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ABSTRACT
The gold-standard evaluation of an educational technology
product is a randomized study comparing students random-
ized to use a computer-based learning platform (CBLP) to
students assigned to a “business as usual” condition, such as
pencil-and-paper work, and estimating average treatment
effects. However, not everyone uses the same CBLP in the
same way—indeed, an individual may engage with CBLP
in multiple different ways over the course of a study—and
the platform’s effectiveness may depend on how students
are using it. This paper introduces a model that serves two
aims: classifying different modes of problem-solving or en-
gagement among CBLP users, and estimating varying pro-
gram effectiveness with varying usage patterns. The model
uses mixed-type problem-level variables, such as time spent,
the number of errors committed, and the number of hints
requested, to cluster each problem attempt by each student
into one of a number of categories, using a model-based,
probabilistic, latent profile model. Students differ from each
other based on their probabilities of working on problems in
each of the identified modes. Finally, the model uses a fully
latent principal stratification approach to estimate varying
treatment effects as a function of those probabilities. In this
paper, we describe the model and estimation in detail and
illustrate application using data from two large randomized
field trials, one evaluating Cognitive Tutor Algebra I, and
the other evaluating ASSISTments.
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1. INTRODUCTION
One of the major advantages of computer-based learning
platforms (CBLPs), compared with more traditional forms
of instruction, is their flexibility. Learners with different

and/or evolving needs or styles can use CBLP in the way
that suits them best. For instance, a student who is un-
sure how to solve a particular math problem may have the
option of requesting a hint or another form of just-in-time
help. The same student may also attempt the problem mul-
tiple times, possibly making multiple errors and receiving
immediate feedback, before figuring it out and entering the
correct answer. Of course, students differ in how often and
when they struggle to solve problems— while most students
will find some problems easy and other problems hard, stu-
dents will vary both in terms of which particular problems
pose difficulty, and the ratio of difficult to easy problems.
By offering struggling students multiple types of just-in-time
help and feedback, CBLPs can accommodate this type of di-
versity better than pencil-and-paper programs.

On the other hand, the flexibility offered by CBLPs can com-
plicate our understanding of their effectiveness. In the past
two decades, several math CBLPs have been evaluated in
large randomized controlled trials (RCTs), in which students
or classrooms or schools were randomized between “business
as usual” (BAU) mathematics instruction and computer-
based learning. At the end of a year of instruction, the
students complete a posttest gauging their learning. These
randomized field trials are widely considered to be the most
rigorous and reliable form of evidence for educational effec-
tiveness for two principal reasons: first, if there is a statisti-
cally significant difference in average test scores across con-
ditions, the randomization of treatment assignment allows
researchers to rule out alternative, non-causal explanations
such as confounding. Second, because field trials take place
in real-life conditions across a diverse group of students and
over a relatively long period of time, effectiveness results
from field trials arguably reflect the type of effectiveness
that educators and policymakers truly care about, and are
less likely to reflect idiosyncrasies due to short-term effects,
experimental conditions, or study participants.

The central goal of RCTs, both by design and by statisti-
cal necessity, is to estimate an average treatment effect—
the effect on posttest scores of randomizing students to the
CBLP instead of BAU, averaged across all of the students
in the experiment [8]. This is arguably the most policy-
relevant quantity to estimate if a CBLP is to be adopted by
entire schools or districts. On the other hand, it is some-
what unsatisfying scientifically: if students are indeed us-
ing CBLPs in very different ways, shouldn’t the effect of
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the program vary considerably? What does it mean to say
that computer-assisted instruction is effective, if “computer-
assisted instruction” can mean so many different things to
different students, even if they are all using the same CBLP?
The flexibility of CBLPs—one of their principal assets—
poses a significant challenge in the science of their effec-
tiveness.

This paper proposes a modeling framework to address this
challenge, first by describing and summarizing variability
in student problem-solving styles or strategies when using
CBLP, and then by estimating varying treatment effects as-
sociated with these different strategies or styles. The model
is exploratory in the sense that it is not driven by partic-
ular hypotheses about student choices or behaviors within
the system, but rather tries to discover patterns in the data
along with their association with effectiveness.

