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ABSTRACT
Effective personalization of education requires knowing how
each student will perform under certain conditions, given
their specific characteristics. Thus, the demand for inter-
pretable and precise estimation of heterogeneous treatment
effects is ever-present. This paper outlines a new approach
to this problem based on the Leave-One-Out Potential Out-
comes (LOOP) Estimator, which unbiasedly estimates in-
dividual treatment effects (ITE) from experiments. By re-
gressing these estimates on a set of moderators, we obtain
parameterized and easily interpretable estimates of condi-
tional average treatment effects (CATE) that allow us to
understand which individuals will likely benefit from each
condition. We implement this approach with real-world data
from an efficacy study that included four experimental con-
ditions for instructing middle-school algebra. Our models in-
dicate that treatment effect heterogeneity is significantly as-
sociated with students’ prior subject knowledge and whether
English is their native language. We then discuss possibili-
ties for applications to enhance personalized assignments.

Keywords
causal inference, heterogeneous treatment effects, personal-
ization

1. INTRODUCTION
Personalization – or giving each student exactly what they
need to thrive – is a perennial goal for those working on
Computer-Based Learning Platforms (CBLPs) [3]. The idea
that CBLPs can be tailored to each student’s needs, thus
mimicking the behaviors of responsive human tutors, has
been a pursuit of many in the Education Data Mining (EDM)
and related communities. Popular approaches often involve
creating response features and algorithms that understand
learners’ abilities and respond to their needs [24, 20, 11].
On the other hand, personalized program assignments can

ensure that students receive the best possible instructional
program to maximize their learning benefit. Either way,
personalization may also be viewed as an issue of treat-
ment effect heterogeneity – which occurs when the effect of a
treatment differs for individuals based on some covariate(s).
For example, a CBLP’s effect may vary based on students’
prior knowledge of the content. Similarly, a feature’s im-
pact within a CBLP may vary based on students’ feelings
toward the content. Thoroughly comprehending such vari-
ations will help inform personalized learning decisions like
program assignments within learning systems.

Yet current methods of effect heterogeneity estimation can
be too inflexible or difficult to interpret, especially when we
want to understand how multiple dimensions of students’
characteristics may influence how they are affected by a
particular educational experience. In the current study, we
address this problem by combining two methods: Remnant-
Based Leave-One-Out Potential Outcomes (ReLOOP) Esti-
mator [15, 31] and Leave-One-Out Learner (LOOL), which
we are proposing. ReLOOP provides individual effect es-
timates, and LOOL evaluates how those effects vary based
on students’ characteristics. We apply this method to data
from an experiment that evaluated three CBLPs with differ-
ent approaches to teaching algebra concepts to U.S. middle
school students. We find that LOOL identifies student char-
acteristics that explain the variance in the effectiveness of
these programs and discuss implications for personalization.

2. BACKGROUND

2.1 Effect Heterogeneity in Education
Understanding who benefits from which educational pro-
gram has long been a goal of education research [32, 7, 41,
14]. Recent qualitative work on intersectionality – the idea
that people have overlapping identities that influence their
experiences – has pushed researchers to think more critically
about how individuals may experience and benefit from ed-
ucational programs and policies differently [33]. In the con-
text of educational technologies and algorithmic bias, Kizil-
cec & Lee (2022) [19] point out that innovations should focus
on closing the gap between disadvantaged and advantaged
groups – as opposed to maintaining or even widening said
gap. In other words, the ideal effect heterogeneity should
benefit disadvantaged students more than advantaged ones.

D. M. Pham, K. P. Vanacore, A. C. Sales, and J. A. Gagnon-Bartsch.
Lool: Towards personalization with flexible & robust estimation of
heterogeneous treatment effects. In B. Paaßen and C. D. Epp, editors,
Proceedings of the 17th International Conference on Educational
Data Mining, pages 376–384, Atlanta, Georgia, USA, July 2024. In-
ternational Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729840

https://doi.org/10.5281/zenodo.12729840


There are many examples of heterogeneity in educational
programs, policies, and behaviors – most of which focus on
effect differentials associated with ability. In one example,
researchers found that those with higher academic ability
benefit more from returning to school after time in the work-
force than those who return with lower abilities [7]. Others
have found that learning management systems benefited stu-
dents’ cognitive ability overall but negatively affected the
lowest-performing students [41]. Similarly, students’ prior
knowledge has also been shown to moderate the effects of
feedback [14]. There is another dimension to effect hetero-
geneity: program features and implementations can influ-
ence the efficacy of a program. Researchers have identified
effect heterogeneity based on the type and implementation
of technology in schools [32, 41, 10]. Therefore, heterogene-
ity analyses can provide value beyond understanding who
benefits the most from programs to indicate why programs
are effective for which sub-groups of the population.

