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ABSTRACT

The problem of student dropout in higher education has
gained significant attention within the Educational Data
Mining research community over the years. Since student
dropout is a major concern for the education community
and policymakers, many research studies aim to evaluate
and uncover profiles of students at-risk of dropping out,
allowing timely intervention. Many students who eventu-
ally drop out of university display signs during their first
year of studies, thus early identification of these students
is both beneficial and feasible. Prediction studies typically
use administrative data, encompassing a wide range of stu-
dent attributes, as well as learning behavior data from an
institute’s learning management system. In this study, we
evaluate the early prediction of at-risk students within a
traditional classroom setting at a higher education institute
through machine learning methods, particularly Neural Net-
works and XGBoost. In an attempt to generalize our results,
we compare different fields of study, namely exact and social
sciences. Our results show that integrating learning behav-
ior has little effect on prediction quality metrics. We also
propose a novel aggregated ’studentship’ feature, contain-
ing both cognitive and social elements, which improves the
AUC metric for XGBoost at early stages of the semester.
Furthermore, our results indicate that prediction patterns
vary among different fields of study. We believe this research
presents a compelling case study and provides several valu-
able insights into the expanding corpus of studies on dropout
prediction in higher education.
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1. INTRODUCTION & RELATED WORK

The dropout phenomenon in higher education has gained
significant attention within the Educational Data Mining
(EDM) research community over the years, as researchers
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strive to reveal its origins and characteristics. Notably, var-
ious institutions, such as those in the US, report alarmingly
high dropout rates, with approximately 30% of students dis-
continuing their studies before reaching their second year in
colleges and universities [4]. This pervasive issue contributes
to adverse effects on students, educational institutions, and
the broader economy. The repercussions extend to taxpay-
ers, who bear a substantial financial burden funding the ed-
ucation of students unable to complete their studies [21].

Given that the challenge of student dropout is a significant
concern for students, the entire education community and
policymakers [3], research has been conducted to evaluate
and uncover profiles of students at-risk of dropping out.
Dropout stems from a variety of factors, including academic,
socio-economic, and psychological. Profiling and identifying
students at risk of dropout can assist educational stakehold-
ers in providing the support needed to help them remain
enrolled in the institutions [1].

To address the student dropout problem, identification of at-
risk students at an early stage is needed. Early identification
has the potential to enable proactive engagement by univer-
sity staff to help those students who need support. Many
students who eventually drop out of university display signs
during their first year of studies, thus early identification of
these students is both beneficial and feasible [5].

Research on student dropout prediction has its origins in the
1970s, with Tinto [40] discussing the specifications, condi-
tions and various student characteristics linked to the dropout
phenomenon. The study formulated a model incorporating
these elements, particularly socio-economic factors, learning
behavior and course grades. Recent research endeavors em-
ploy advanced techniques for identifying students at-risk of
dropping out of their studies, utilizing novel EDM method-
ologies and machine learning methods applied on institu-
tional databases [4, 7, 9, 12, 15, 27, 37]. This allows effi-
ciently predicting students at-risk and unveiling the factors
contributing to the dropout phenomenon, therefore minimiz-
ing the need for exhaustive student profiling efforts. Ma-
chine learning algorithms learn patterns from given data,
in order to predict values or labels in new data. These
algorithms achieve valuable insights by uncovering hidden
patterns on large datasets, thus there is an increase in their
adoption in many diverse disciplines including finance, trans-
portation, retail and many more. The choice of a machine
learning model is typically influenced by the educational set-
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ting context, which aligns with the data semantics. Several
recent studies highlighted the prominence of tree-based ma-
chine learning models, including Decision Trees (DT), Ran-
dom Forest (RF) and Extreme Gradient Boosted Trees (XG-
Boost) [11], for addressing the student dropout problem [2,
23, 31}, particularly when dealing with tabular data [20].
Kemper et al. [25] found that DT performing slightly bet-
ter compared to their Logistic Regression (LR) model, and
requires fewer features. Martins et al. [29] highlighted the
effectiveness of RF for handling imbalanced data. Asselman
et al. [2] found XGBoost to outperform other models, opti-
mized with GridSearch. However, some papers found Neural
Networks (NN) to perform better. Nagy and Molontay [30]
focused on high school achievements, with Gradient Boosted
Trees and NN showcasing the highest AUC scores. Baranyi
et al. [6] used both XGBoost and NN, with NN performing
better after GridSearch optimization. Lastly, Kostopoulos
et al. [26] demonstrated superior NN performance in AUC
and F1 scores.