The first part of the model, summarizing student problem-
level log data, uses a finite mixture model—specifically, a
latent profile model [16]—which we interpret as a form of
model-based cluster analysis or unsupervised learning [13].
Mixture models are an important part of the educational
data mining toolkit, and have a long history in the research
community (e.g. [30, 31, 10, 14, 32, 20]). In this paper, we
focus on one of the models described in [9], a multilevel la-
tent profile model that incorporates multiple problem-level
measurements for each student, along with problem- and
student-level random effects and student-level covariate in-
formation. Briefly, it uses problem-level data to identify
clusters of worked problem instances, which we will inter-
pret as problem-solving modes, and estimates each student’s
probability of working a problem in each mode. In other
words, the model imagines that each time a student begins
a new problem, they flip a personalized biased coin (or roll
a biased die) to decide how to work that problem.

The second component of our model is causal and is based on
the“fully-latent principal stratification”framework (e.g. [25,
11, 33]). This framework considers a latent variable summa-
rizing some aspect of program implementation as a measure
of potential implementation—that is, a measurement of how
students would implement a program if randomized to the
treatment condition. Potential implementation is defined,
though not observed, for students randomized to the control
condition; hence, it can be imputed. Principal stratification
estimators compare students randomized to the treatment
condition, who implemented the program in a particular
way, to students in the control condition who would have
implemented the program in the same way, had they been
given the opportunity.

We will introduce the combination of these two components,
the latent profile and principal stratification models, in the
context of an analysis of similar datasets from two different
RCTs. One RCT, first described in [19], contrasts the Cog-
nitive Tutor Algebra I curriculum [2], produced by Carnegie
Learning and since superseded by Mathia, with traditional
pencil-and-paper algebra instruction. The second, first de-
scribed in [3], is part of a larger RCT contrasting four dif-
ferent CBLPs. We focus on the contrast between the AS-
SISTmenents CBLP [6] with immediate feedback and just-
in-time tutoring, and a pared-down version of ASSISTments,

designed to mimic pencil-and-paper work, in which students
received feedback on problem correctness only after com-
pleting their assignment, and had no access to just-in-time
tutoring.

The following section describes these two RCTs, and their
associated datasets, in more detail. Section 3 describes the
latent profile model of [9], and section 4 describes the causal
principal stratification model. Section 5 describes the re-
sults of fitting the models to the two datasets, and Section
6 concludes.

2. DATASETS: COGNITIVE TUTOR ALGE-
BRA I AND ASSISTMENTS FIELD TRI-
ALS

We will describe our model and illustrate it using similar
datasets from two different RCTs, evaluating the Cognitive
Tutor Algebra I curriculum and the ASSISTments online
homework platform. In this section we will briefly describe
both CBLPs and associated datasets.

2.1 Cognitive Tutor Algebra I
The Cognitive Tutor [2], originally developed at Carnegie
Mellon University, then developed and run by Carnegie Learn-
ing, and now superseded by Carnegie Learning’s Mathia pro-
gram, was one of the first widely successful intelligent tutor-
ing systems. The data for our study comes from a random-
ized effectiveness study sponsored by the US Department
of Education and conducted between 2007 and 2009 by the
RAND Corporation [19].

The original study included data from roughly 25,000 stu-
dents across 73 high schools and 74 middle schools in seven
states and across two school years (i.e. two cohorts of stu-
dents). Schools were paired based on a range of factors in-
cluding level (middle or high school), size, district, and prior
achievement, and then randomized to use the CTA1 curricu-
lum or continue with business as usual for the next two years.
At the end of each academic year, all students taking alge-
bra 1 in the treatment schools and matched controls took a
standardized algebra 1 posttest. In the high school stratum,
[19] estimated treatment effects of -0.1 standard deviations
(95% CI -0.3–0.1) in year 1 and 0.21 standard deviations
(95% CI 0.01–0.41) in year 2.

To reduce the considerable computational burden of our
method, we analyzed a relatively small slice of that dataset—
the first-year high school cohort. We further subsetted the
log data from the group assigned to the treatment condition,
focusing on a particular unit of the curriculum, equation
solver level 1, and one day of student usage for each student.
This unit was one of the most frequently assigned units, and
its problems showed relatively similar measurement proper-
ties. If a student worked on the equation solver level 1 unit
across multiple days, we chose the one day that the stu-
dent worked on the greatest number of problems. Finally,
we dropped data from treatment schools in which fewer
than 25% of students worked on problems from the equa-
tion solver level 1 unit, along with their matched controls.
All in all, we used data from 2,593 students in the treatment
group and 2,130 in the control group. We used data from
107,933 worked problems from students in the treatment



group, drawn from problems testing 18 different knowledge
components. We used three measurements for each worked
problem: the total amount of time spent, the number of
errors committed, and the number of hints requested. Fi-
nally, we have baseline covariate data for students in both
treatment and control arms: the student’s grade (parsed as
9th grade or higher), race (white/Asian, Black/multiracial,
or Hispanic/American Indian/Alaskan Native), sex, free or
reduced-price lunch status (FRL), English language learner
status (ELL) and a pretest score. We imputed missing co-
variate data with a random forest algorithm [29] and in-
cluded indicators for missing pretest or FRL. We also had
school and randomization pair IDs.

