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ABSTRACT 
Metacognitive information has been shown to be related to 
performance in learning tasks. We investigated feelings of 
difficulty (FOD) in the context of university-level mathematics and 
asked whether and to what extent they predict performance. To this 
end, we conducted an experiment with 90 students and six 
experienced lecturers. We carefully designed a test of linear algebra 
tasks and recorded FOD through self-reporting in two phases with 
the students and in one with the lecturers. The results show that 
both instances of FOD can predict the outcome with an accuracy 
well above the baseline. We noticed significant differences in the 
reporting of FOD before and after solving tasks. Moreover, FOD 
differ in relation to the level of confidence for groups of good and 
weak performers among students. We also proposed a workflow 
that leverages machine learning and FOD to individualize 
education mathematics instruction. 

Keywords 
Feelings of difficulty, metacognitive information, machine 
learning, mathematics. 

1. INTRODUCTION 
There have been various attempts to use different types of features 
and models to predict students' ability levels in certain tasks, their 
likelihood of solving such tasks, or to model the 'learner' more 
generally. Much valuable work has been done by communities 
researching these questions in fields like educational data mining 
and artificial intelligence in education (see [2, 3, 10]). In this 
context, various machine learning models – from classical models 
to advanced neural network architectures – and strategies were 
employed to model the learner and predict learning outcomes and 
performance. Some of the widely used modeling strategies within 
learning analytics and in educational data mining include 
‘knowledge tracing’ (see [5, 21, 30, 31], to mention just a few).  

Cognitive scientists, on the other hand, are also concerned with 
finding good predictors of learning outcomes and performance that 
are based on cognitive processes and can be studied with the tools 
developed in their field. Metacognition is one of the categories of 
concepts used in an attempt to understand learning. Metacognitive 
information refers to the awareness, knowledge, or feelings that 
humans have about their own thoughts or thinking processes. This 

can be summarized as 'thinking about thinking' [18, 25]. Various 
concepts of metacognition, such as judgments of learning (JOL), 
feelings of learning (FOL), feelings of knowing (FOK), and 
feelings of difficulty (FOD), have been studied. They play an 
important role in cognitive science and education research, as they 
have been shown to help regulate learning ([8, 14, 25, 34]). JOL, 
for instance, have been widely explored with the goal of 
understanding metacognitive monitoring and were shown to be a 
good predictor of performance and learning success in tasks such 
as word-pair learning [17, 28, 29].  

Although metacognitive information cannot be measured directly, 
there is neuro-scientific imaging research that analyzes aspects of 
metacognition. For instance, neural correlates for JOL for memory 
formation tasks were studied in [22]. It is shown that there are two 
distinct activated brain regions associated with actual and predicted 
memory formation and one common region (lateral and 
dorsomedial prefrontal cortex) associated with both predicted and 
actual encoding success. Similar discussions about the neural basis 
of other metacognitive concepts have been reviewed in [19].  

Because it cannot be measured directly, metacognitive information 
is usually collected through self-reporting. For instance, for JOL, 
subjects may be asked to report on a scale from 0 to 100 how likely 
they think they are to remember a newly learned word in a foreign 
language after one week. There are several ways to categorize 
metacognitive notions. Metacognitive information can be classified 
into two categories: one type that is collected prospectively (i.e., 
before attempting a task) and one that is collected after performing 
a task, which is called retrospective (see [19]).  

Some recent work [1] has studied different ways of providing 
metacognitive interventions in the context of intelligent tutoring 
systems (ITSs). Deep reinforcement learning has been employed 
for an adaptation of dynamic changes in students’ metacognitive 
levels.  

