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ABSTRACT
In a broad analysis of a large, diverse sample
of students, we found robust support for the groundbreak-
ing assertion that student learning rates in various educa-
tional technologies are “astonishingly” similar (Koedinger,
Carvalho, Liu, & McLaughlin, 2023, “An astonishing regu-
larity in student learning rate,” Proceedings of the National
Academy of Sciences). Koedinger et al. (2023) initial find-
ing challenges long-standing beliefs about variability in stu-
dents’ learning rates. It suggests that the main requirement
for learning within educational technologies is additional op-
portunities. The strength of this claim and its implications
warrant deeper investigation. Here we replicate those orig-
inal results leveraging much larger data sets with, collec-
tively, over 15,000 students and 821,890 observations across
6 math topics. These data from the MATHia intelligent tu-
toring system reflect a diverse student user population learn-
ing in a “business as usual” context. Finally, we provide ad-
ditional evidence in the form of confidence intervals around
the variance to support this claim.
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1. INTRODUCTION
Recent advances in educational technology and modeling of
individual differences [14] have invited renewed investiga-
tion into a long-standing debate regarding whether students
show variability in their learning rates [17]. In response,
Koedinger et al. [11] analyzed student learning rates across
a variety of educational technology platforms and found an
“astonishing regularity” in student learning rates across 27
research datasets gathered for cognitive modeling over the
past several decades. They concluded that when students
are provided with quality opportunities to learn (OTL), they
learn at similar rates across each opportunity [11]. In con-
sideration of the importance of replication for substantiating

novel claims [9], we replicate and extend these findings with
larger more recent samples, adding reliability and robustness
to the initial claim.

Some early theories into the question of individual differ-
ences in learning rates suggested that given an ideal learn-
ing environment, students would learn at the same rate [4].
However, initial analytical investigation found substantial
differences [1, 2] and subsequent work has focused on identi-
fying the nature of those differences rather than determining
the extent of the variability [3, 7, 9, 13, 17, 22, 24, 25]. The
findings of Koedinger et al. [11] invite a reframing of this
prior work and the role of individual differences.

1.1 Measuring Learning
Additive Factors models (AFMs) quantify the probability
of a correct response in a task as a function of the additive
contributions of the component cognitive skills [5]. Equation
1 gives the essential formulation of the AFM.
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(
pij

1− pij

)
= θi +ΣK

k=1qjkβk +ΣK
k=1qjkγkTik, (1)

where θi is the student ability, qik the indicator flag for each
skill, βk the skill difficulty, γk the skill’s increment or decre-
ment to an overall learning rate, and Tik the number of
practice opportunities the student has had so far to learn
the skill.

AFMs can be expressed either as fixed-effect models or as
multilevel models [6]. AFMs are specified in their logis-
tic regression form, but are isomorphs for compensatory,
multi-skill IRT models [7, 11]. Initially, the multilevel AFMs
were intended to evaluate task models and included random
slopes for skills but not for students [5]. In recent years, re-
searchers have expanded the model to include a fixed, over-
all learning rate, as well as random slopes for students to
quantify individual differences in learning (See Equation 2).
This modification creates bona fide growth models, which
have the benefit of simultaneously measuring growth and
initial status while avoiding the pitfalls of using gain scores
[20]. This revised model is called the individualized-slope
Additive Factors Model (iAFM) [14].

ln

(
pij

1− pij

)
= θ+θi+ΣK

k=1qjkβk+ΣK
k=1qjk (δ + δi + γk)Tik,

(2)

where θ is the overall intercept, the average initial ability, θi
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Table 1: Datasets selected from Koedinger et al. [2023]

DS Topic
N
Records

N
Stu-
dents

N
Skills

99 High School Geometry 17,419 51 39
104 College Physics 6,024 104 12
253 Geometry, High School

Geometry, Area
14,875 41 22

392 Middle School Geome-
try, Area

41,602 123 38

1007 College Computer Sci-
ence

5,063 49 4

Note. Numbers in the DS column refer to dataset
identifiers in LearnSphere DataShop, available at
http://pslcdatashop.web.cmu.edu[10].

the student initial ability, qik the indicator flag for each skill,
βk the skill intercept, i.e., difficulty, δ the overall growth
or learning rate, δi the student’s increment or decrement
to that rate, and γk, the skill’s increment or decrement to
that rate, and Tik the number of practice opportunities the
student has had so far to learn the skill. The ln of the odds
for pij transforms results to the logit scale, or log odds scale
an interpretable, continuous score scale.