2.2 ASSISTments
The ASSISTments system [6] is a free online homework sys-
tem in which teachers can assign problems from popular
open curricula for students to work online. Students receive
immediate feedback on errors and have access to hints or ex-
planations; teachers receive reports on student performance
that they can review before teaching. ASSISTments has
been shown to be effective in two large RCTs [23, 4], when
compared with pencil-and-paper work.

The data for the current study [17] came from a third large
RCT that compares four different CBLPs, ASSISTments,
two gamified conditions, and an active control condition con-
sisting of ASSISTments but with immediate feedback and
just-in-time support disabled. The study consisted of data
from 1,850 students in a single school district who were in-
dividually randomized between the four conditions. At the
end of the school year, the students took an online 10-item
posttest. The impact analysis [3] compared the active con-
trol condition to the three others, and found effects of 0.338
problems (95% CI: 0.05–0.63) and 0.56 problems (95% CI
0.24–0.87) for the two gamified conditions, and 0.24 prob-
lems (95% CI -0.07–0.55) for ASSISTments.

For this study, we used data from ASSISTments and the
active control, including data 747 students (381 in treatment
and 366 in control). For the treatment students, we collected
data from all 68,524 problems worked. To compare with the
CTA1 data, we aggregated log data to the problem level and
calculated the same three measures: total time spent and
numbers of hints and errors. We also had covariate data for
all 747 students, including scores on a 10-item pretest, prior
(5th grade) standardized mathematics test scores, baseline
measures of math anxiety and math self-efficacy, time spent
on the pretest, race (White, Asian, Hispanic, or Other), ELL
status, and sex, along with school IDs.

3. PROBLEM-SOLVING MODES: A MUL-
TIDIMENSIONAL, MULTILEVEL MIX-
TURE MODEL OF STUDENT LOG DATA

3.1 Assumptions for a Measurement Model
While using CBLP, each student i works on a potentially dif-
ferent set, number, and/or sequence of problems t = 1, . . . , Ti.
The total number of problems worked by student i, Ti, varies
between students. For simplicity, let denote T = max(Ti :
i = 1, . . . , N) and we use it as a generic notation for the
number of problems.

We assumed that each problem t was worked by student i
in one of M ≥ 2 modes, denoted as Sit = 1, . . . ,M , driv-
ing the student’s interaction with the CBLP. The value of S
can vary between students and across worked problems. As a
student works on problem t in mode Sit = m, a set of observ-
able indicating variables, Vit = (vijt : j = 1, . . . , J) (e.g.
interaction time), will exteriorize the latent state. Thus,
the collection of indicator variables over time, Vi = (Vit :
t = 1, . . . , T ), forms a multivariate cross-sectional time se-
ries. If time-invariant baseline covariates are available for
students, Xi = (xik : k = 1, . . . , K), they can be included
when modeling the density or mass function of Sit.

We assume that the observed problem-level variables Vit

(i.e., the indicators at problem t) are conditionally indepen-
dent given the student’s latent state, Sit, i.e.

vijt ⊥ vij′t|Sit for j ̸= j′ (1)

This local independence assumption is foundational for mix-
ture modeling—the hope is that a latent variable can be
found that explains the observed dependence between dif-
ferent measurements taken on the same student working on
the same problem. The probability that each individual stu-
dent works a problem in mode m is denoted as

πim ≡ P (Sit = m | ηi, Xi = xi) (2)

Conditional on π, we assume Sit ⊥ Sit′ for t ̸= t′. This
is a strong assumption, and likely false, but quite useful in
simplifying an otherwise quite complex model. [9] describes
two other classes of models for the same data structure, a
latent transition model and hidden Markov models that do
not make this assumption; descriptions of usage patterns in
[9] broadly agreed between the latent profile model, which
assumes independence across problems, and the other two
modeling frameworks. Finally, we assume that the problems
are weakly invariant across the students and times (i.e., mea-
surement invariance).