Accordingly, crucial aspects of metacognition information include: 
how to measure it, how effective it is as a predictor of performance, 
and whether such data are biased (e.g., self-reporting bias) see [6, 
20, 33]. One relevant example is the overconfidence bias, where 
people consistently overestimate their ability to solve tasks or recall 
information from memory [9, 16, 24, 27, 32]. Self-reported 
information can lead to results contrary to the actual performance, 
learning outcomes, or the effectiveness of learning or instructional 
strategies. Feelings of learning (FOL) were studied in [7] at the 
university level, and different modes of instruction were compared. 
They showed that students’ perception of learning is not always 
aligned with the actual outcome. Students in an active learning 
setting (as opposed to traditional passive lecturing) had lower 
feelings of learning, despite having a better outcome. Another 
important aspect of reporting is the accuracy of judging others. For 
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instance, [23] shows a high correlation (r=0.80) between teachers’ 
judgments and an objective evaluation measure. When it comes to 
judging others, whether one makes an over- or underestimated 
judgment depends on the type and difficulty of the tasks [27].  

There are ways to enhance the collection of metacognitive 
information so as to increase its predictive power (for performance 
prediction). It was pointed out in [29, 35] that one should not rely 
on short-term memory (STM), that is, to ensure that the feedback 
is based solely on long-term memory (LTM). This helps to avoid 
the potential negative impact of noise stemming from STM.  

In this study, we deal with the notion of feelings of difficulty 
(FOD), which was introduced and studied in [11–13]. According to 
study [12], FOD are online metacognitive experiences that provide 
a subjective estimation of task difficulty. They are thought to arise 
as a reaction of people to the difficulty of a task. FOD were 
collected by asking subjects to self-report on a given scale how 
difficult they believe a task is. They were studied in the context of 
high-school-level mathematics and word-pair learning success [11, 
12, 17].  

Much research on task difficulty focuses on objective measures of 
complexity. The relation of objective and subjective measures of 
difficulty to performance is intricate [26] and thus requires further 
studying.  

Collecting FOD does not require one to first attempt to solve a task 
and thus FOD can be collected prospectively. They can also be 
collected retrospectively, and we will make use of both. The core 
question underlying this study is whether FOD are effective 
predictors of performance for advanced mathematics tasks. This 
can be further specified to understand the predictive power and 
differences between prospective and retrospective variants of FOD 
and how these relate to confidence.  

To this end, we conducted a study with 90 first-year undergraduate 
university students, in which they had to solve a mathematics test 
of 20 carefully designed multiple-choice tasks in linear algebra. We 
used reporting on the interval [0,100] for FOD, which are collected 
at two different times in the experiment, once before and once after 
attempting to solve the tasks – a prospective and a retrospective 
variant. We call the retrospective instance of FOD “judgments of 
difficulty” (JOD), since the student had the chance to inspect the 
possible answers and attempt to solve the tasks. Despite its similar 
naming, this is to be distinguished from JOL. 

We trained various machine learning models to predict the outcome 
(whether tasks are solved correctly or not). Both the prospective 
and the retrospective variants of FOD have been shown to be good 
predictors of solving success, with the latter leading to significantly 
better results. We also asked the lecturers to report FOD on the 
same exercises as the students. Interestingly, FOD provided by the 
lecturers led to better prediction results than those provided by 
students. Moreover, there are significant differences in the 
reporting of FOD and JOD between male and female students. 
Additionally, students were asked to report how difficult they think 
their peers will find the overall test before attempting to solve the 
test (which we call “peer OFOD”, or POFOD for short) and after 
solving the test (called “peer OJOD”, or POJOD for short). 

To our knowledge, this is the first study of FOD on university-level 
linear algebra material. Furthermore, it is the first to use a 0–100 
self-reporting scale in the context of FOD. Thanks to this scale, 
considerations about absolute FOD can be approached similarly as 
discussed in [29] about JOL.  

Ours differs from other studies of FOD, like [11–13] and [15], in 
that we deal with: 

- University-level (linear algebra) tasks. 
- Students from four different engineering programs.  
- Multiple-choice exercises with four choices.  
- A diverse set of tasks covering a broad range of 

difficulty levels and topics in linear algebra.   
- FOD reporting on the interval [0,100] instead of a 

Likert scale. 
- Experimental design that allows answering questions 

about FOD at different time intervals.  
- FOD reporting by students and lecturers. 
- Overall FOD measured at two points in time (OFOD, 

OJOD). 

Moreover, we trained various machine learning models to predict 
the outcome of performance based on features such as FOD, JOD, 
OFOD, and OJOD.  