2.2 Effect Heterogeneity & Personalization
Personalization is a coveted goal of educational program de-
velopment, especially in educational technologies [28, 13].
In theory, personalization can help create a more equitable
education system [13]. For CBLPs, personalized content rec-
ommendation systems [20] and assistance delivery systems
[24] have been created and tested. Mastery learning sys-
tems also provide a form of personalization as they provide
students with content based on estimates of individual abil-
ity [5, 11]. Another approach to personalization is ensuring
that students have access to specific programs that meet
their distinct needs, similar to the approach of personalized
medicine [9]. In this case, instead of expecting one CBLP to
provide instruction to meet all students’ needs, each student
could be prescribed a program, or even a suite of programs,
that likely will maximize the benefit of their learning. Re-
gardless of the approach, personalization is a fundamental
causal question of heterogeneity: “What will benefit which
students the most?”The “what”may be any educational ex-
perience: a feature, specific assistance, a piece of content, or
even a whole program. Personalization is then about align-
ing individuals with these aspects or other aspects of their
education experiences to maximize their impact on learn-
ing. There is evidence that personalization works best when
aligned with student characteristics [38]. Thus, to provide
students with the educational experiences that will be best
for their learning, we must understand the impact of these
experiences based on students’ specific characteristics.

3. CURRENT STUDY
Our current study focuses on the problem of estimating het-
erogeneous treatment effects not only precisely but also in-
terpretably. Within educational research, a common ap-
proach to treatment effect heterogeneity is utilizing interac-
tion effects in regression models [12, 41, 6]. Such models
are highly interpretable as they quantify each moderator’s
effect by its estimated coefficient – from which researchers
can then draw statistical inferences. However, they also con-
strain estimated effects to be linear, which is unlikely to be
the case – leading to imprecision in estimation. Alterna-
tively, some studies have also developed advanced machine
learning approaches like causal forests [2], causal boosting
[23], or meta-learners [21]. While potentially more flexi-
ble and precise, the estimates from these approaches are

often unparameterized and thus uninterpretable. As such,
to better understand the potential complexities in effect het-
erogeneity necessary for personalization, there is a need to
explore new methods of heterogeneous effect estimation.

For this research, we propose and discuss a new approach to
estimating heterogeneous treatment effects that can balance
precision and interpretability. We then apply this approach
to data from a study on the effects of educational technolo-
gies with multiple treatment conditions – for which past re-
search had found evidence for heterogeneity [12]. Besides es-
timating heterogeneous treatment effects, we are interested
in (1) how said effects vary with a set of chosen covariates
and (2) whether these differences are statistically significant
under each condition as indicated by coefficients’ p-values.

4. METHOD
4.1 Study Design
The study uses open-source data from randomized control
trials to explore treatment effect variability. The original
sample included 3,612 students from a school district in the
Southeastern United States. Many students (1,760) did not
complete the posttest; we excluded them from our analyses.
This attrition was attributed to a COVID spike in the U.S.
at the time, which caused high absenteeism rates. However,
an attrition analysis determined that the attrition was tol-
erable under the standards provided by the What Works
Clearinghouse (WWC) of the U.S. Department of Educa-
tion’s Institute of Education Sciences (IES) [12].

Based on prior state mathematics assessment scores, stu-
dents were ranked within classrooms, blocked into sets of
five (i.e. quintets), and then randomly assigned into ei-
ther the From Here to There (40%), DragonBox (20%), Im-
mediate Feedback (20%), or Active Control (20%) condi-
tions. The disproportionate weighting was intended to al-
low researchers to focus their work on evaluating and under-
standing FH2T. Our analysis included 1,852 students: 755
in the From Here To There condition (FH2T), 350 in the
DragonBox-12 condition (DragonBox), 381 in the Immedi-
ate Feedback condition, and 366 in the delayed feedback or
Active Control condition. These conditions are described
in Section 4.2. Students were expected to complete nine
weekly administered, half-hour sessions in their respective
programs. Teachers were asked to have students do these
assignments during class hours. Students received pre- and
post-test assessments (described in detail in Section 4.4) the
week before and after the intervention.