Studies in a traditional classroom setting often use admin-
istrative data, encompassing a wide range of student at-
tributes such as prior academic achievements, college admis-
sion scores and social-demographic information. Students
are mandated to provide these attributes, which are consid-
ered highly reliable, during enrollment [8]. Course achieve-
ments, in particular final grades, are often used for predic-
tion, but they are logged into the institute’s database only at
the end of the semester. Another source of data frequently
employed in higher education institutions derives from the
institute’s Learning Management System (LMS), which cap-
tures the student learning activities during the semester, in-
cluding video views, forum participation, assignment grades,
submission times and more. Bird et al. [9] explored the
impact of LMS data integration along with administrative
data, by using RF applied on various datasets, with and
without LMS data. Their results indicated that LMS inte-
gration enhanced the prediction accuracy for first-year stu-
dents but not for returning students. Furthermore, they
evaluated predictions at various time intervals, by categoriz-
ing the LMS data features into temporal groups. This divi-
sion included features extracted solely from the first quarter
of the semester, and those encompassing data from the entire
semester. They found that augmenting the dataset with in-
formation obtained from the first quarter, alongside the data
available at the end of the semester, enhances prediction ac-
curacy. This suggests that the initial displayed learning be-
havior of students contributes to the prediction process, a
conclusion that was also observed by Tamada et al. [39].

In addition to a traditional classroom setting, online learning
environments, in particular Massive Online Open Courses
(MOOCs), gained significant interest in recent years. MOOCs
entail somewhat distinct datasets compared to traditional
administrative records and related research studies are mainly
focused on a single course setting rather than a full de-
gree or academic semesters. Online platforms capture the
students’ interactions with the course’s material, including
videos, mouse clicks, assignments and more, which are re-
ferred to as clickstream features [14, 36]. Hence, contempo-
rary research on students dropout in MOOCs environments
tends to utilize these clickstream features, when applying
machine learning methods [13, 22, 41, 42].

The educational experience model as constructed by Garri-
son et al. [18], contains three core elements: Social Presence,
which relates to students’ communication with each other;
Cognitive Presence, which relates to students’ interaction
with the course material; Teaching Presence, which relates
to students’ communication with the instructors / lectur-
ers. Swan [38] suggested that the LMS activities can be
divided into these three elements, for example forum par-
ticipation can be considered as a Social Presence attribute
and assignments grades are related to Cognitive Presence.
Accordingly, Moodle LMS presents two of these elements as
Cognitive Depth and Social Breadth!. Buschetto Macarini
et al. [10] evaluated whether students dropout prediction can
be enhanced using this LMS activities division, by adding a
separate counter feature for each core element. They con-
cluded, however, that these three counters show no improve-
ment compared to a single counter aggregating the three
counters.

In this study, we evaluate the early prediction of at-risk
students within a traditional classroom setting at a large
local university through machine learning methods, utiliz-
ing the university’s administrative and LMS data to assess
the latter’s impact on prediction quality. We categorize the
data into three aspects - Pre-Entry, Learning-Behavior and
Achievements. Pre-Entry relates to information provided by
the student during enrollment, sourced from the adminis-
trative database. Learning-Behavior is associated with data
depicting students’ behavior during the semester, collected
from the LMS database. Achievements are related to final
course grades and failures, also obtained from the institute’s
administrative database. Specifically, we employ XGBoost
and Neural Network models in order to address our primary
research inquiries:

1. Balancing the trade-off between early prediction and
model performance - at which point in time during an
academic semester is it most advantageous to predict
student dropout?

2. Is collecting LMS data valuable for enhancing the pre-
diction of student dropout?

3. What distinctions exist among faculties regarding pre-
diction accuracy and the reasons for student dropout?

The remainder of the paper is structured as follows. Sec-
tion 2 provides an overview of the various data aspects and
categorizations. Section 3 describes our methods and eval-
uation metrics. The results obtained from the evaluations
are presented in Section 4. Section 5 summarizes the paper,
highlighting key conclusions.