2. METHODOLOGY 
2.1 Participants 
This study involved six parallel cohorts of engineering students 
attending linear algebra lectures as part of four different study 
programs at a Swiss university, with each lecture taught by a 
different lecturer. A total of n=90 participants (79 males and 11 
females), divided into six distinct groups (n1=11, n2=12, n3=14, 
n4=15, n5=15, n6=23), voluntarily enrolled into the study. The age 
of the participants ranged from 19 to 49 years (the latter being an 
outlier), with a mean age of 22.35 and SD=3.36. Written consent 
was obtained from all participants, authorizing their participation 
in the study and the anonymous use of their data for future research 
purposes.  

2.2 Materials 
We designed a test of 20 multiple-choice linear algebra tasks, each 
containing four possible answers, of which only one is correct. 
They were thematically aligned with the material covered in the 
lecture up to one week prior to our experiment. The level of 
difficulty varied across the tasks, ranging from very simple to 
challenging, while most of the tasks were of moderate to upper-
moderate difficulty. This made it possible to study whether students 
can discriminate between different difficulty levels. Instances of 
these tasks included straightforward tasks, such as computing the 
sum of two vectors, and more complex ones that require a good 
understanding of fundamental notions. Neither the lecturers nor the 
students had any prior information about the specific content of the 
exercises or the detailed nature of the experimental design.  

2.3 Procedure 
The students were informed during a prior lecture that an 
experimental study with voluntary participation would be 
conducted the following week. On test day, they received an 
introduction to the experiments that were to be conducted and were 
reminded that participation was voluntary. The academic directors 
of the different study programs had already provided consent for 
the study's execution. Subsequently, interested students were asked 
to read and sign a consent form. Additionally, they were made 
aware of the relevant data protection laws of the canton of Zurich. 

The study was divided into two successive parts, with instructions 
reiterated and clarified as needed. The procedures were uniformly 
implemented across each of the six groups. Figure 1 depicts the 
different steps in the process. During the first part of the study, 
students were presented with mathematical exercises on 



   

PowerPoint slides that were projected on the wall and were well-
readable by all students. The students were instructed to 
subjectively evaluate the difficulty of each exercise and to write 
down a value between 0 and 100 on a paper form. Each task was 
displayed for a duration of precisely 15 seconds, punctuated by a 
click tone, and followed by a blank slide lasting two seconds before 
the subsequent task was displayed. This sequence proceeded 
automatically, ensuring consistency in timing across all groups. 
The exercises were presented in a random order generated by a 
random number generator (implemented using Python). 

After the initial segment, a break of three minutes was given. 
Following the break, students were informed that they would 
continue with a 25-minute multiple-choice test encompassing the 
20 exercises already rated in terms of FOD. The exercises were 
presented on the test sheet in a new random order.  

Thus, in this study, students had to rely on LTM in both reporting 
for the first FOD since they had not seen the tasks prior to reporting 
but covered these topics in the lectures in prior weeks. Moreover, 
for the second reporting, students most likely relied only on LTM 
as they saw each of the 20 tasks in the first reporting for only a short 
amount of time. Then there was a three-minute break plus time for 
instruction and for a random reordering of the tasks. This procedure 
is shown in Figure 1 below. Note that the subjects were asked to 
report FOD also after attempting to solve the exercise (called JOD). 
After each task, there was a field on the paper form, in which they 
were to report how difficult they found the task. 

 

Figure 1. Experimental design. 

Both the break and the random reordering were employed to 
mitigate potential biases in solving the tasks and in reporting JOD 
and overall judgments of difficulty (OJOD), that is, the overall 
perceived difficulty of the test, for which we asked the student: 
“How difficult do you find the entire list of tasks?”. Moreover, 
subjects were asked to report how they perceived the OJOD of their 
peers, called POJOD: “How difficult do you think your colleagues 
find the entire list of tasks?” 

On completing the test, students were required to fill out a form to 
report the number of midterm exams written and their grade in the 
last midterm exam. Notably, some classes had completed a 
midterm exam but had not yet received their grades, which resulted 
in missing information for these subjects. 