3.2 Random-Effect Latent Class Model
We identify latent states, or modesm = 1, . . . ,M with latent
class modeling (LCM; often, the term “latent class model”
is applied to models of categorical data and latent profile
model refer to models of continuous data; our data includes
both types, so we use both terms interchangeably.) The
LCM includes two sub-models: (i) a measurement model
that describes the conditional probability of indicators given
a latent state, P (Vit |Sit = m), and (ii) a structural model
that describes the probability of a latent state, P (Sit = m)
(m = 1, . . . , M).

The measurement model describes the probability of vit
given the latent state Sit. A measurement model for a vari-
able j is parameterized as

Pj(vijt |Sit = m, δjt) = fj(ψjm, δjt), (3)

where fj takes a functional form specific to the indicator j,
ψjm contains parameters of fj , and δjt is a random problem
effect that models the idiosyncratic effect of problem t on the
indicator j. The functional form of fj is defined according
to the type of the variable.

For the log data in this study, we specified a measurement
model for each indicator as follows. The total time spent by



student i on problem t, vi1t, was modeled by a log-normal
density:

log vi1t |Sit = m, δ1t ∼ N
(
δ1t + µ1m, σ2

1m

)
(4)

so that both the mean and standard deviation of the distri-
bution vary with the latent states.

The count variables—the number of errors, vi2t, and the
number of hints requested, vi3t—were treated as ordinal
variables, with categories zero, one, and more than one, and
modeled via ordinal logistic regression. For example, the
probability distribution of the number of errors, vi2t, was
modeled as

P (vi2t = h |Sit = m, δ2t)

=


1− logit−1 (µ2m + δ2t − c21) h = 0

logit−1 (µ2m + δ2t − c21)

−logit−1 (µ2m + δ2t − c22)
h = 1

logit−1 (µ2m + δ2t − c22) h > 1

(5)

with the location parameter µ2m varying across the latent
states, and the step parameters satisfying c22 > c21 > 0. As
above, δ2t is the problem-level random effect for errors (j =
2). The inverse-logit function is logit−1(x) = 1−exp(−x)−1.
The number of hints was modeled analogously with µ3m, δ3t,
c31, and c32 each replacing µ2m, δ2t, c21 and c22.

For binary variables, common practice is to use the Bernoulli
distribution with a probit or logit link. The ordinal vari-
ables are typically modeled by cumulative probability func-
tions such as proportional-odds models, adjacent-categories,
or continuation-ratio logit models [1]. The count and con-
tinuous variables can be modeled by each Poisson regression
and Gaussian model.

The random-effect term, δjt, in (3), (4), and (5) is param-
eterized for each j such that δjt ∼ N (0, σ2

δj
) and σ2

δj
=

Var(δjt; t = 1, . . . , T ) models the variance across the prob-
lems in indicator j. The random-effect terms from the three
indicators were jointly modeled by a trivariate normal dis-
tribution: δt = (δ1t, δ2t, δ3t)

⊤ ∼ N3(0, Σδ). These random
effects weaken the assumption of measurement invariance
between problems, by allowing the base rate of time spent,
hints, or errors to vary between problems. In the CTA1
dataset, for the sake of parsimony, we grouped the prob-
lems by homogeneous skill sets—termed knowledge compo-
nents [22]—so that there were only 18 values of δt. Problems
with the same set of knowledge components were assumed
to be similar in terms of difficulty, time spent, or hints re-
quested. In the ASSISTments dataset, in which the set of
problems worked was more homogeneous, we allowed δ to
take a different value for each individual problem.

The structural model describes the probability that a stu-
dent exhibits a certain latent state at any moment. In the
current setting, the random-effect LCM can be formulated
as follows. Let ηi model the idiosyncratic effect of student
i on the state probability. If covariates are available, the
probability of a latent state m can be modeled as

πim ≡ P (Sit = m | ηi, Xi = xi) =

exp
(
βm0 + β

⊤
mxi + ηi

)∑M
l=1 exp

(
βl0 + β⊤

l xi + ηi
) , (6)

where βm0 determines the conditional probability of the la-
tent state m when Xi = 0 and ηi = 0, and βm models the
covariate effects on the logit. To identify the model param-
eters, we assume that ηi ∼ N (0, σ2

η) with σ2
η = Var(ηi; i =

1, . . . , N) modeling the magnitude of extra variance from
the individuals (i.e., beyond covariate effects).