1.2 Present Study
Given the long history of finding variance in learning gains
and rates and evidence that these are attributable to indi-
vidual differences [1, 2, 3, 8, 9, 13, 17, 22, 24, 25] confidence
in Koedinger et al’s findings will require additional replica-
tion and investigation into the models. Therefore, we set
out to replicate Koedinger et al.’s 2023 study on datasets
from Carnegie Learning’s MATHia intelligent tutor system
(ITS; formerly Cognitive Tutor) [18]. These data offered ad-
vantages of greatly increased sample size, increased diversity
among students (i.e., an approximately nationally represen-
tative sample), more observations per student, operational
(i.e., “live”) context, and recent provenance, i.e., 2022-2023
school year.

2. STUDY 1: DIRECT REPLICATION
We first sought to verify the implementation of our models
by using them to replicate the findings of Koedinger et al.
[11]. We then extended their analysis to determine how skill
model choice affected the results. See Table 1 for details
about the data sets. Following the same exclusion criteria
(i.e., dropping all skills for which there are not 10 students
with more than 3 observations each), we recovered the same
interquartile range (i.e., middle 50%, IQR) reported in the
original paper to the thousandth decimal place. We addi-
tionally report two new statistics which further support the
robustness of the original findings for these datasets. First,
the variance of the random effects was small suggesting low
variation in student slopes even among students outside the
IQR. Second, we found the IQR for all candidate skill mod-
els and report small deviations in IQR across models within
a DS. Maximum IQR found across all five replicated data
sets here did not meaningfully exceed those reported in the
paper. The low range in IQR across models demonstrates
that choice of skill model would not have affected the inter-

Table 2: Directed Replication Statistics

DS
Origi-
nal
IQR

Repli-
cated
IQR

Student
Slope
Variance

Range in IQR
across all Skill
Models

99 0.012 0.012 0.00015 (0.002, 0.017)
104 0.012 0.012 0.00034 (0.010, 0.057)
253 0.015 0.015 0.00020 (0.009, 0.016)
392 0.013 0.0137 0.00042 (0.006, 0.015)
1007 0.047 0.047 0.00200 (0.010, 0.105)

Note. Original IQR reflects the IQRs reported by
Koedinger et al. [11]. Student slope variance reflects the
un-shrunken variance.

pretation of the Koedinger et al. findings. See Table 2 for
statistics.

3. STUDY 2: REPLICATION ON MATHIA
Study 2 extends the findings from Koedinger et al. [11] by
applying the same model to larger data sets from a more
diverse pool of participants who are engaging with an ITS
(MATHia) in a “business as usual” context. MATHia’s stu-
dent population is broadly representative of the US K-12
population.

3.1 Data
Domains were chosen to closely align with the area and ge-
ometry topics covered in DS99, DS253, and DS392. Six
MATHia topics or workspaces were identified. We consid-
ered student event or action-level data (sometimes referred
to as “records”) from the 2022-2023 school year. Records
were limited to first attempts at steps within each problem.
Keeping with Koedinger et al.’s practice, skills with fewer
than 10 students and students with fewer than 2 records were
removed [11]. As in Koedinger et al., data were converted
to the student-step-rollup format, where multiple skills cor-
responding to the same student step are concatenated into a
single, combined skill. Tables A1 in Appendix A shows the
total number of records, students, and concatenated skills
eligible for use in the study as well as the number of records
available for each student. Data management was conducted
with scala version 2.12, python version 3.12, and pandas,
version 1.4 [21, 23, 16].