2.4 Data pre-processing and variables 
We analyzed the dataset with regard to missing values, especially 
for FOD, JOD, and related variables. For each model that is trained 
on these variables, we removed the missing values. Furthermore, 
there were instances where none of the possible answers were 
chosen. Like in any exam, these exercises were counted as 
incorrectly solved. In many such cases, no JOD value was reported. 
In section 3.1 below we present the dataset used.  

Overconfidence is a phenomenon relevant when analyzing the 
relationship between student ability and reporting of metacognitive 
information. We will introduce some variables to analyze whether 
students are overconfident when reporting FOD and JOD, and 

whether FOD reported by better students are better at predicting 
outcome than those reported by weaker students. This is a 
phenomenon that has been studied for other metacognitive 
reporting, such as JOL. 

Table 1. Description of relevant variables. 

Variable  Description 
FOD Feelings of difficulty 

JOD Judgements of difficulty (i.e., same as FOD 
but reported after attempting to solve the tasks) 

OFOD Overall feelings of difficulty for whole test 

FODLEC FOD reported by lecturers  

POFOD Peer OFOD, i.e., how difficult the students 
think their peers reported OFOD after the first 
time of reporting all the FOD (but prior to 
attempting to solve the tasks) 

OJOD Overall JOD, i.e., how difficult the student 
judges the entire test to be after attempting to 
solve all exercises 

POJOD Peer OJOD, i.e., how students think their peers 
reported OJOD 

Performance 
group 

Good performers (students that solved at least 
half of the tasks correctly) and weak 
performers (solved less than half of the tasks 
correctly) 

When it comes to confidence, we asked whether students can be 
shown to report higher or lower FOD or JOD across all reported 
values for correctly and incorrectly solved tasks and whether these 
differ between good and weak performers. The statistical 
significance of the differences between the two groups of students 
(good and weak performers) was tested using the non-parametric 
Mann-Whitney U test. Table 2 below provides an overview of the 
results.  

2.5 Prediction models and evaluation 
There are several considerations when predicting the solving 
success that guided our choices of machine learning models. 
Firstly, we wanted to rely on interpretable models or those that are 
explainable and that potentially allow for learning scientific 
insights, which is an important criterion according to [4]. We used 
three machine learning model types, namely logistic regression, 
decision trees, and random forest.   

Training and evaluation of each model were conducted across 
different feature subsets of the set of variables defined in Section 
2.4. For each feature subset, we dropped only the missing values 
for these features so as to guarantee the use of as much of the 
available data as possible. We employed splitting the data into 80% 
training and 20% test set and ensured that all observations of a 
subject to lay entirely in either the training or the test set. This was 
done to avoid bias from testing on observations of subjects whose 
data was already used in the training. Before training, we 
standardized the features to ensure uniformity (which is not 
necessary for the tree-based models used).  

The performance of the best model from GridSearchCV was 
evaluated using five-fold cross-validation for accuracy, recall, 
precision, F1-score, and the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. For logistic 



   

regression, we searched through the values [0.01, 0.1, 0.3, 5, 10, 
100] for the regularization parameter. For decision trees, the search 
ranged through [None, 2, …, 20] for the maximal depth, and for 
random forest, it included [10, 50, 100, 500] for the number of trees. 
For each model and feature subset, we calculated the mean and 
standard deviation of the cross-validated metrics. This approach 
provided a robust assessment of the model's performance, 
accounting for variability in the data. 

3. RESULTS 
In this section, we discuss the results of the questions mentioned 
above. Table 2 shows the mean FOD and mean JOD (denoted by 
𝑭𝑭𝑭𝑭𝑭𝑭 and 𝑱𝑱𝑭𝑭𝑭𝑭, respectively) for different groups and scenarios 
(e.g., for correctly or incorrectly solved tasks). It also highlights 
whether the differences in reporting across groups are statistically 
significant. Table 3 shows different performance metrics for three 
model types (logistic regression, decision trees, and random forest) 
for different feature sets. 

3.1 Exploratory data analysis 
Of the 1,800 (=90 students x 20 tasks) observations, 935 exercises 
were solved correctly and 865 answers were incorrect, representing 
moderately imbalanced classes. There are 92 missing JOD values 
and one missing FOD value. Figure 2 shows the distributions of the 
most relevant variables analyzed by an exercise identifier. One 
lecturer reported no FOD on the tasks, while another did not report 
FOD values for five out of 20 tasks.  

