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ABSTRACT
Student modeling is central to many educational technologies
as it enables predicting future learning outcomes and design-
ing targeted instructional strategies. However, open-ended
learning domains pose challenges for accurately modeling
students due to the diverse behaviors and a large space of
possible misconceptions. To approach these challenges, we
explore the application of large language models (LLMs) for
in-context student modeling in open-ended learning domains.
More concretely, given a particular student’s attempt on
a reference task as observation, the objective is to synthe-
size the student’s attempt on a target task. We introduce a
novel framework, LLM for Student Synthesis (LLM-SS), that
leverages an LLM for synthesizing a student’s behavior. Our
framework can be combined with different LLMs; moreover,
we fine-tune LLMs to boost their student modeling capa-
bilities. We instantiate several methods based on LLM-SS
framework and evaluate them using an existing benchmark,
StudentSyn, for student attempt synthesis in a visual pro-
gramming domain. Experimental results show that our meth-
ods perform significantly better than the baseline method
NeurSS provided in the StudentSyn benchmark. Further-
more, our method using a fine-tuned version of the GPT-3.5
model is significantly better than using the base GPT-3.5
model and gets close to human tutors’ performance.
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1. INTRODUCTION
Student modeling refers to the process of representing the
current state of a learner’s knowledge, skills, preferences, and
learning needs [1]. This is pivotal in developing educational
systems as it allows for the personalization of learning ex-
periences [2], catering specifically to each student’s unique
abilities and growth areas, and targeted instructional strate-
gies that can significantly enhance the learning process [3].

By understanding student behavior, tutoring systems and
educators can identify patterns and trends [4, 5], thereby
predicting future learning outcomes [6] and providing timely
support. Moreover, it allows them to detect if and when a
student is losing interest or facing challenges [7], enabling
them to intervene effectively [8]. In particular, student mod-
eling is key in open-ended learning domains where creativity
and exploratory behaviors are encouraged [9, 10]

In open-ended learning domains such as programming, stu-
dents can take different learning paths and complete a task
with different strategies [9]. This results in diverse behaviors
and presents significant challenges to modeling a particular
student’s behavior [10]. In recent years, some efforts in stu-
dent modeling for open-ended learning domains have been
made, such as representing knowledge and forecasting future
performance using deep learning [6], investigating students’
problem-solving approaches using Natural Language Pro-
cessing [12], early prediction of conceptual understanding
[7], clustering-based methods for misconception discovery [4],
students’ attempts synthesis in block-based visual program-
ming [11], and predicting students’ post-test performance
and interest using multimodal predictive student modeling
[13]. Existing works on student modeling in open-ended
learning domains often require a large behavioral dataset
from students or use a complex pipeline, and sometimes, a
combination of both [6, 11, 13, 14]. In this paper, we seek to
leverage recent advances in generative AI and large language
models (LLMs) for student modeling in open-ended learning
domains and address the above-mentioned shortcomings.

In particular, LLMs have demonstrated advanced capabilities
for in-context learning in which a model learns to solve a
downstream application scenario when prompted with appro-
priate contextual information [15, 16]. Notably, they have
been used to simulate humans for replicating human subject
studies [17] and to simulate students for training teaching
assistants [18]. In this work, we investigate the potential of
leveraging such capabilities of LLMs for in-context student
modeling in open-ended learning environments. In our setup,
an LLM observes a student’s attempt on a reference task as
the student’s behavioral context, and the objective is to syn-
thesize the student’s attempt on a target task, reflecting the
student’s problem-solving style and misconceptions observed.
In essence, we seek to address the following research ques-
tion: Given a specific student’s behavioral context, are LLMs
capable of effectively modeling the student and subsequently
synthesizing the student’s attempt on a target task?