2. DATA

The data in the current study was obtained from a local
university’s databases and processed through feature engi-
neering methods, as described in Section 3. The data un-
derwent anonymization by university administrative person-
nel and the university’s ethics committee approved its us-
age. We collected student data between the years 2019-2022
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(n = 8,267 students), since the LMS data exhibited sta-
bility from 2019. As part of our data extraction process,
we noted that the university’s databases do not possess an
identification bit of whether a student is active or dropped
out. Hence, similar to the approach in [4], we determined
the dropout status of students by examining other database
records. Students were classified as dropouts if they had not
registered for any course in two consecutive years and had
not completed their study track. The majority of students
do not drop out, hence the generated dataset is imbalanced,
as was experienced by similar studies, such as [12, 16].

In accordance with our third research question, we obtained
datasets for several departments in the university, namely
computer science (CS, n = 1,666), physics (n = 566) and
psychology (n = 1,172). To assess prediction at higher aca-
demic hierarchy levels, we also extracted data for the host-
ing faculties, namely the exact sciences faculty for CS and
physics (n = 3,648) and the social sciences faculty for psy-
chology (n = 4,619).

2.1 Data Categorization
We divided our data into three logical data categories dis-
tinct in their context of an academic degree:

Pre-Entry encompasses socio-economic, demographic and past

achievements data, supplied by students during university
enrollment. Contains features such as birth date, gender,
university admission score, zip code, country of origin, mar-
ital status, religion, high school grades and more.

Learning-Behavior pertains to data available throughout the
semester, obtained from the LMS database. Contains LMS
activity features, such as assignment grades, forum partic-
ipation, video views, number of course logins, assignments’
submission times with respect to their deadline and more.
In section 3.2 we propose an aggregation for this category in
order to formulate the students’ overall cognitive and social
behavior.

Achievements refers to data available at the end of an aca-
demic semester, when final grades are assigned. This cate-
gory contains course related information, such as final grades
for both exam periods (noted A and B), the number of exam
failures, whether the course is mandatory and more.

2.2 Data Temporal Division

We divided the data further into several time points during
the semester. Each such time point adheres to data accumu-
lated up to that point in time. Table 1 details the temporal
points along with their corresponding data. For example,
Exam A period contains data up to the first exam period,
thus does not possess grades from the second exam period,
while 4 weeks and 8 weeks do not possess any final grade in-
formation, but solely contain Pre-Entry data and Learning-
Behavior up to that time. Semester 2 refers to the end of the
second academic semester, incorporating grades from both
exam periods in both semesters. This temporal-based divi-
sion defines the construction of the datasets needed for the
predictive timeline analysis done in section 4. The 4 weeks
time point was chosen since shorter intervals contain insuf-
ficient LMS data, and 8 weeks serves as a midpoint between
4 weeks and the end of the semester. Regarding Learning-

Table 1: Data Temporal Division Groups (with feature
count).

Period Data Categories Inclusion
Pre- Learning- Achievements
Entry Behavior

4 weeks all (29) | 4 weeks (13) -

8 weeks all (29) | 8 weeks (26) -

Exam A all Exam A (9)

Exams A, B (11)

Exams A, B and
semester 2 (11)

)

(29)

(29) | all weeks (39)
Exam B all (29) | all weeks (39)
Semester 2 | all (29) | all weeks (39)

Behavior, additional data from later stages in the semester
were incorporated as distinct features, without replacing the
information from earlier stages. For instance, at the 8 weeks
time point, the training set included distinct features from
both 4 weeks and 8 weeks. This approach allows the training
process to leverage the learning profile demonstrated by a
student earlier in the semester.

Overall, this study evaluates a total of 25 datasets, one
for each faculty / academic department across all examined
points in time. For instance, a dataset is generated for the
computer science department for each of the five time points.

3. METHODS

Several standard data preprocessing methods were applied,
and are specified in Appendix A. Appendix B specifies a fea-
ture normalization technique we used to overcome variabil-
ity in course statistics. We employed XGBoost and Neural
Network models for training over multiple datasets, as men-
tioned in Section 2.2. The training was conducted using the
random split method, to split the data into train and test
subsets at an 80% to 20% ratio, respectively. The models
and their hyper-parameters are described in Appendix C.