 
Figure 2. Distributions of relevant variables per exercise.  

3.2 FOD-JOD differences and confidence 
Table 2 provides an overview of the mean FOD (denoted by 𝐹𝐹𝐹𝐹𝐹𝐹) 
and the mean JOD (denoted by 𝐽𝐽𝐹𝐹𝐹𝐹) across all observations for 
tasks solved correctly and incorrectly and is further categorized by 
the two groups (good performers and weak performers). The 
differences in 𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐽𝐽𝐹𝐹𝐹𝐹 between these two groups are 
statistically highly significant (p-value <.01) across all tasks and for 
incorrectly solved tasks, but not significant for correctly solved 
tasks, as shown in Table 2. Note that one can adopt a more 
conservative approach to evaluate the significance of the scenarios 
in Table 2 since multiple statistical tests were conducted 
simultaneously. Applying a Bonferroni correction – using a 
threshold p-value of .01 divided by the number of statistical tests – 
yields significant results for all cases that are significant in Table 2, 
except for the case of good performers for correctly solved tasks 
and mean JOD difference between males and females. 

The criterion for distinguishing between good and weak performers 
is guided by the widely accepted testing practice of deeming an 
exam passable when approximately half of the tasks are solved 
correctly. Notably, these results are stable with respect to varying 
the criterion on a wide range of values (for instance, good 
performers as those who solved more than 60% of the tasks). 
Moreover, a significant difference in the mean values reported for 
all tasks between students and lecturers has been observed. 

Table 2 shows significant differences between the reporting of 
FOD and JOD across all entries, except for the scenarios involving 
correctly solved tasks. In this regard, there is no difference between 
good performers and weak performers. Testing the differences of 
means of OJOD and POJOD yields statistically significant results 
(p<.01) across all students and when categorized by performance 
level, distinguished between good and weak performers. This 
significance is even more pronounced when comparing the means 
of OFOD and OJOD.  

Table 2. 𝑭𝑭𝑭𝑭𝑭𝑭 and mean 𝑱𝑱𝑭𝑭𝑭𝑭 for different groups of subjects. 
The “p-value” column indicates the significance for testing the 
differences between the means of FOD and JOD using the 
Wilcoxon signed-rank test. The last columns assess the 
significance of the differences of 𝑭𝑭𝑭𝑭𝑭𝑭 (and 𝑱𝑱𝑭𝑭𝑭𝑭 respectively) 
for the two groups on the left based on Mann-Whitney U tests.  

 𝑭𝑭𝑭𝑭𝑭𝑭 𝑱𝑱𝑭𝑭𝑭𝑭 p-
value 

p-value 
𝑭𝑭𝑭𝑭𝑭𝑭 𝑱𝑱𝑭𝑭𝑭𝑭 

Good performers 30.97 38.18 <.01 
<.01 <.01 

Weak performers 38.56 48.17 <.01 
Good performers 
incorrectly solved 36.86 51.13 <.01 

<.01 <.01 Weak performers 
incorrectly solved 44.87 60.11 <.01 
Good performers 
correctly solved 27.20 29.91 <.01 

>.05 >.05 Weak performers 
correctly solved 29.52 31.06 >.05 

Students 33.82 41.40 <.01 
<.01 -- 

Lecturers 49.55* -- -- 

Females 27.15 38.84 <.01 
<.01 <.05 

Males 34.75 41.77 <.01 
*This is the mean FODLEC (i.e., the mean FOD reported by 
lecturers).  

As for the differences in reporting between the two groups, 
significant differences are observed for FOD across all tasks and 
for incorrectly solved tasks, but not for correctly solved tasks for 
weak performers. This suggests that for correctly solved tasks, the 
mean reporting of FOD by weak performers is remarkably 
consistent.  

Interestingly, we see significant results (p = 0.005) for correctly 
solved tasks for good performers. The analysis in the difference of 
reporting between FOD and JOD further corroborates this 
observation, indicating that no significant differences were detected 
for correctly solved tasks, regardless of whether the analysis 
involved differences between FOD and JOD or across good and 
weak performers.  