M. H. Nguyen, S. Tschiatschek, and A. Singla. Large language mod-
els for in-context student modeling: Synthesizing student’s behavior
in visual programming. In B. Paaßen and C. D. Epp, editors, Pro-
ceedings of the 17th International Conference on Educational Data
Mining, pages 341–348, Atlanta, Georgia, USA, July 2024. Interna-
tional Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729830

https://doi.org/10.5281/zenodo.12729830


Reference task T ref Solution C∗
T ref Student’s attempt Cstu

T ref

def Run(){
RepeatUntil(goal){
If(pathAhead){
moveForward

}
Else{
turnLeft

}
}

}

def Run(){
RepeatUntil(goal){
moveForward
turnLeft
moveForward
turnLeft
moveForward

}
}

Target task T tar Solution C∗
T tar

def Run(){
RepeatUntil(goal){
If(pathAhead){
moveForward

}
Else{
turnRight

}
}

}

Student’s
attempt

synthesizer

Student’s attempt

on target task Ĉstu
T tar

Figure 1: Illustration of our problem setup in a visual programming environment. The scenario is taken from the StudentSyn
benchmark [11]. A synthesizer observes a tuple of (T ref, C∗

T ref , C
stu
T ref) indicating a student stu’s behavior. Then, given a target

task T tar along with a solution C∗
T tar , the synthesizer generates a student’s attempt Ĉstu

T tar that imitates the student’s behavior.

To this end, we introduce a novel framework, LLM for Student
Synthesis (LLM-SS), that leverages LLMs for modeling and
synthesizing a student’s behavior. The design of our frame-
work is inspired by Perturbation Student Model [19], based on
the idea that a student’s knowledge can be modeled as pertur-
bations to expert knowledge. Our framework operationalizes
this idea by providing a student’s behavioral context in the
prompt and improving the expert knowledge of a base LLM
via fine-tuning. In summary, our main contributions are:

I. We formalize the problem of using an LLM’s in-context
learning capabilities for student modeling and behavior
synthesis in open-ended learning domains.

II. We propose a novel framework LLM-SS for synthesizing
student’s behavior. Our framework can be combined
with different LLMs; moreover, we fine-tune LLMs to
boost their student modeling capabilities.

III. We evaluate several methods instantiated from our
framework on an existing benchmark, StudentSyn, for
student attempt synthesis in a visual programming do-
main. Our results highlight that our methods perform
significantly better than baselines without requiring
complex pipelines or extensive datasets.

IV. We publicly release the implementation of LLM-SS to
facilitate future research.1

2. RELATED WORK
Student modeling and synthesis in open-ended domains. As
discussed in the previous section, there have been recent
developments on student modeling for open-ended learning
domains, with techniques ranging from misconception discov-
ery to identification of struggling students and investigating
problem-solving strategies [4–7, 11–13]. Among these recent
works, our work is closer to that of [11] as we are addressing
the problem of synthesizing a student’s behavior by focusing

1Github: https://github.com/machine-teaching-group/
edm2024-llm-student-modeling

on misconceptions in observed attempts. In fact, our evalua-
tion is based on the StudentSyn benchmark from [11] that
considers the problem of synthesizing a student’s attempt
in visual programming domains. As part of this benchmark,
[11] proposed an automated method, NeurSS, that requires
extensive pre-training on expert data and continual training
on real-world data from similar students. Our framework
aims to avoid this complex training pipeline by leveraging
the in-context learning capabilities of LLMs. Our work is
also similar in spirit to contemporary works that use LLMs
for simulating students to teach learners in conversational
tutoring systems [20] or train human tutors [18].

LLMs in programming education. Generative AI and LLMs
hold great promise in enhancing the field of education through
a complementary relationship between human teachers and
generative models [21, 22]. Some of the earlier works applying
LLMs in educational settings focused on computing and
programming education domains and studied a various of
scenarios, including generating high-precision feedback [23,
24], generating programming exercises [25], repairing bugs
in programming assignments [26], task synthesis for visual
programming [27, 28], and benchmarking LLMs capabilities
with that of human tutors [28, 29]. Our work differs from
these works, given our focus on leveraging LLMs for modeling
a student and synthesizing students’ attempts.

3. PROBLEM SETUP
In this section, we formalize the problem of leveraging LLMs
for in-context student modeling in open-ended domains.
While we focus on LLM-based methods, we provide a generic
setup that encapsulates various baseline methods that do
not use LLMs (e.g., baseline NeurSS used for comparison
in Section 5). In particular, our problem setup is inspired by
the work of [11] that will also be used later as a benchmark
in our experiments.

