data and test data are the same course held in
different year such as (D-2021, D-2022), F1-score of at-risk

prediction is higher than in most other cases. Whereas, when
using data of course D- for training and A-2021 or A-2022
for testing, E2Vec achieved much lower F1-scores than OC.

8. DISCUSSION
For RQ1, the effectiveness of E2Vec was shown in Section 5
and Section 6. The unit vectors preserve the similarity of
student operations in a short time. Regardless of whether
unit is involved in the vocabulary of fastText, the input unit
and the similar units shared sequences of primitives. In
addition, action vectors have similarities that correspond to
the sequences of operations. Based on the clustering, actions
in the same cluster have similar units. Thus, the distributed
representations of units generated by E2Vec are effective
representations of student learning activities.

For RQ2, Section 7 showed that E2Vec can be used as a
feature expression method for at-risk prediction using several
ML models. We investigated a practical use case of using
past course data for model training and the following year’s
data for prediction. In typical cases, the F1-scores using the
features generated by E2Vec were comparable or higher than
the traditional approach, so we conclude that the features
can be suitably utilized for downstream tasks.

For RQ3, F1-scores of using E2Veck100, in which mixed
course data was used to train fastText, were comparable to
those of using single course data such as E2VecA or E2VecD
(see Table 9 and Table 10). In general, using the same
course data used in feature extraction and its prediction task
led to successful results. On the other hand, our results
suggest that fastText model does not have to be trained by
specific course data. Once a fastText model is trained using
a mixed dataset from past courses, the model can extract
robust features that can be used universally. When we used
E2Vec features for at-risk prediction, the training data used
for the classification model (not fastText model) exhibited
differences of prediction quality. It implied that the same
learning activity has a different influence on the final grade
in each course.

The limitation is that our study used data from six courses at
our university. The number of students in one course ranged
from 50 to 100, and the grade distributions differed. In addi-
tion, if our method is used with other e-book EventStream,
additional preprocessing is required, because our implemen-
tation only corresponds to BookRoll EventStream.

9. CONCLUSION
We proposed E2Vec – a method of feature expression from
e-book EventStream. Our method uses fastText, a word
embedding model, to learn the distributed representations
of operations in a short time, called unit. Similar units have
similar representations, and actions in the same cluster have
a common units or subword. We applied our method to
at-risk prediction, which is a representative task in EDM.
Our model recorded a higher F1-score than the operation
count features for at-risk prediction in typical cases.

Future work should apply E2Vec with deep learning models
or other EDM tasks, such as early prediction of student
dropout. Finally, the impact of changing intervals on the
prediction performance needs to be evaluated.
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APPENDIX
A. SUPPLEMENTARY MATERIALS
The code written to produce the results reported in this
paper is publicly available at:
https://github.com/limu-research/2024-edm-e2vec.

B. OPENLA
E2Vec functions have been implemented in “OpenLA: Li-
brary for Efficient E book Log Analysis and Accelerating
Learning Analytics”[13], which is available at https://limu.
ait.kyushu-u.ac.jp/~openLA/. The trained model used in
this paper is also available at https://limu.ait.kyushu-u.
ac.jp/~openLA/models/.
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