Integrating the two sub-models, the random-effect LCM be-
comes a finite mixture model:

P (V |X, η, δ)

=

N∏
i=1

T∏
t=1

∑
St∈S

P (St | ηi, Xi)P (Vit |St, δt),
(7)

where V , X, and η each denote an array of variables for all
students, and δ = (δt : t = 1, . . . , T ) where δt = (δjt : j =
1, . . . , J).

4. CAUSAL FRAMEWORK: FULLY-LATENT
PRINCIPAL STRATIFICATION (FLPS)

The model described in the previous section, and also in [9],
results in a description of M ≥ 2 modes in which students
solve practice problems, as well as a student-level parame-
ter vector πim, m = 1, . . . ,M , the probability that student i
works on a problem in mode m. In this section, we address
how πi relates to program effectiveness—that is, do students
who are more likely to solve problems in a particular mode
tend to experience smaller or larger treatment effects? In our
applied examples, M = 2, so πi = {πi1, πi2} = {πi1, 1−πi1}.
Hence, we can consider the parameter πi to be unidimen-
sional, πi = Pr(Sit = 1|ηi,Xi).

Let Yi be student i’s posttest score, and let Zi = 1 if student
i is randomized to the treatment condition, with Zi = 0 if
i is randomized to control. Then, following [15, 24], let
Y T
i be the posttest score i would achieve if assigned to the

treatment condition, and Y C
i be the score i would achieve

if assigned to control, so Yi = ZiY
T
i + (1− Zi)Y

T
i . Finally,

define the treatment effect for student i as τi = Y T
i − Y C

i .
Since only one of {Y C

i , Y T
i } is ever observed for each i, τi

is unobserved; however, under some circumstances we can
estimate averages or expectations of τ .

Given π0, a particular probability of working problems in
mode M = 1, our goal is to estimate

E[τ |π = π0, Z = 1]

= E[Y T |π = π0, Z = 1]− E[Y C |π = π0, Z = 1]
(8)

the effect experienced by students assigned to the treat-
ment condition with π = π0. Estimating the first term
in (8) is relatively straightforward, since for students as-
signed to treatment, Y = Y T and π is identified based on
their observed problem-level measurements V . In contrast,
the second term, E[Y C |π = π0, Z = 1], barely even makes
sense. First of all, Y C is never observed when Z = 1. Sec-
ond of all, students assigned to control—for whom Y C is
observed—cannot request hints or make multiple errors, so
the problem-solving modes captured in S, and hence in π,
are irrelevant. In other words, even if we can identify a set
of students with Z = 1 and π = π0, in order to estimate
their average treatment effect we need to identify a suitable
comparison group.



The answer to this question, following the principal stratifi-
cation literature [5, 18, 27], is to slightly re-define πi as

πi ≡ P (Sit = 1 | ηi, Xi = xi, Zi = 1) (9)

That is, if student i were assigned to the treatment condi-
tion, what would be the probability that they work problems
in mode 1? Stated this way, π is a potential value—students’
potential of working problems in a particular mode, if given
the opportunity. Since π is a latent variable, never directly
observed, our analysis falls under the “fully-latent principal
stratification” framework of [12].

While Y T and π are observed and estimated, respectively,
for students assigned to the treatment condition, they are
unobserved for students assigned to the control condition, as
are problem-level indicators V used to estimate π. However,
as potential values, they are well-defined; we may consider
them as missing data to be imputed.

At this point, randomization of treatment assignment be-
comes crucial. Because Zi is randomized, it is independent
of πi, Y

C
i , and Y T

i , as well as covariates Xi:

{πi, Y
C
i , Y T

i ,Xi} ⊥ Zi (10)

This implies two useful facts: first, the distribution of πi

(which is random, due to its dependence on student random
intercept νi) conditional on covariatesX is the same in both
treatment groups:

p(πi|X, Zi = 1) = p(πi|X, Zi = 0) = p(πi|X)

That means that we can estimate a model p(πi|X, Zi = 1)
using observed data in the treatment group, and extend that
model to the control group. Second, the distributions of Y C

and Y T are independent of Zi—in particular,

E[Y C |π = π0, Zi = 1] = E[Y C |π = π0, Zi = 0]

= E[Y |π = π0, Zi = 0]

If we could identify the subset of the students randomized to
the control condition with π = π0, then we could use their
observed outcomes Y to estimate the pesky 2nd term of (8),
E[Y C |π = π0, Z = 1].