The initial data sets were too large to perform computational
modeling in a convenient time frame. Therefore, we sampled
3,000 students per workspace at random and included all
eligible records for those students. One workspace had only
570 students, all of whom were included in the model. No
skills were lost in sampling, and students had a large number
of records for growth modeling, m = 55 records, range =
(24.59, 91.02), (see Table 3).

3.2 Results
Separate models were fit for each MATHia workspace. Table
A2 in Appendix A shows fit statistics for each workspace.
We adopted a liberal rule of requiring at least 10 skills for
reporting skill-level random effects. Rules of thumb for such
inclusion vary greatly, e.g., from 5, 30, to 50 units. Con-
sequently, skill-level random effects were not reported for
the Determining Parts of Quadrilaterals and Parallelograms
workspace given its small number of skills (n = 5). Table



Table 3: Number of Records, Students, and Skills for Sampled Data by MATHia Workspace

Workspace N Records N Students N Skills Mean Records per
Student

W1. Using Measures of Circles 39,948 570 57 70.08 (14.96)
W2. Calculating Area of Composite Figures 273,048 3,000 12 91.02 (43.47)
W3. Calculating Circumference and Area of Circles 145,145 3,000 22 48.38 (15.27)
W4. Calculating Area of Various Figures 179,362 3,000 12 59.79 (17.21)
W5. Calculating Area of Rectangles 110,955 3,000 12 36.99 (16.07)
W6. Determining Parts of Quadrilaterals & Parallelo-
grams

73,762 3,000 5 24.59 (5.68)

Note. Parentheses reflect standard deviation from the mean.

4 shows the estimates for fixed effects for each workspace
and their associated Wald 95-percent confidence intervals.
All fixed slopes were positive, which suggests that students
were learning. The confidence intervals for the slopes were
reasonably small, which suggests their estimation was good.
The confidence intervals for the overall intercepts were sur-
prisingly wide, which suggests this effect was poorly esti-
mated.

Table 4: Fixed Effects Coefficients with 95-Percent Confi-
dence Intervals

Workspace Effect Coef LL.025 UL.975

W1 Intercept 1.15 0.88 1.41
Slope 0.48 0.40 0.55

W2 Intercept 0.09 -0.35 0.53
Slope 0.16 0.09 0.22

W3 Intercept 0.81 0.48 1.15
Slope 0.45 0.36 0.53

W4 Intercept -0.31 -1.02 0.40
Slope 0.30 0.22 0.38

W5 Intercept -0.13 -0.62 0.35
Slope 0.39 0.33 0.46

W6 Intercept 1.69 0.65 2.73
Slope 0.45 0.34 0.55

Regarding uncertainty in parameter estimation, we found
that confidence intervals for the student intercepts, student
slopes, and fixed slopes in the CL data were very small (max
range was .18 logits for student intercepts and student slopes
.0013 and skill slopes .0306, fixed slopes .08 logits). This
finding suggests the iAFMmodel provides precise estimation
for most of its random effects and fixed slopes.

Estimation was much less precise for the skill intercepts (min
range = .55 logits). This is most likely due to the relatively
small number of skills in each dataset. It is unclear why the
skill slopes appear unaffected (Table A3 in Appendix A).

A problem emerged with the estimation of the fixed inter-
cepts. The confidence intervals were very wide for several
workspaces (max range = 1.04 logits). It’s puzzling that the
iAFM model seemed to have trouble estimating this effect.
Typically, fixed effects are easily estimated and with much
less data required than for random effects [12, 15]. However,
some tinkering with the multilevel model for the Calculat-
ing Circumference and Area of Circles workspace revealed
that the presence of skill slopes in the model led to the large

uncertainty in estimates for the fixed intercept. Low sam-
ple size does not appear to be much involved, because this
workspace has a respectable number of units, i.e., 22 skills.
We are still investigating why including random skill-level
slopes in the model is having this effect on estimation.