The analysis, particularly of incorrectly solved tasks, reveals that 
good performers exhibit significantly higher confidence levels 
(reporting lower FOD for wrongly solved tasks), regardless of 



   

whether FOD or JOD are used as a measure of confidence. 
However, the confidence sharply drops from FOD to JOD. The 
difference between FOD and JOD might be an interesting measure 
of change in confidence and requires careful study. For instance, 
one could define a subjective change in confidence by analyzing 
FOD-JOD.  

3.3 Predictions 
Table 3 represents various performance metrics for predicting the 
solving success of tasks based on the different features, such as 
FOD reported by students and lecturers before and after attempting 
to solve the tasks. As for the area under the curve (AUC) of the 
ROC curve, a simple logistic regression model based solely on the 
feature JOD outperformed all other feature sets with an AUC of 
0.73 (+/- 0.05), and the same result was achieved using both JOD 
and FOD in combination.  

This was expected, as the students had the possibility to review and 
consider the possible solutions provided in the multiple-choice 
tasks. Another noteworthy observation is that the FOD provided by 

lecturers (i.e., FODLEC) predicted the solving success more 
accurately than FOD reported by students. We observed a maximal 
AUC of 0.68 (+/- 0.09) for FODLEC versus 0.64 (+/- 0.04) for FOD 
(reported by students). This indicates that, on average, lecturers 
provided a more objective estimation of difficulty, which might be 
due to a higher confidence bias among students. However, there is 
a higher standard deviation among the reporting lecturers. 
Additionally, FOD and FODLEC do not provide complementary 
information for predicting the solving success. This is evident from 
the lack of increase in AUC when the two are combined. However, 
FOD and JOD combined achieved the highest recall (the lowest 
number of false negatives, i.e., exercises solved correctly but 
predicted as solved incorrectly) among all feature combinations. 
On the other hand, FODLEC attained the highest precision 
(similarly, but concerning false positives). It is important to note 
that FODLEC was reported by the lecturers, while the labels were 
provided by students. This discrepancy suggests that the lecturers’ 
perceived difficulty aligns with students’ performance to some 
extent. To better understand this dynamic, further research is 
necessary.

 

Table 3. Results of classification models for subject-wise train-test split. (All observations of a subject are either entirely in the 
training or in the test set.)  

Features Model Accuracy Recall Precision F1 Score AUC 
FODLEC Logistic Regression 0.55 (+/- 0.06) 0.68 (+/- 0.16) 0.57 (+/- 0.06) 0.61 (+/- 0.08) 0.62 (+/- 0.12) 

Decision Tree 0.63 (+/- 0.08) 0.59 (+/- 0.09) 0.71 (+/- 0.13) 0.64 (+/- 0.07) 0.68 (+/- 0.09) 

Random Forest 0.62 (+/- 0.07) 0.65 (+/- 0.10) 0.66 (+/- 0.08) 0.64 (+/- 0.08) 0.68 (+/- 0.09) 

FOD Logistic Regression 0.60 (+/- 0.04) 0.69 (+/- 0.07) 0.60 (+/- 0.05) 0.64 (+/- 0.05) 0.64 (+/- 0.04) 

Decision Tree 0.60 (+/- 0.03) 0.71 (+/- 0.06) 0.59 (+/- 0.03) 0.64 (+/- 0.03) 0.63 (+/- 0.04) 

Random Forest 0.60 (+/- 0.03) 0.73 (+/- 0.07) 0.59 (+/- 0.03) 0.65 (+/- 0.03) 0.63 (+/- 0.04) 

JOD Logistic Regression 0.68 (+/- 0.04) 0.73 (+/- 0.06) 0.70 (+/- 0.04) 0.72 (+/- 0.03) 0.73 (+/- 0.05) 

Decision Tree 0.68 (+/- 0.04) 0.73 (+/- 0.06) 0.70 (+/- 0.04) 0.70 (+/- 0.03) 0.72 (+/- 0.05) 