In practice, we estimate causal effects conditional on π us-
ing a regression model of posttest scores Y as a function of
treatment status Z, imputed or estimated π̂, and covariates
X. Specifically, we fit the model

Yi = γ0 + ωπ̂i + Zi(τ0 + τ1π̂i) +
∑
k

γkXik + ϵi (11)

In this model, subject i’s treatment effect is modeled as lin-
ear in π: τ0+τ1πi, so τ0 represents the average effect for sub-
jects with π = 0 and τ1 represents the change in treatment
effects as π increases. Meanwhile, ω captures the correlation
between π and control potential outcomes Y C : the extent to
which students who often work problems in mode 1 would
score higher (or lower) than other students, in the absence
of any treatment. In the CTA1 analysis, we included school
random intercepts in the outcome submodel (11) to account
for the school-level randomization.

Putting it all together, our empirical strategy is to (1) esti-
mate models (3) and (6) using log data and covariates from

students assigned to the treatment condition, (2) use those
models to (probabilistically) impute π for students in the
control group, and lastly to use outcomes, covariates, and
estimated or imputed π for students randomized to either
condition to estimate principal effects τ(π) = E[τ |π].

To ensure appropriate likelihood inference and propagation
of errors, we fit submodels (7) and (11) simultaneously us-
ing a “No U-Turn” Markov Chain Monte Carlo (MCMC)
sampler [7] in Stan [28] which we called from R [21].

5. RESULTS
For the sake of simplicity and proof-of-concept, we focused
on estimating models with M = 2 problem-solving modes.
Future work will develop models with M > 2. As it is,
fitting the models was extremely computationally intensive:
on a local multicore server, the CAT1 model took roughly
nine days to run, and the ASSISTments model took approx-
imately six days.

5.1 Measurement Models
Tables 1 and 2 show the estimated parameters from fitting
submodel (3), (4), and (5) to CTA1 and ASSISTments log
data, respectively. While the specific parameter values dif-
fer between the two CBLPs, both models appear to be cap-
turing the same qualitative phenomenon. Students solving
problems in State 1 spend more time per problem (with a
larger between-problem variance), request more hints and
make more errors than students solving problems in State
2. Loosely speaking, it appears students in State 1 are strug-
gling more with the material than students in State 2. In-
terestingly, it appears that State 1 is much more common in
ASSISTments, where it accounts for half or more of worked
problems, than in CTA1, where it only describes about 20%
of problems solved.

5.2 Modeling π
The left-hand columns of Tables3 and 4 give the results of
model (6), predicting logit(1−π) as a function of covariates,
fit to the CTA1 and ASSISTments datasets, respectively.
Note that the models predict the probability of working
problems in State 2, with less struggle, rather than in state
1. In the CTA1 dataset, students from underrepresented
minorities, boys, and students with lower pretest scores are
all more likely to work problems in state 1—that is, struggle
more often—than their peers.

Surprisingly, in the ASSISTments dataset, the only statisti-
cally significant coefficient is on student sex, suggesting boys
are less likely to work problems in state 1 one than girls, the
opposite sign as the analogous coefficient in the CTA1 anal-
ysis. There appears to be little relationship between pretest
measures and the frequency of working on problems in state
1.

5.3 Principal Effects
The right-hand columns of Tables 3 and 4 give estimated
coefficients from outcome regressions (11) in the CTA1 and
ASSISTments datasets. Of particular interest are the coef-
ficients labeled “tzero” and “tone,” corresponding to τ0 and
τ1 in the model. These parameterize the principal effect
function τ0 + τ1π̂i. These functions are also plotted, with



Notation State 1 State 2 Difference
Time (mean) µ1m 0.988 (0.118) -0.503 (0.117) 1.491 (0.008)
Time (SD) σm 0.838 (0.005) 0.757 (0.003) 0.081 (0.005)
Error µ2m 2.002 (3.529) -2.181 (3.530) 4.183 (0.038)
Hint µ3m 6.098 (3.902) -6.066 (3.900) 12.165 (3.073)
Probability 0.203 (0.073) 0.797 (0.073)

Table 1: Estimated parameters for the CTA1 measurement model

par Notation State 1 State 2 Difference
Time (mean) µ1m 0.349*** (0.035) -0.233*** (0.035) 0.581*** (0.007)
Time (SD) σm 0.881*** (0.004) 0.532*** (0.003) 0.349*** (0.005)
Error µ2m 1.228 (3.486) -1.156 (3.486) 2.384*** (0.032)
Hint µ3m 3.693 (3.490) -3.595 (3.493) 7.288*** (0.280)
Probability 0.545* (0.224) 0.455* (0.224)