Preliminaries and synthesis objective. Given an open-ended
learning domain, there is a student, henceforth referred to as



stu, aiming to solve some tasks in the domain. We denote the
space of all possible tasks by T, and the space of all possible
solutions and attempts by C. In particular, we are given
a reference task T ref ∈ T of interest along with a solution
C∗

T ref ∈ C.2 Our main goal is to develop a synthesizer that
can model the student stu by observing how stu solves
T ref, and subsequently synthesize an attempt on any similar
target task T tar, imitating stu’s behavior. More concretely,
we consider the following two-step process:

(1) First, the synthesizer observes a student’s context tuple
(T ref, C∗

T ref , C
stu
T ref), where Cstu

T ref ∈ C is the student stu’s
attempt on solving the reference task.

(2) Next, given a target task T tar ∈ T conceptually similar
to T ref, along with a solution C∗

T tar ∈ C, the synthesizer

synthesizes a student’s attempt Ĉstu
T tar , which should be

close to how the student stu would attempt T tar.3

Quality rubric for evaluation. We evaluate the performance
of a synthesizer based on the quality of their synthesized

student’s attempt Ĉstu
T tar . Based on existing literature [11, 29],

we quantitatively measure the generative quality using expert-
based assessments w.r.t. the following quality rubric:

• Q-stu. This attribute measures whether the synthesized

attempt Ĉstu
T tar captures the student stu’s behavior (e.g.,

problem-solving strategy and underlying misconceptions).

• Q-task. This attribute measures whether the synthesized

attempt Ĉstu
T tar captures the characteristics of T tar (e.g.,

partially reflecting its solution C∗
T tar).

• Q-overall. This attribute measures whether the syn-

thesized attempt Ĉstu
T tar successfully captures both the stu-

dent’s behavior and the target task’s characteristics at the
same time. We will set Q-overall = Q-stu × Q-task.

Illustrative example for visual programming domain. In our
experimental evaluation (Section 5), we will consider an ex-
isting benchmark, StudentSyn [11], for student attempt
synthesis in a visual programming domain of Hour of Code:
Maze Challenge by Code.org (HoCMaze) [30]. As an illus-
trative example, Figure 1 shows a concrete scenario for our
problem setup.

4. OUR LLM-SS FRAMEWORK
In this section, we propose a novel framework, namely LLM-
SS, for in-context student modeling and synthesizing stu-
dents’ attempts. It is inspired by the Perturbation Student
Model as discussed below (Section 4.1). Afterward, we delve
into two components of LLM-SS: providing student’s context
(Section 4.2) and providing domain expertise (Section 4.3).

2A task T can have multiple solutions, and C∗
T refers to any

solution codes written by experts being provided as input.
3There are different granularity levels at which we can synthe-
size the student stu ’s behavior, including: (a) a coarse-level
binary prediction of success/failure, (b) a medium-level pre-
diction w.r.t. predefined misconceptions; (c) a fine-level syn-
thesis of student’s attempt. Here, we focus on this fine-level
objective of synthesizing a student’s attempt.

4.1 Perturbation Student Model
Perturbation Student Model is based on the idea that a stu-
dent’s knowledge can be modeled as perturbations to expert
knowledge [19]. This model was introduced as an extension
of the Overlay Model [31, 32] – it allows modeling a student’s
misconceptions and “buggy” knowledge that deviates from
expert knowledge. It assumes that incorrect behaviors of a
student can be caused by systematically applying a set of
perturbations to domain expertise.

In our LLM-SS framework, we use an LLM to model a student
in an open-ended learning domain following the same idea
of Perturbation Student Model. More concretely, we provide
a student’s knowledge by a behavioral context in a prompt
to LLM (Section 4.2), and provide domain-specific expertise
through fine-tuning the LLM on expert data (Section 4.3).

4.2 Providing Student’s Context
Next, we discuss how to provide a student’s context to an
LLM and leverage the LLM’s capabilities of in-context learn-
ing. Again, the goal of a student’s context is to give an
LLM information about the student, which may include
the student’s background, preferences, learning history, and
problem-solving trajectories on multiple tasks. This informa-
tion can be provided to a given LLM as a context in a prompt
– existing works have shown that LLMs can effectively learn
from such contextual information without explicit training
or further parameter updates [15, 16].