3.1 Course Clustering

Some of the features used in this study contain course-specific
data such as grades and LMS engagement. As seen in [24],
the success or failure in courses of varying difficulty levels
has distinct effects on predictive outcomes. For instance, a
failure in an easy course may signal a higher likelihood of a
student dropout compared to a failure in a more challenging
course. To address this issue, we opted to cluster the courses
offered by the university into four distinct difficulty levels:
easy, medium, hard, and very hard. Such clustering also
solves the issue of sparsity in course data, where students
have actual non-empty values only in the few courses they
enrolled in at a particular semester.

To that end, we employed k-means with k=4 using all courses
across all semesters, since a single course may exhibit vary-
ing levels of difficulty across different semesters. Each course-
semester instance was characterized by two features: the
average grade and the percentage of student failures.

The graphical representation of this clustering approach is
illustrated in Figure 1. For example, we can observe that
the easy cluster refers to courses exhibiting an average grade



ranging from 90 to 100, and a failure percentage below 10%.
In total, 24,776 instances of course-semester were gathered
from the entire university database.
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Figure 1: Courses clusters. Each dot is a course-semester
instance, divided by their level of difficulty.

Using the identified clusters, we represent course data not in
terms of features per course but instead by aggregated fea-
tures per difficulty level clusters. This modification serves
to decrease the number of potential features. For example,
each student entry contains a single grade feature for each
cluster, which is her average of grades in courses from that
cluster, as opposed to individual grades for each course. Fur-
thermore, we extracted a feature indicating the number of
courses in the cluster, in which the students achieved grades
surpassing the median grade of the course-semester instance.
This method was applied to all course-specific features from
the Learning-Behavior and Achievements data categories.

3.2 ’Studentship’ Aggregation Measurement
The LMS database includes a vast amount of information
regarding students’ engagement with courses, such as video
viewing, forum participation, frequency of logins, submis-
sion times, grades for assignments, and more. As noted
in previous studies [9], students who exhibit high levels of
forum engagement, timely submission of assignments, and
frequent interaction with the LMS tend to display better
academic performance and lower likelihood of dropping out
of or failing the course.

In addition to the normalization techniques we applied to
the raw LMS data, as detailed in Appendix B, we devised
a method for quantifying and normalizing students’ activity
based on their overall logging, recorded in the LMS database.
We assigned weights to various types of interactions with
the LMS system and calculated a score for each student
by summing up these weighted values. The weights could
be either positive or negative, akin to rewards or punish-
ments, correspondingly. For example, the number of high
(above mean) assignment grades will have a positive weight,
while submitting an assignment after the deadline will have
a negative weight. Afterwards, these weighted values were
normalized, as mentioned in Appendix B. Overall, we refer
to two LMS-based components, social studentship and cog-
nitive studentship, replacing the raw LMS features in each

of the clusters, as follows:

1. Cognitive Studentship reflects the level of cognitive en-
gagement of the students with the LMS system. It
comprises of the grades and submission times of as-
signments and quizzes.

2. Social Studentship reflects the level of social engage-
ment of the students in the course. It comprises the
students’ contribution to the course forum, the number
of entries to the LMS system and a number of videos
watched.

Appendix D provides a breakdown of the raw LMS features,
including their weighted values and their classification as
Social or Cognitive. The studentship metric is the weighted
sum of these features, per each cluster.

3.3 Evaluation Metrics

In assessing the performance of our models, we employed
a set of key evaluation metrics, specifically AUC and 'Re-
call for the Dropout Class’ (Dropout Recall). The selec-
tion of AUC stems from its efficacy in evaluating imbalanced
datasets, being independent of specific classification thresh-
olds, by calculating True Positive Rate (TPR) and False
Positive Rate (FPR) across the threshold range. In accor-
dance with prior research [4, 37], we opted to include the
Dropout Recall metric, aligning with our primary research
goal of identifying as many students at-risk of dropping out.
Consequently, our aim is to minimize the potential of over-
looking such students, as can be reflected by achieving high
values for the Recall metric.

To assess the importance of the data categories for the pre-
diction task, our methodology was similar to prior work [19,
34]. The evaluation metric employed measures the reduction
in AUC score resulting from the permutation of columns as-
sociated with a specific data category across all instances.