4.2 Conditions
Each program taught a set of skills related to algebraic equa-
tion equivalency – including procedural ability, conceptional
knowledge, and flexibility. The Immediate and Delayed con-
ditions were administered through ASSISTments [17], an
online learning platform focused primarily on math instruc-
tion. The others were stand-alone learning platforms.

4.2.1 From Here to There! (FH2T)
FH2T1 takes a gamified approach to algebra instruction by
applying elements of perceptual learning [16] and embod-
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ied cognition [1]. Instead of having students solve tradi-
tional algebra equations, FH2T provides a starting expres-
sion (start state) that they must transform into a mathe-
matically equivalent expression (goal state) using a dynamic
graphical interface. Students can manipulate the expres-
sion by dragging numbers and symbols from one position
to another on the screen or using a keypad when expand-
ing terms. Only mathematically valid manipulations are
accepted. Each valid manipulation counts as a step, which
FH2T logs and uses to evaluate how efficiently the student
transforms the expression from the start to the goal state.
FH2T has 252 problems that are presented sequentially by
mathematical content and complexity. Students must com-
plete each problem to advance to the next in the sequence.

4.2.2 DragonBox-12 (DragonBox)
DragonBox2 is an educational game that provides instruc-
tion in algebraic concepts to secondary school students (ages
12-17). For each problem, students must isolate a box con-
taining a dragon – equivalent to solving an equation for a
variable x. This design incorporates research-based ped-
agogical methods, including discovery-based learning, em-
bedded gestures, diverse representations of concepts, imme-
diate feedback, and adaptive difficulty [8, 39]. The game’s
key innovation is that students learn algebraic rules without
using or manipulating numbers or traditional algebraic sym-
bols. Thus, students engage with the algebraic concepts as if
they are puzzles. Numbers and traditional algebraic symbols
are introduced gradually, presumably after the student has
learned the underlying concepts. Furthermore, DragonBox
applies a narrative goal to the learning: students must al-
low the dragon to come out of the box by isolating it in
the equation. Previous analyses found that DragonBox pos-
itively affects engagement and attitudes toward math [34].

4.2.3 Immediate Feedback
The Immediate Feedback condition consisted of 218 tra-
ditional problem sets adapted from open-source curricula:
namely, EngageNY, Utah Math, and Illustrative Math. The
problem sequence was specifically ordered to teach the stu-
dents skills built on themselves. In this condition, students
could request hints while solving problems. They also re-
ceived automatic feedback on whether their answer was cor-
rect or incorrect upon submission. Each problem contained
a series of hints with a similar structure. The first hint gave
the students the first step to answering the problem. The
second hint gave the student a worked example of a similar
problem. The final hint provided the student with the steps
to complete the problem as well as the problem’s solution.
Students could submit as many answers as needed but could
not move on until they had entered the correct answer. Past
research has shown this condition to be an effectual substi-
tute for pen-and-paper homework assignments [26].

4.2.4 Active Control
The Active Control condition provided the same previous
218 problems but with post-assignment assistance – rather
than on-demand hints and immediate feedback. In this
condition, students could not request or receive assistance
while working on or after submitting answers for each prob-
lem. They could only submit their answers once and must

2https://dragonbox.com/products/algebra-12

progress through the problem set without receiving any in-
dication of their accuracy. At the end of each problem set,
students received a report with feedback on their accuracy.
They could also review their responses, revisit problems, and
request hints only after completing each problem set.

4.3 Analysis Plan
Our evaluation of the effect heterogeneity requires two steps.
First, we estimate the individual treatment effects (ITE) –
which is the impact a treatment condition would have on
students had they been assigned to it – using the Remnant-
Based Leave-One-Out Potential Outcomes (ReLOOP) Esti-
mator [15, 31]. Second, we model the ITE estimates using
our heterogeneity covariates – or moderators – by employing
what we are calling the Leave One Out Learner technique
(LOOL). The LOOL model then estimates the conditional
average treatment effects (CATE), which indicate the extent
of the effects’ variation by subgroups. In the subsequent sec-
tions, we explain how ReLOOP provides unbiased ITE esti-
mates (Section 4.3.1), how the LOOL provides interpretable
CATE estimates (Section 4.3.2), and how we apply these
methods to the current study’s data (Section 4.3.3).