Table 5 shows the IQRs and their bootstrapped 95-percent
confidence intervals. As in Koedinger at al. [11], these IQRs
are quite small. The largest student slope IQR was .116 for
Properties of Parallelograms. However, even this IQR was
only slightly larger than the largest IQR that Koedinger et
al. identified. Their largest student slope IQR was .102, for
a dataset covering acquisition of Chinese vocabulary. Ta-
ble 6 shows the bootstrapped means, empirical standard er-
rors, and 95-percent confidence intervals for the shrunken
variance components of the student random effects for each
workspace’s model.

Table 5: Student-Level IQRs with 95-Percent Bootstrapped
Confidence Intervals

Workspace Effect Mean IQR LL.025 UL.975

W1 Intercepts 1.0271 0.9332 1.1308
Slopes 0.0355 0.0305 0.041

W2 Intercepts 1.0698 1.0255 1.1129
Slopes 0.0056 0.0054 0.0058

W3 Intercepts 1.3238 1.2618 1.3784
Slopes 0.0666 0.0627 0.0705

W4 Intercepts 0.8525 0.8174 0.8908
Slopes 0.0136 0.013 0.0142

W5 Intercepts 1.0568 1.0156 1.1042
Slopes 0.0797 0.0739 0.0850

W6 Intercepts 0.7474 0.7034 0.8021
Slopes 0.1182 0.1129 0.1246

As with the IQRs, the student slope variances were quite
small. This is especially apparent in comparison to the vari-
ance components for skill-level random slopes, which were
much larger than the student slopes (Table A3, Appendix
A). The confidence intervals for most random effects were
reasonably small, which suggests good estimation. Impor-
tantly, the student intercept variances had a much wider
range suggesting students did not start each workspace with
similar levels of content knowledge.

4. GENERAL DISCUSSION
4.1 Summary and Conclusions



Table 6: Student-Level Shrunken Variance Components with
95-Percent Bootstrapped Confidence Intervals by MATHia

Workspace Effect Mean IQR LL.025 UL.975

W1 Intercepts 0.6503 0.5656 0.7388
Slopes 0.0015 0.0012 0.0017

W2 Intercepts 0.5492 0.5233 0.5763
Slopes <.0001 <.0001 <.0001

W3 Intercepts 0.8102 0.7699 0.8507
Slopes 0.0035 0.0033 0.0037

W4 Intercepts 0.3809 0.3604 0.4029
Slopes 0.0001 0.0001 0.0001

W5 Intercepts 0.6047 0.5761 0.6349
Slopes 0.0044 0.0042 0.0047

W6 Intercepts 0.321 0.3013 0.3435
Slopes 0.0087 0.0081 0.0094

The most important “take-aways” from this project are

• The extremely small student learning rate variance
that Koedinger et al. [11] identified persists in sim-
ilar modeling in similar mathematical topics on much
larger datasets involving more diverse student popula-
tions. This finding held whether the spread in student
learning rates was measured by the IQR or by variance
components.

• This finding supports the idea that EdTech products
reduce inequity with the additional OTLs and scaf-
folding they offer [11]. Earlier research into decreased
variance in student learning rates in mastery learn-
ing revealed a “mixed” picture [1]. Today’s researchers
might find wider support for the equity hypothesis.

4.2 Additional Findings
Our research produced incidental findings likely of interest
to the learning science communities. The positive overall
slopes from the MATHia models’ fixed effects (Table 4) in-
dicate that students are learning. Uncertainty for most pa-
rameter estimates was acceptably small except for the fixed
intercepts and random skill intercepts.

4.3 Skill Model Selection in Koedinger et al.’s
Data

In reanalysis of Koedinger et al.’s [11] data, we found that
selection of the skill model had little effect on variance sug-
gesting that the finding concerning student slope variance is
robust and not sensitive to other parameters in the model.