4. RESULTS

To address our research questions, we assessed both XG-
Boost and NN models on various datasets. Each dataset
corresponds to a time point, from the list in Section 2.2,
whether LMS data was incorporated and whether studentship
features were utilized instead of the raw LMS data. In sec-
tions 4.1 and 4.2 we limit our scope to data from the com-
puter science department, addressing RQ1 and RQ2. The
results described in these sections are summarized in Ta-
ble 2. In Section 4.3 we address RQ3 and compare between
academic departments.

4.1 Early Prediction vs. Model Performance
Relating to RQ1, our objective in this section is to assess the
balance between early predictions and the potential to im-
prove prediction metrics as additional data is accumulated
throughout an academic semester. Predictions early in the
first academic semester, prior to reaching the first exam pe-
riod, allow timely intervention and support to reduce the
dropout risk. We refer to the results shown in Table 2 at
the top block, labeled studentship, which is our initial ref-
erence point in terms of model performance.



Table 2: AUC and Dropout Recall for the Computer Science
Datasets. Top block: training data contains studentship
features replacing raw LMS data, middle block: LMS data
without studentship, bottom block: LMS data completely
removed from training

Type Time XGBoost NN
AUC]| Dropout || AUC| Dropout
Recall Recall
Student-| 4 weeks 0.69 | 0.11 0.73 | 0.72
ship 8 weeks 0.69 | 0.11 0.73 | 0.44
Exam A 0.79 | 0.33 0.78 | 0.61
Exam B 0.9 0.64 0.89 | 0.92
Semester 2 | 0.94 | 0.76 0.92 | 0.92
LMS 4 weeks 0.62 | 0.0 0.75 | 0.72
8 weeks 0.63 | 0.06 0.75 | 0.83
Exam A 0.74 | 0.17 0.79 | 0.83
Exam B 0.89 | 0.72 0.9 0.76
Semester 2 | 0.96 | 0.8 0.92 | 0.88
No Pre-Entry 0.63 | 0.2 0.61 | 0.48
LMS
Exam A 0.75 | 0.22 0.77 | 0.56
Exam B 0.86 | 0.56 0.88 | 0.84
Semester 2 | 0.92 | 0.68 0.92 | 0.84

First, we observe that the AUC scores after 4 weeks and
8 weeks of a semester are identical in both models. This is
rather surprising, and suggests that studentship aggregation
of LMS data from later in the semester, is not indicative of
dropout. In later stages of the semester, and not surpris-
ingly, we observe monotonically increasing AUC scores over
time for both models, indicating that predictions made at
the end of the semester and later on, when course final grades
are available, yield better results. In addition, even though
NN initially shows slightly higher AUC scores than XGBoost
in the early stages of the semester, the latter model demon-
strates enhanced AUC scores at later stages. Nevertheless,
it is noteworthy that both models achieve AUC scores ex-
ceeding 0.9 at the end of the second semester.

Upon observing Dropout Recall scores, a notable distinc-
tion is evident between the models. In the case of NN, when
grades from the second exam period are available (Exam B)
and later on (Semester 2), the model achieves Dropout Re-
call scores of 0.92. As mentioned earlier, high Dropout Re-
call scores denote the model’s efficacy in identifying students
at risk of dropout, thereby demonstrating proficiency in
identifying instances of the minority class - student dropouts.
Further examination of the corresponding AUC score indi-
cates the NN’s comprehensive predictive performance. XG-
Boost displays lower Dropout Recall scores at all examined
time points.

4.2 Prediction Improvements by LMS Integra-
tion

With regards to RQ2, the analysis in this section examines

the impact of incorporating raw LMS data and its replace-

ment with studentship features on the prediction quality —

whether these data improve, diminish or have negligible im-

pact across different time points in our two models. In con-

ducting this analysis, our models were trained using two lim-
ited trainsets, namely without any LMS data (bottom block
in Table 2) and with raw LMS data only (middle block).
The AUC score results are visualized in Figure 2.