4.3.1 ReLOOP
Consider a randomized controlled trial under the Neyman-
Rubin potential outcomes framework [35, 27], in which we
aim to estimate the effects of a binary treatment Z on an
outcome Y . In the experiment, subjects i = 1, 2, . . . , n re-
ceive random assignments to either the treatment or the con-
trol condition – denoted by Zi = 1 or Zi = 0, respectively.
In addition, each subject i has associated pre-treatment co-
variates Xi. Yi(1) and Yi(0) then represent subject i’s po-
tential outcomes under the treatment and the control con-
dition, with the observed outcome Yi = Yi(Zi). We can
then define the individual treatment effect (ITE) for i as
τi := Yi(1) − Yi(0). However, since we exclusively observe
only Yi = Yi(1) for subjects assigned to the treatment group
(Zi = 1) and Yi = Yi(0) for those in the control group
(Zi = 0) but never both Yi(1) and Yi(0), τi is unobservable.
Nevertheless, we can estimate it using the Leave-One-Out
Potential Outcomes (LOOP) Estimator [40].

We assume that the treatment assignment is a Bernoulli
randomization. In other words, each subject’s treatment
assignment is an independent Bernoulli trial with a constant
P(Zi = 1) = p, 0 < p < 1 for all i and Zi ⊥⊥ Zj if i ̸= j. For
each observation i, we define mi and Ui as:

mi := (1− p)Yi(1) + pYi(0)

Ui :=
Zi − p

p(1− p)
=

{
1/p Zi = 1

−1/(1− p) Zi = 0

Wu & Gagnon-Bartsch (2018) [40] showed that if we have

an estimate of mi, m̂i = (1 − p)Ŷi(1) + pŶi(0), such that
m̂i ⊥⊥ Ui, then τ̂i = (Yi − m̂i)Ui is an unbiased estimate of
τi. As the estimator’s name suggests, we can achieve this by
leaving out observation i and imputing potential outcome
estimates Ŷi(1) and Ŷi(0) with the remaining observations.
For this reason, Wu & Gagnon-Bartsch (2018) [40] recom-
mended and utilized random forests for potential outcome
imputation when implementing LOOP, as out-of-bag predic-
tions efficiently accomplish the above by default.



With LOOP, we can estimate the average treatment effect
(ATE) or τ̄ := E[Yi(1) − Yi(0)] with the sample average of
the estimated ITE or τ̂LOOP = 1/n

∑n
i (Yi − m̂i)Ui. Wu

& Gagnon-Bartsch (2018) [40] approximated the sampling
variance of this estimate as:

V̂(τ̂LOOP ) =
1

n

[
1− p

p
M̂2

t +
p

1− p
M̂2

c + 2

√
M̂tM̂c

]
where M̂t and M̂c are the mean-squared errors (MSE) of the

imputed or predicted potential outcomes Ŷi(1) and Ŷi(0).

Gagnon-Bartsch et al. (2023) [15] further extended this ap-
proach by incorporating data from subjects outside the ex-
periment who nevertheless have known covariate and out-
come values (i.e. remnant data [30]) into the LOOP pre-
diction process. Recent studies [29, 31] have shown that in-
corporating this data in causal estimations – specifically by
fitting a model of the outcomes on covariates with the rem-
nant data and using its predictions on the experiment data
as additional covariates for the LOOP estimator – can lead
to still unbiased and more precise estimates of causal effects.
Sales et al. (2023) [31] dubbed this approach ReLOOP.

Overall, given a valid experiment design, LOOP and ReLOOP
provide a flexible and accurate design-based covariate-adjusted
method to estimate individual treatment effects: it can uti-
lize any model so long as the leave-one-out requirement holds
and does not require any additional assumptions to guaran-
tee unbiasedness. Most importantly, this unbiasedness will
hold even for inaccurate and poor-fitting models [40].

4.3.2 LOOL
For most causal inference problems, researchers are inter-
ested in estimating the ATE with the given data. However,
by definition, it does not account for how each individual’s
treatment effect can vary with their characteristics. Thus,
for heterogeneous treatment effects, the typical measure is
the conditional average treatment effect (CATE) or the av-
erage treatment effect for observations with a specific set of
covariate values. We can formally define this estimand as:

τ(x) := E[Yi(1)− Yi(0)|Xi = x] = E[τi|Xi = x]

From this conditional expectation definition, one can see
that a possible approach to estimate the CATE is regressing
the ITE on the covariates – thus estimating E[τi|Xi = x].
However, since the ITE are unobserved by design, the next
best option is estimates of the ITE instead. Thus, we can fit
a regression on the obtained unbiased estimates of ITE to
obtain estimates of CATE. We dub this two-stage estimator
the Leave-One-Out Learner or LOOL.