Table 2: Estimated parameters for the ASSISTments measurement model

Dependent variable:

logit(1− π) Posttest

(1) (2)

(Intercept) 1.228∗∗∗ −0.164
(0.156) (0.228)

ω −1.950∗∗∗

(0.335)
τ0 −0.171

(0.112)
τ1 0.558

(0.333)
Grade 10+ 0.045 −0.089∗

(0.065) (0.036)
Black −0.125∗ −0.060

(0.059) (0.035)
Hispanic −0.217∗∗ −0.035

(0.071) (0.044)
Male −0.098∗∗ 0.011

(0.033) (0.019)
FRL −0.052 −0.020

(0.040) (0.023)
ns(pretest)1 0.710∗∗∗ 0.624∗∗∗

(0.098) (0.060)
ns(pretest)2 1.111∗∗∗ 1.441∗∗∗

(0.287) (0.176)
ns(pretest)3 0.772∗ 2.221∗∗∗

(0.302) (0.165)
ESL −0.252 0.023

(0.144) (0.099)
No Pretest 0.062 0.173∗∗∗

(0.054) (0.030)
No FRL −0.033 −0.092∗

(0.072) (0.040)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3: CTA1 regression results for models of π (6) and
of posttest scores (11) as functions of covariates and (in the
latter case) treatment assignment and π. Fixed effects for
school randomization pair and random intercepts for school
were included in the model but are omitted from the table.

Dependent variable:

logit(1− π) Posttest

(1) (2)

(Intercept) 0.641 −2.287
(1.732) (1.366)

λ −0.044
(0.431)

τ0 0.382
(0.316)

τ1 −0.225
(0.516)

Pretest −0.009 0.316∗∗∗

(0.060) (0.042)
Gr. 5 State Test −0.004 0.011∗∗∗

(0.003) (0.002)
Math Anx. 0.028 −0.012

(0.024) (0.017)
Math Self Eff. −0.006 0.047∗

(0.027) (0.020)
No State Test −0.111 −0.341

(0.324) (0.244)
log(Pretest Time) 0.221 −0.167

(0.150) (0.111)
Hispanic −0.020 −0.137

(0.386) (0.291)
Asian 0.143 0.821∗∗∗

(0.328) (0.243)
Other Race −0.171 0.315

(0.368) (0.295)
ESOL 0.120 0.571

(0.404) (0.336)
Male 0.786∗∗∗ −0.273

(0.226) (0.163)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 4: ASSISTments regression results for models of π (6)
and of posttest scores (11) as functions of covariates and (in
the latter case) treatment assignment and π. Fixed effects
for school were included in the model but were omitted from
the table.
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Figure 1: Estimated effect curves as a function of π for CTA1 and ASSIStments

confidence bands, in Figure 1. In CTA1, students who were
more likely to work problems in State 1, and therefore strug-
gle more often, appeared to experience greater benefits from
the program. This might suggest that the struggle they were
experiencing was productive (e.g. [34]) or that CTA1 was
more beneficial to struggling students than for already-high-
achieving students for other reasons. The results indicate
that the data are also consistent with no effects and no het-
erogeneity, or slightly negative slopes as well, so speculation
about the interpretation of the findings should be even more
tempered. Conclusions must be even weaker for ASSIST-
ments, where there is a very wide range of lines consistent
with the data, including positive and negative slopes, as well
as no effect at all.

6. DISCUSSION
In summary, this paper has introduced a novel method with
broad applicability for bridging descriptive modeling of stu-
dent usage with effectiveness studies in computer-based ed-
ucation. The potential impact of this method extends to
enhancing our understanding of educational technology ef-
fectiveness, thereby contributing significantly to the field.

The most important limitation of the study is its depen-
dence on a highly-parametric model. Unfortunately, at this
stage the possible impacts of different types of model mis-
specification are unknown. However, there is also cause for
optimism: [9], where our measurement model originated, in-
cluded results from two other models of the same dataset,
and all three models gave similar measurement results. That

paper also includes other information on model selection and
validity. We are currently working on a moment-based es-
timator in the mold of [26] that will rely less heavily on
distributional assumptions. A moment-based estimator will
also run much faster, addressing the second major limitation
of this work.