First, we note that when no LMS data is used, and at time
points 4 weeks and 8 weeks before any course grades are
available, the only data used for training belongs to the
Pre-Entry category (in Table 2 this corresponds to the row
labeled Pre-Entry). This allows us to examine the extent by
which the “fate” of a student can be determined solely by
their socio-economic, demographic and high-school achieve-
ments. Neither XGBoost nor NN models show much success
in predicting dropout in this case (AUC 0.63 and 0.61, re-
spectively).

Examining the AUC scores, the monotonicity over time in
both models is preserved (compared to section 4.1) when
training does not rely on LMS data at all and when it relies
on its raw data. The contribution of raw LMS data is evi-
dent with the NN model before Exam A, and afterwards the
effect narrows down and even disappears at the last time
point, with all three datasets reaching AUC=0.92. With
XGBoost, however, it appears LMS alone is not enough to
significantly improve prediction quality, but replacing it with
studentship is advantageous in the first three time points
examined. As for the Dropout Recall, the NN model sig-
nificantly outperforms XGBoost with all three datasets dis-
cussed. We conclude, therefore, that the contribution of our
proposed studentship feature is inconsistent, and that LMS
data may be significant, depending on the model used.

4.3 Comparison Between Academic Disciplines
With regard to RQ3, in this section we aim to compare sev-
eral academic disciplines in terms of prediction performance
and feature importance. Our analysis includes the depart-
ments of computer science and physics from the faculty of
exact sciences, and psychology from the faculty of social sci-
ences. To that end, we use the results obtained from the
XGBoost model, and analyze the datasets containing the
studentship feature aggregation, in order to assess the im-
portance of social and cognitive studentship.

Figure 3 illustrates the corresponding AUC scores obtained.
Notably, in contrast to computer science and physics, the
monotonicity in the AUC score is violated for psychology in
Semester 2. This is a surprising behavior, which is discussed
in the next section. Furthermore, this behavior does not
occur in psychology’s hosting faculty, the home for other
units such as the departments of social work and economy.
Also, the transition between 4 weeks and 8 weeks involves a
slight decrease in AUC scores for physics, psychology, and
the faculty of exact sciences. This non-intuitive result is in
contrast to all previous results shown in Table 2 regarding
computer science.

As for feature importance, we aimed to assess the impor-
tance of the data categories presented in section 2.1. We
computed category (rather than single feature) importance [19,
34]. Figure 4 illustrates the AUC score loss effect by each
data category. A higher loss indicates higher importance in
the prediction for that data category. An evident common
pattern exists in all three departments - the decrease in Pre-
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Figure 2: Learning-Behavior Data Impact, the Computer Science Department

Entry combined importance over time, with a sharp decrease
once Achievements data becomes available at the first exam
period. Indeed, the Achievements category is expected to
be the best indicator for dropout when treated as a group
of features, with the disadvantage that it becomes available
only when the semester already ended. Furthermore, the im-
portance of Achievements increases monotonically as more
grades are assigned in the second exam period and further on
in the second semester. As for the studentship-related fea-
tures, the results show their importance decreases during the
semester and is limited compared to Pre-Entry data, while
at the end of the semester and later on these features become
roughly as predictive as Pre-Entry data. Some differences
can be observed when comparing psychology to the exact
sciences mentioned departments. In the former, Pre-Entry
data is more predictive at the expense of Achievements. To
conclude, in all three departments Achievements data over-
shadows other data categories in terms of predictive capa-
bilities, and prior to their availability, Pre-Entry data serve
as a much better predictor than Learning-Behavior related
data from the LMS. Looking at the normalized AUC score
loss (Figure 5 in Appendix E) we can examine the average
importance of single features in each data category, as the
score loss is normalized with the number of features in each
category. For example, there are more features in the Pre-
Entry data category (29) than in the Studentship (8), and
their combined importance could be affected by the category
size and therefore be misleading. Still, the results clearly
support the earlier conclusions that Achievements data is a
much better indicator for dropout, especially in the exact
sciences. However, these normalized plots also show that
Learning-Behavior outperforms Pre-Entry data as a predic-
tor, if category sizes are normalized. We conclude that Pre-
Entry data gains part of its predictive power from the mere
fact that it contains numerous features.