There are several merits to this approach. It is robust since
the LOOP estimator guarantees unbiased ITE estimates. In
turn, researchers can select whichever model to estimate the
CATE in the second stage according to their needs – with-
out worrying about carrying over or amplifying bias from
the first. They can choose either simple parametric models
for explainability in inference tasks or more complex non-
parametric models for accuracy in prediction tasks. Like the
meta-learner algorithms proposed by Künzel et al. (2019)
[21], this allows the modeling of heterogeneous treatment
effects to be incredibly flexible and adaptive. From a statis-
tical modeling standpoint, the unbiased ITE estimates from

LOOP may have higher variance than some biased ITE esti-
mates. However, regressing them on covariates can mitigate
the effect of their high variance by averaging it out. Con-
versely, consider alternative ITE estimates with little vari-
ance and high bias. Because of the nature of bias, averaging
or regressing does not reduce the effect of their high bias.
Thus, the CATE estimates provided by LOOL can be more
robust than those from similar two-stage approaches.

4.3.3 Analysis Design
Our analysis employs the two methods described above. To
apply ReLOOP, we first split the data into three overlap-
ping subsets, each containing students assigned to the Ac-
tive Control condition and those assigned to one of the three
treatment conditions – FH2T, DragonBox, or Immediate
Feedback. This splitting essentially simulates running three
separate experiments, each comparing one treatment condi-
tion against the Active Control. We then use the ReLOOP
procedure to estimate ITE in each subset with p equal to
the sample proportion of observations under treatment. In
our analysis of each subset, we treat observations under the
other two treatment conditions as remnant data for each“ex-
perimental” subset. For example, for the FH2T subset, ob-
servations assigned to DragonBox and Immediate Feedback
will be the remnants. Thus, we fit two models regressing
the learning outcome (described in Section 4.4.2) on pre-
treatment covariates (described in Section 4.4.1) with these
remnants and then use their predicted values on the subset
as two additional covariates. These predictions represent the
outcomes the student would have gotten if their assignment
was instead DragonBox and Immediate Feedback. We use a
standard random forest implemented by the randomForest
package in R for all of our models [22, 25]. Table 1 details
the number of observations for each treatment condition and
their sample proportion within each subset. With the esti-
mated ITE from ReLOOP, we then estimate the ATE under
each condition and examine their significance. In compari-
son, we examine the sample difference-in-means:

τ̂DM =
1

nt

n∑
i:Zi=1

Yi −
1

nc

n∑
i:Zi=0

Yi = ȲZ=1 − ȲZ=0

which also unbiasedly estimates the ATE with the following
approximated sampling variance [18]:

V̂(τ̂DM ) =
S2
t

nt
+

S2
c

nc

where S2
t and S2

c are the sample variance of the observed
outcome Yi in the treatment and control group, while nt

and nc are their numbers of observations. To examine the
significance of the ATE estimates, we consider the null hy-
pothesis of τ̄ = 0. Let the estimated standard error of τ̂ be
V̂(τ̂)1/2. For a given significant level α, we calculate the test

statistic T ∗ = |τ̂ /V̂(τ̂)1/2| and reject the null hypothesis if
T ∗ ≥ Q(1− α/2), where Q(1− α/2) is the 1− α/2 quantile
of the standard normal distribution.

We then use LOOL by regressing the predicted ITE in each
subset on a set of chosen covariates, which we hypothesize
will be associated with effect heterogeneity, to estimate the
CATE. These are the pretest algebraic knowledge, math
anxiety (MA), whether the student started the year in a



Table 1: Number of observations under each condition
No. Observations P(Zi = 1)

FH2T 755 0.674
DragonBox 350 0.489
Immediate
Feedback

381 0.510

Active Control 366 –
Total 1,852 –

remote class, whether students were under an Early Inter-
vention Program Plan (EIP), whether students had accom-
modations (IEP or Section 5043), and whether English is not
the student’s first language (ESOL). We use a linear regres-
sion with robust or heteroskedasticity-consistent standard
errors implemented by the estimatr [4] package in R:

E[τi|Xi] = β0 + β1 · Pretesti + β2 ·MAi + β3 ·Rmt.i

+ β4 · EIPi + β5 ·Accomm.i + β6 · ESOLi + ϵi

We then perform our descriptive analysis to examine the re-
lationship between heterogeneous treatment effects and each
moderator. Further details on the variables are as below4.