Beyond those concerns, we hope to extend the framework to
include models with more than two latent states, in order
to provide deeper insights into the complexities of student
behavior and learning outcomes. Lastly, incorporating dif-
ferent types of measurement models, such as those account-
ing for autocorrelation between a student’s latent states or
models analyzing more granular clickstream data, could of-
fer a more nuanced understanding of student engagement
and learning processes.

By addressing these research needs, future studies can fur-
ther advance the field of educational technology effectiveness
and contribute to the development of more sophisticated and
impactful instructional strategies. This research has the po-
tential to not only enhance educational practices but also
improve learning outcomes for students across diverse edu-
cational settings.
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8. REPLICATION MATERIALS
Replication data for the ASSISTments analysis can be ob-
tained by following the instructions at https://osf.io/

r3nf2/. Unfortunately, the CTA1 dataset is not public.

All analysis code, along with instructions for replicating the
ASSISTments analysis, are available at https://github.

com/adamSales/LCA.PS.EDM

APPENDIX
The CTA1 Pretest Model
The model for the analysis of CTA1 data included a natural
spline for pretest scores, the coefficients of which (reported
in Table 3) are nearly uninterpretable. Figure 2 plots the
estimated conditional relationships between pretest scores
and logit(1− π) and Posttest scores, along with a 90% con-
fidence band. The Y-axis records the contribution to the
linear predictor of each model due to pretest.

Model Code
The following is the Stan code for the ASSISTments model.
The code for the CTA model also includes school random ef-
fects and can be found at https://github.com/adamSales/
LCA.PS.EDM.

data {

int<lower=1> nworked; //number of worked items

int<lower=1> nprob; // number of items

int<lower=1> nstud; // number of students

int<lower=1> ncov; // number of person-level covariates

int<lower=0> hint[nworked];

int<lower=0> err[nworked];

real ltime[nworked];

int<lower=1,upper=nprob> prob[nworked];

int<lower=1,upper=nstud> stud[nworked];

matrix[nstud,ncov] X;

real Y[nstud];

vector[nstud] Z;

vector[3] zeros;

}

parameters {

real meanTime[2];

real<lower=0> sigTime[2];

real effHint[2];

real effErr[2];

vector[3] probEff[nprob]; // hint, err, time

corr_matrix[3] OmegaProb;

vector<lower=0>[3] sigProb;

real alpha;

vector[nstud] studEff;

real<lower=0> sigStud;

vector[ncov] beta;

ordered[2] cHint;

ordered[2] cErr;

real gamma0;

real tzero;

real lambda;

real tone;

vector[ncov] gamma;

real<lower=0> sigY;

}

transformed parameters {

cov_matrix[3] SigmaProb=

quad_form_diag(OmegaProb, sigProb);

}

model{

real yhat[nstud];

vector[nstud] nu=inv_logit(alpha+X*beta+studEff);

for(i in 1:nstud)

yhat[i]=gamma0+tzero*Z[i]+lambda*nu[i]+

tone*Z[i]*nu[i]+X[i,]*gamma;

// priors

meanTime~normal(0,5);

sigTime~normal(0,5);

effHint~normal(0,5);

effErr~normal(0,5);

sigProb~normal(0,1);

to_vector(beta)~normal(0,1);

tzero~std_normal();

tone~std_normal();

lambda~std_normal();

gamma~normal(0,5);

sigProb~normal(0,3);

sigStud~normal(0,3);

sigY~normal(0,5);

studEff~normal(0,sigStud);

probEff~multi_normal(zeros,SigmaProb);

for(w in 1:nworked)

target += log_sum_exp(

log(nu[stud[w]])+

ordered_logistic_lpmf(hint[w]|probEff[prob[w]][1]+

effHint[1],cHint)+

ordered_logistic_lpmf(err[w]|probEff[prob[w]][2]+

effErr[1],cErr)+

normal_lpdf(ltime[w]| probEff[prob[w]][3]+

meanTime[1],sigTime[1]),

log(1-nu[stud[w]])+

ordered_logistic_lpmf(hint[w]|probEff[prob[w]][1]+

effHint[2],cHint)+

ordered_logistic_lpmf(err[w]|probEff[prob[w]][2]+

effErr[2],cErr)+

normal_lpdf(ltime[w]| probEff[prob[w]][3]+

meanTime[2],sigTime[2])

);

Y~normal(yhat,sigY);

}
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