4.4 Implications for Teaching and Learning
Education has long been concerned with the Matthew effect,
a finding that students who start with more prior knowl-
edge or better resources not only remain ahead but learn at
faster rates exacerbating knowledge gaps [24]. The results
here offer hope for reframing this effect. Students who start
further behind can learn at the same rate if provided with
quality OTLs, but in order to catch up to their peers, these
students will need to be provided with more opportunities
than their peers. Under this paradigm, ensuring students are
provided with the opportunities they need becomes critical.

Indeed, one reason these results may have been detected
among students using EdTech tools is that these tools of-
ten provide students with extra OTLs, hints, instructional
materials, adaptive learning, and other supports considered
foundational to learning [4, 19]. Thus, these results highlight
the importance of equity in access to opportunities and the
critical role this plays in learning.

4.5 Limitations
Users should remember that the iAFM is a very new model
and will require subsequent evaluations before researchers
should unqualifiedly accept its estimates. The large uncer-
tainty in estimation around the fixed intercepts and skill
slopes suggests that all is not well with the iAFM applied
to the MATHia data. Researchers have, however, already
ruled out a substantial body of potential artifacts, e.g., pos-
sible over-shrinkage of slope variance components and possi-
ble confounding of skill and student variances[11]. Secondly,
the research covered a only handful of topics in mathemat-
ics. Researchers should extend this modeling to more topics
and varieties of assessment and pedagogical data to learn if
the findings generalize.

4.6 Next Steps
We plan to run similar models on MATHia data where we
hypothesize either very little student slope variance or large
student slope variance and examine the results. For in-
stance, in a topic area where very few students have had pre-
exposure, we would expect to find greatly decreased student
slope variance. On the other hand, in the MATHia Con-
cept Builder workspaces, where all students have the same
number of OTLs, we would expect to find increased student
slope variance.

Additionally, in such studies we could examine the relation-
ship between student intercepts and student slopes. Student
intercepts represent pre-knowledge and can have an effect on
the student slopes.

As part of the learning science community’s continuing ef-
forts to evaluation the iAFM models, we plan to conduct a
simulation study and assess bias and spread in parameter
recovery.
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APPENDIX

A. APPENDIX
This appendix provides supplementary tables to support
interpreta- tion of the paper’s text.

Table A1: Number of Records, Students, and Skills for Source
Data by MATHia Workspace

Work-
space

N
Records

N Stu-
dents

N
Skills

Mean
Records
per Student

W1 39,948 570 57 70.08 (14.96)
W2 3,947,106 43,589 12 90.55 (43.53)
W3 3,597,403 74,657 22 48.19 (15.19)
W4 3,043,161 50,987 12 59.69 (17.43)
W5 2,293,361 62,658 12 36.60 (15.92)
W6 379,385 15,381 5 24.67 (6.01)

Note: Parentheses reflect standard deviation from the
mean.

Table A2: Fit Statistics for GLMM Models by MATHia
Workspace

Workspace BIC Log Likelihood

W1 28,152.10 -14,033.67
W2 240,696.00 -120,297.93
W3 117,928.44 -58,916.68
W4 112,535.62 -56,219.42
W5 97,074.56 -48,490.81
W6 55,678.93 -27,794.63



Table A3: Skill-Level Shrunken Variance Components with
95-Percent Bootstrapped Confidence Intervals by MATHia
Workspace

Workspace Effect Mean IQR LL.025 UL.975

W1 Intercepts 0.7350 0.4819 1.035
Slopes 0.0298 0.0208 0.0408

W2 Intercepts 0.5983 0.1077 1.3237
Slopes 0.0122 0.0043 0.0209

W3 Intercepts 0.5347 0.2676 0.8792
Slopes 0.0303 0.0191 0.0478

W4 Intercepts 1.503 0.2847 3.2994
Slopes 0.0161 0.0031 0.0337

W5 Intercepts 0.6659 0.2202 1.1660
Slopes 0.0134 0.0060 0.0218

W6 Intercepts † † †
Slopes † † †

†Fewer than 10 skills