4.4 Data & Measures
This study uses open source data available through the Open
Science Framework5. Our analyses utilize three different
types of variables. The pre-treatment predictor variables
and the learning outcomes are used in the ReLOOP models
to estimate the ITE. The covariates for heterogeneity are
moderators selected for the LOOL to estimate the CATE.

4.4.1 Pre-Treatment Predictor Variables
For the ReLOOP procedure, we used data from assessments
administered prior to their use of their assigned condition.
Pretest scores were collected by the original studies’ re-
searchers: prior algebraic knowledge, math anxiety, and per-
ceptual processing skills. Pretest algebraic knowledge was a
variant of the learning outcome described below. The math
anxiety assessment was adapted form from the Math Anx-
iety Scale for Young Children-Revised, which assessed neg-
ative reactions towards math, numerical inconfidence, and
math-related worrying (Cronbach’s α = 0.87; see the items
on OSF6). Five items adapted from the Academic Efficacy
Subscale of the Patterns of Adaptive Learning Scale to assess
math self-efficacy (Cronbach’s α = 0.82; see items on OSF7).
The perceptual processing assessment evaluates students’
ability to detect mathematically equivalent and nonequiv-
alent expressions as quickly as possible; see items on OSF8.
The district also provided metadata on the students, includ-
ing their demographics and most recent standardized state
test scores in math. Demographic data included race & eth-
nicity, individualized education plan status (IEP), and En-
glish as a second or foreign language (ESOL) status. Missing

3EIP and Section 504 are both accommodation plans for
students with disabilities – mandated by U.S. Federal Law.
4Replication code available at https://osf.io/f7rb4/
5https://osf.io/r3nf2/ The data can be accessed after
submitting a data sharing agreement.
6https://osf.io/rq9d8
7https://osf.io/rq9d8
8https://osf.io/r47ev

data were imputed using single imputation with the Random
Forest routine of the missForest package in R [37].

4.4.2 Learning Outcome
Students’ algebraic knowledge, which was assessed using
ten multiple-choice items from a previously validated mea-
sure of algebra understanding ([36]; Cronbach’s α = 0.89;
see the items on OSF9). Four of the items evaluated con-
ceptual understanding of algebraic equation-solving (e.g.,
the meaning of an equal sign), three evaluated procedu-
ral skills of equation-solving (e.g., solving for a variable),
and three evaluated flexibility of equation-solving strategies
(e.g., evaluating different equation-solving strategies). To-
gether, these ten items assessed students’ knowledge in al-
gebraic equation-solving, the improvement of which was the
goal of the interventions. Since the Active Control condi-
tion is present in all three subsets due to our design, this
measure was z-scored with the mean and standard devia-
tion of its values in the Active Control condition to improve
the interpretability of parameter estimates and consistency
in measurement across all subsets. As a result, the unit for
treatment effects is the number of standard deviations away
from the mean posttest of the Active Control group.

4.4.3 Covariates for Heterogeneity
We selected six variables as covariates for which to explore
effect heterogeneity: the pretest algebraic and math anx-
iety scores, and whether students started the school year
remotely, whether they had participated in an early inter-
vention program prior to middle school (EIP), whether they
were receiving either IEP or Section 504 accommodations in
their classrooms (accommodations), and ESOL. Within each
experimental subset, we standardized the chosen covariates.
The continuous measures were z-scored within each experi-
ment group. Binary measures were centered by subtracting
the mean (i.e. the proportion of the sample included in that
group) from each observation. In doing so, we center the
model’s CATE estimates and make the estimated intercept
of the LOOL regression (described in Section 4.3.3) equal
to the condition’s estimated ATE with ReLOOP. The coef-
ficients then represent effects added to or subtracted from
the ATE due to unit changes in the covariates.