Random Forest 0.68 (+/- 0.04) 0.73 (+/- 0.06) 0.70 (+/- 0.04) 0.71 (+/- 0.04) 0.72 (+/- 0.05) 

{FOD, JOD} Logistic Regression 0.68 (+/- 0.04) 0.74 (+/- 0.06) 0.70 (+/- 0.06) 0.71 (+/- 0.04) 0.73 (+/- 0.05) 

Decision Tree 0.68 (+/- 0.04) 0.71 (+/- 0.07) 0.70 (+/- 0.05) 0.71 (+/- 0.04) 0.72 (+/- 0.05) 

Random Forest 0.63 (+/- 0.04) 0.71 (+/- 0.05) 0.66 (+/- 0.03) 0.68 (+/- 0.03) 0.68 (+/- 0.05) 

 

3.4 FOD-ML workflow 
There are many ways to use FOD to inform mathematics 
instruction. Figure 3 depicts such a strategy. An instructor would 
show students different exercises on topics already covered in a 
lecture and ask students to self-report FOD. This would usually 
happen in an exercise class. Using FOD and potentially other 
(historical) data (like past exam grades and performances on similar 
tasks), one can predict, using machine learning, the expected 
performance for the new tasks. This can then be used to rank the 
tasks according to the likelihood of being solved correctly by the 
students and to help the instructor give further input or split students 
into groups to work together on certain weaknesses.   

 

 

 

Figure 3. An FOD-ML workflow. 

After attempting to solve the tasks, students may then report JOD, 
and this data can be used to make better predictions, adapt the 
learner model, analyze different aspects of confidence change 
(from FOD to JOD), and similar. Such a workflow can be easily 
incorporated into modern intelligent tutoring systems or similar 
systems that allow data mining and analysis.  



   

4. DISCUSSION 
There is still a lot of potential for increasing and bridging the 
progress and knowledge gained in the fields of machine learning in 
education (and related areas) and insights into learning from 
cognitive science. This paper is one in a line of attempts to use 
metacognitive information to this end. However, further studies 
using even more diverse data, such as neuroscientific data (e.g., 
from brain imaging) and other sensorial and behavioral data, to 
model learning and the learner should be conducted.  

In this study, we show that FOD measured at different times in the 
learning process of advanced mathematics and for different groups 
(good and weak performers, students, lecturers, etc.) differ 
significantly. Incorporating different FOD variants as features in 
machine learning models proved to be valuable for performance 
prediction. Since FOD collection is time-efficient and therefore 
does not interfere too much with the rest of the process, FOD 
present a unique opportunity to be used, in conjunction with 
machine learning models, as a powerful tool to adapt and 
individualize (advanced) mathematics learning. This study 
provides further evidence in this direction. Furthermore, this study, 
as well as existing literature, shows that both subjective and 
objective aspects of difficulty can provide valuable information for 
understanding, adapting, and modeling learning processes and 
learners. Since FOD in particular have not yet been studied 
extensively, we conclude with some questions that we believe are 
valuable for further research: 

- What are the common aspects modeled by both objective and 
subjective measures of difficulty and in what way are 
they complementary?  

- Are there neural correlates for FOD similar to JOL that 
indicate specific neural activity when humans perceive 
difficulty in solving tasks? 

- What is the predictive power of these neural correlates, 
should they exist, and do they contribute to mitigating 
self-reporting biases? 

- How effective are workflows like the one presented in 
Section 3.4.  

5. LIMITATIONS 
The present study is limited in several respects. First, a more 
thorough analysis of the relationship between subjective and 
objective notions of difficulty should be conducted. This includes 
understanding exactly what subjective perceptions of difficulty 
encode and how they provide complementary information 
compared to objective notions. Furthermore, concepts such as FOD 
could be linked to important aspects of mathematics teaching, such 
as anxiety. This would require careful studies to demonstrate the 
relationship between FOD and anxiety and how changing FOD 
(through interventions) relates to changes in anxiety. Another 
relevant area of work would be to identify which metacognitive 
strategies could be used with the help of FOD to increase the 
effectiveness of mathematics instruction. These strategies could be 
tested in workflows similar to the one shown in Figure 3. 
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