5.  CONCLUSIONS
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Figure 3: Comparative Disciplinary Evaluation

The dropout phenomenon in higher education has gained
a lot of interest over the years, with an attempt to under-
stand its origins and characteristics, allowing a timely inter-
vention to reduce its extent. Many academic institutes put
extensive effort into this challenge, providing educational
consultation and support for struggling students. More re-
cently, approaches based on machine learning methods to
predict dropout have shown promising results, and conse-
quently there is a growing corpus of research utilizing such
methods.

In this study, we employ two standard models (XGBoost
and Neural Networks) on a leading local university database
and Learning Management System. We examine the effect
of the following elements on the prediction quality: the tem-
poral impact along the academic timeline, the contribution
of LMS-related data, and possible differences between fields



of study. We believe our results provide several interesting
insights regarding these three aspects.

We examine two time points during the first semester of
studies, namely after 4 weeks and after 8 weeks in a typical
13-week semester. Two additional data points we inspected
are the first and the second exam periods at the end of the
first semester, when final course grades are available. A fifth
time point we chose is at the end of the second semester of
the academic year. Our initial results clearly reflect a steady
increase in prediction metrics quality as additional data is
accumulated through the progress of the academic timeline.
However, waiting until the end of the first semester, not
to mention the second one, in order to achieve better pre-
diction has its clear disadvantages — less time is left to in-
tervene, with possibly a more limited potential to reduce
dropout. Still, both models examined show a substantial
leap in terms of prediction quality at the second exam pe-
riod, when students get their second chance to express their
academic competence. Thus, as an initial recommendation
to university staff, this point in time should be exploited to
scan the lists of students in order to assist struggling ones.

The impact of LMS-related data was revealed to be inconsis-
tent in more than a single manner. First, the effect of LMS
raw data is significant in only one of the models used (Neu-
ral Networks). This effect becomes negligible starting the
first exam period of the first semester, suggesting that final
grades overshadow the impact of LMS raw data. In contrast,
the studentship aggregation feature we propose, which cap-
tures cognitive and social elements of student engagement
with the LMS, significantly benefits the XGBoost model
only. A neural network model is indeed expected to gen-
erate such generalizations and aggregation of the data with
no human-generated “scaffolds” (perhaps additional hidden
layers can improve this ability further). In terms of learning
capabilities, this reflects the differences in a model’s abil-
ity to generalize from raw data that, albeit structured, is
also somewhat inconsistent and variant. To conclude, we
believe the described inconsistency can be explained by the
fact that LMS data tends to be highly variant across disci-
plines, courses and even semesters, and is much less reliable
than other data categories we use.

As for the impact of the disciplinary nature of an academic
department, our results indicate that different fields of study
(e.g. computer science vs. psychology), may exhibit some-
what different dropout patterns. This may not be surpris-
ing, yet important to acknowledge when striving to develop
a “one model fits all” prediction methodology. As a notable
example, a surprising result is that the prediction quality
in the psychology department drops substantially between
the second exam period of the first semester and the sec-
ond semester. This is in contrast to the pattern we see in
the two other departments examined - computer science and
physics. When looking deeper into the difficulty levels of
courses in psychology we recognize a possible cause for this
phenomenon: courses’ difficulty levels are distributed much
more uniformly than in the other departments. Therefore,
when additional course grades are available at the end of the
second semester, student profiles are practically averaged
and become less divergent, which hinders prediction. This
interpretation requires deeper examination to prove or fal-

sify. Further investigation of feature importance shows some
common aspects between academic fields, but also some dif-
ferences. In common, final course grades are the best indi-
cators of dropout, and prior to their availability, Pre-Entry
data serves as a better indicator when treated as a group
of features, but not when considering the importance of an
average individual feature. On the other hand, final grades
appear to be more meaningful in the exact sciences than
in psychology, while in the latter Pre-Entry data has more
impact even at the end of the semester. These analyses in-
dicate that disciplinary factors could improve prediction if
taken into consideration.

We believe this research contributes an interesting case study
and provides several important insights into the emerging

corpus of studies on dropout prediction in higher education.
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APPENDIX
A. DATA PREPROCESSING

Various standard data preprocessing methods were applied
to the data. For example, in the case of missing values
in course grades (a student who did not attend the exam),
we filled the missing grade entries with -1. Similarly, for
raw features related to Learning-Behavior, we filled missing
values with 0 to denote no activity was recorded under the
evaluated LMS interactions.