5. RESULTS
5.1 Individual & Average Treatment Effects
Figure 1 shows the density plot of the estimated ITE, with
all three distributions being wide and highly spread out away
from their means or the estimated ATE (denoted by the red
lines). Under all three conditions, the standard deviation of
the ITE is substantial. This result is due to the LOOP esti-
mator trading high variance for unbiasedness, as discussed.

Table 2 shows the estimates of the ATE, the standard er-
rors, and the p-values with each estimator. Compared to the
Active Control condition, DragonBox leads to the largest in-
crease in posttest scores – followed by FH2T and Immediate
Feedback. Consider a significance level of α = 0.05. With
ReLOOP, the estimated ATE under FH2T (τ̂ = 0.123, p =
0.010) and DragonBox (τ̂ = 0.185, p = 0.001) are statisti-
cally significant. With differences-in-means, however, only

9https://osf.io/uenvg



Figure 1: Density plot of the estimated ITE under each condition

Table 2: Hypothesis testing for the estimated ATE under each condition

ReLOOP DM
τ̂ SE p-value τ̂ SE p-value

FH2T 0.123 0.048 0.010 0.108 0.065 0.096
DragonBox 0.185 0.056 0.001 0.189 0.076 0.013
Immediate Feedback 0.100 0.055 0.069 0.105 0.075 0.159
Bold estimates are significant at p < 0.05

the estimated ATE under DragonBox is significant (τ̂ =
0.189, p = 0.013). In addition, the ReLOOP estimator
produces smaller standard errors for all three conditions,
suggesting higher degrees of precision in the estimates.

5.2 Heterogeneous Treatment Effects
Table 3 shows the values and standard errors of coefficients
along with the p-values in the regression model estimating
the CATE under each condition. Under all three conditions,
most chosen covariates’ effects on a student’s CATE are not
statistically significant. The only exception is the pretest
score under FH2T (β̂ = 0.146, p = 0.010) and ESOL un-

der both FH2T (β̂ = −0.309, p = 0.018) and DragonBox

(β̂ = −0.345, p = 0.026). The magnitudes of the coeffi-
cients for ESOL are roughly twice those of the intercepts or
the estimated ATE for FH2T (τ̂ = 0.123, β̂ = −0.309) and

DragonBox (τ̂ = 0.185, β̂ = −0.345). Thus, being ESOL
strongly and adversely impacts a student’s estimated CATE
in both conditions. This result suggests that these condi-
tions penalize ESOL students more on average than the Ac-
tive Control condition. Similarly, under FH2T, relative to
the estimated ATE (τ̂ = 0.123), the pretest math score leads

to a sizable increase in the estimated CATE (β̂ = 0.146).
This result suggests that students with better algebra foun-
dations benefit more from FH2T, compared with the Active
Control condition, than students with weaker algebra foun-
dations on average.

In addition, we fitted a regression with interaction effects
to estimate the posttest with each subset – shown in Table
4 – whose coefficients of the treatment and its interactions
are analogs to the intercept and coefficients in Table 3. The
standard errors of all coefficients in Table 3 are smaller than
those of the coefficients of the interaction effects in Table
4 except for Accommodation under FH2T (0.166 > 0.163).
Like ReLOOP in Table 2 above, this result suggests the
LOOL provides more precise estimates of the coefficients.

6. DISCUSSION
The analysis reveals two notable trends. First, one of the
conditions (FH2T) is likely only effective for students who
start the program with average or above-average prior knowl-
edge. This is consistent with what previous analyses of this
experiment found [12], which provides some validation of the
LOOL method. Those who are below average would likely
have benefited from being in the Active Control condition.
This may be due to the nature of the program, which ex-
pected students to learn concepts and procedures in algebra
without direct instruction. Lower-knowledge students may
not have had a basis in algebra to intuit these knowledge
components, thus driving the heterogeneity. The second
trend is slightly less intuitive; two of the conditions (FH2T
and Dragon Box) produced reduced potentially negative ef-
fects for students who were English Speakers of Other Lan-
guages (ESOL). This was found even after accounting for



Table 3: Summary of models estimating the CATE under each condition

FH2T DragonBox
Immediate
Feedback

Est. SE p-value Est. SE p-value Est. SE p-value
Intercept 0.123 0.047 0.009 0.185 0.055 0.001 0.100 0.054 0.064
Pretest Math Score 0.146 0.057 0.010 0.049 0.072 0.496 0.007 0.074 0.919
Pretest Math Anxiety Score -0.009 0.049 0.851 -0.013 0.056 0.821 -0.026 0.052 0.614
Remote Start -0.149 0.119 0.211 -0.127 0.153 0.406 0.080 0.155 0.606
EIP 0.103 0.138 0.458 -0.057 0.184 0.756 0.042 0.150 0.780
Accommodations 0.015 0.166 0.930 -0.050 0.189 0.794 0.116 0.153 0.447
ESOL -0.309 0.131 0.018 -0.345 0.155 0.026 -0.339 0.176 0.055
Bold estimates are significant at p < 0.05

Table 4: Summary of interaction models estimating the posttest under each condition

FH2T DragonBox
Immediate
Feedback

Est. SE p-value Est. SE p-value Est. SE p-value
Intercept 0.014 0.041 0.740 0.022 0.041 0.596 0.016 0.041 0.693
Pretest Algebra Score 0.452 0.054 0.000 0.444 0.053 0.000 0.452 0.054 0.000
Pretest Math Anxiety -0.070 0.041 0.089 -0.069 0.041 0.089 -0.070 0.041 0.089
Remote Start 0.469 0.115 0.000 0.469 0.115 0.000 0.469 0.115 0.000
EIP -0.325 0.106 0.002 -0.325 0.106 0.002 -0.325 0.106 0.002
Accommodations -0.094 0.129 0.463 -0.094 0.129 0.464 -0.094 0.129 0.464
ESOL 0.118 0.112 0.295 0.118 0.112 0.295 0.118 0.112 0.295
Z (Treatment) 0.086 0.050 0.085 0.141 0.059 0.017 0.066 0.058 0.253
Pretest Algebra Score · Z 0.162 0.064 0.011 0.112 0.076 0.141 0.025 0.078 0.750
Pretest Math Anxiety · Z 0.016 0.050 0.744 0.016 0.060 0.795 -0.037 0.056 0.514
Remote Start · Z -0.190 0.136 0.165 -0.139 0.165 0.399 0.028 0.169 0.870
EIP · Z 0.169 0.140 0.229 0.176 0.197 0.372 0.209 0.150 0.164
Accommodations · Z 0.019 0.163 0.909 0.027 0.189 0.887 0.068 0.165 0.680
ESOL · Z -0.292 0.138 0.035 -0.456 0.172 0.008 -0.339 0.180 0.060
Bold estimates are significant at p < 0.05.
Note: Only the significance of coefficients of the treatment and its interaction effects is reported.

the influence of any potential differences in prior knowledge.
Notably, both these conditions contained limited written or
spoken English, focusing on mathematical notation or visual
repressions of math (e.g., objects instead of numbers or vari-
ables). Alternatively, the Active Control condition includes
instructions and word problems written in English. Thus, it
would seem plausible that FH2T and Dragon Box would be
more accessible to students who may not yet be proficient
in English than the Active Control condition. Yet our find-
ings indicate otherwise. More work is needed to explore the
driving these trends, but for now, it highlights the need to
explore effect heterogeneity, which may follow unexpected
patterns. Overall, both of these findings fit into the frame-
work established by Kizilcec & Lee (2022), that innovations
can be categorized as maintaining, widening, or closing gaps
between advantaged and disadvantaged groups [19]. In the
present case, we have found that the two most innovative
programs – FH2T and Dragon Box – fall into the category
of widening the learning gap for two important populations:
students with lower prior knowledge and English Speakers of
Other Languages. Further emphasizing the need to ensure
that programs are optimized to work well for all students,
but especially those who need good instruction the most.

In terms of the estimation of the ATE, ReLOOP improved
the precision of the estimates, as seen by the lower standard

errors for all three conditions compared to the difference-in-
means. This is consistent with findings from past studies [15,
31]. Likewise, the LOOL provided more precise estimates
than a similar interaction model using the same moderators.

7. CONCLUSION
The findings of this study demonstrate the utility of the
ReLOOP and LOOL methods for understanding heteroge-
neous effects and suggest that these methods can be used
to pursue the personalization of educational programs. In
essence, personalization is a question of individual treatment
effects, as this ideal is based on the assumption that each
student will experience different benefits from specific ed-
ucational experiences. The goal, therefore, is to construct
learner experiences that optimize each student’s learning in-
dividually, not just leaner benefits on average. This requires
us to understand more about whether an effect is dependent
on student characteristics and how we can tailor educational
experiences to maximize effectiveness.
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