As another example, the majority of students did not have a
value under "country of immigration”. The raw value of this
feature corresponds to the origin country ID in the database,
and for the purpose of this research, the specific country of
origin is of minimal importance. Hence we converted this
feature to a boolean feature indicating whether the students
are immigrants or not. We applied this same boolean trans-
formation methodology to several other features. Features
with more than two distinct values were coded into multiple
discrete values. Furthermore, one-hot vector was applied to
some of these features.

B. FEATURE NORMALIZATION

As course difficulty levels are distinct and may vary be-
tween semesters, we normalized the student Achievements
data with respect to other students from the same course-
semester instance rather than relying on the raw data, allow-
ing the evaluation of students’ performance relative to their
classmates. For example, the student grade features were
normalized based on the mean grade and standard devia-
tion of the course-semester instances. The normalized grade
is the distance from the mean grade of the course offering in
standard deviation units, as can be seen in Equation 1.

feature_value — mean(course)

lized_value =
normalized_value stddev(course)

(1)

In addition, the task of capturing LMS information poses
significant challenges, due to the varied teaching strategies
employed across different courses [35]. For instance, some
courses encourage active participation in forums while oth-
ers lack forums altogether. Similarly, requirements related
to submission of assignments and video components may
differ across courses and even between semesters. For that
matter, we employed the normalization techniques on LMS
features as well. For example, forum participation features
were normalized by considering the average forum partici-
pation of all students in the corresponding course-semester.
Specifically, the same normalization approach for grades, de-
tailed in Equation 1, is applied to LMS features as well.

C. MACHINE LEARNING MODELS
C.1 XGBoost

XGBoost is considered a good choice of model for predic-
tion on tabular data. In order to solve the dataset im-
balance, SMOTE was utilized prior to model training, to
ensure an equal amount of entries for dropout and non-
dropout classes. We trained this model using GridSearch
cross-validation mechanism, in which we set the options for

the hyper-parameters in order to optimize the AUC met-
ric. The initial hyper-parameter configurations were based
on the recommendations presented in [17]. By employing
iterative training, we evaluated a range of additional hyper-
parameter combinations, deriving the set of options docu-
mented in Table 3. Optimal AUC was obtained by different
combinations of parameters for different datasets.

Table 3: XGBoost Hyper-Parameters for GridSearch

Hyper- values Description
parameter
mazx_depth {5,10, 15} Maximal tree depth

n_estimators | {100,200,300} | Number of trees

learning_rate | {0.01,0.1,0.3} | Determines the train-

ing step size

subsample {0.8,1} Training data ratio for

each tree

C.2 Neural Networks

Following the guidelines outlined in [32], we designed the
Neural Network architecture suitable for small datasets, in-
corporating a single hidden layer. The hidden layer was
constructed by 10,000 nodes, initialized with Xavier initial-
ization [28]. We used a Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.01 and a weight decay
of 0.01 as a regularization to prevent overfitting, and uti-
lized the Weighted Cross Entropy Loss [33] to address the
dataset imbalance. The model was trained for 100 epochs,
which resulted in negligible train loss.

D. STUDENTSHIP FEATURES BY TYPE

Table 4 provides the classifications of the raw LMS features
into either Cognitive or Social, along with their correspond-
ing weights. The specific weights used are +5, +3, +2 for
large, medium and small rewards, and -3, -2 for medium and
small punishments. While the exact weights are somewhat
arbitrary, they allow us the quantification of LMS activity
importance, as we perceive it.

Table 4: Studentship LMS Features, where (+) is a reward,
and (-) is a punishment

Category | Feature Weight
Social No. logins Medium(+)
Social No. forum messages written Large(+)
Social No. forum messages read Small(+)
Social No. video views Small(+)
Cognitive| No. grades above mean Large(+)
Cognitive| No. assignment submissions Small(+)
Cognitive| No. submissions within 70% of | Large(+)

submission period

Cognitive| No. submissions above 70% of | Medium(+)
submission period, and before
deadline

Cognitive| No. submissions on the day of | Small(-)
deadline

Cognitive| No. submissions after deadline | Medium(-)




E. NORMALIZED FEATURE IMPORTANCE
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