In our framework, the prompt includes a student’s context
in the form of a problem-solving attempt on a reference
task, which is represented by an information tuple (T ref,
C∗

T ref , C
stu
T ref); see Section 3. We expect the LLM to infer the

student’s misconceptions from the observed attempt along
with the necessary perturbations to obtain Cstu

T ref from C∗
T ref .

Subsequently, the LLM is asked to play the role of this student
and synthesize an attempt for a target task T tar, which should
reflect the student’s behavior. This is when the LLM should
apply the same perturbations to obtain Ĉstu

T tar from C∗
T tar .

Figure 2 shows an example of our main prompt template for
providing the student stu’s context and synthesizing the stu-
dent’s attempts. We note that our LLM-SS framework can
accommodate multiple solutions for a task and richer repre-
sentations of the student’s context as input by appropriately
adapting the prompt. In this template example, we have
shown a single solution for a task and one student’s attempt,
as considered in our experimental evaluation; see Section 5.

4.3 Providing Domain Expertise
Next, we discuss how to provide domain-specific expertise to
an LLM for student modeling. In general, datasets used for
pre-training LLMs may not contain data coming from special-
ized open-ended learning domains such as interactive educa-
tional games [10], physics simulations [33], or visual program-
ming [30]. Consequently, LLMs could be far from experts in
these domains; for instance, even state-of-the-art models like
GPT-4 perform poorly in synthesizing solutions for visual
programming tasks [28]. In such settings, we need to enhance
an LLM domain-specific knowledge to effectively model a
student as per the Perturbation Student Model. In particular,
we will enhance an LLM’s domain expertise via fine-tuning



Domain Background
{domain background}

Instruction
First, I give you below a reference task, a solution, and an
attempt from a student on the reference task. Observe the
student’s behavior and misconceptions in the attempt.

Second, I give you a target task with a solution. You are
going to play the role of the given student. Synthesize
a problem-solving attempt on the target task by the
same student, i.e., capturing the student’s behavior and
misconceptions observed on the reference task.

Student’s Behavior on Reference Task
— Reference Task: Representation —
{reference task representation}
— Reference Task: Solution —
{reference task solution}
— Reference Task: Student’s attempt —
{reference task student attempt}

Target Task
— Target Task: Representation —
{target task representation}
— Target Task: Solution —
{target task solution}
— Target Task: Student’s attempt —

Figure 2: Prompt template used in LLM-SS framework.
{placeholders} are used to include details for each scenario.

– existing works have shown that pre-trained LLMs can be
tailored to specific domains via fine-tuning [34, 35]

In our framework, we aim to improve a given LLM’s ca-
pability of generating solutions C∗

T for any task T similar
to the reference task T ref. Once the LLM acquires a bet-
ter understanding of how to solve tasks in the domain, it
is expected to better infer the student’s behavior from the
context provided in Section 4.2. More concretely, we use
pairs of (task T , solution C∗

T ) in the domain to create a

fine-tuning dataset Dft = {x(k),y(k)}, where x(k) is an input

prompt containing a task to be solved and y(k) is the de-
sired solution generated by the LLM. We consider an LLM
parameterized by θ, with pθ denoting conditional probability
distribution of sampling responses. We perform supervised
fine-tuning to adjust θ through gradient descent, with the
objective of minimizing the negative log-likelihood loss given
by Lft(θ) := −E(x(k),y(k))∼Dft

[
log pθ(y

(k)|x(k))
]
[35].

Figure 3 shows the pipeline overview of fine-tuning an LLM in
our framework along with an example of fine-tuning prompt
template. In each prompt x(k), we first start by describing
the domain background (same as in Figure 2). Then, we
use an instruction to steer the LLM’s behavior to act as a
domain expert and solve a task. The last part of the prompt
is a representation of the task to be solved.

5. EXPERIMENTAL EVALUATION
This section presents our experimental evaluation, including
description of StudentSyn benchmark with baseline meth-
ods from [11] (Section 5.1), evaluated methods (Section 5.2),
evaluation procedure (Section 5.3), and results (Section 5.4).

5.1 STUDENTSYN Benchmark and Baselines
We use the StudentSyn benchmark from [11], designed to
evaluate student’s attempt synthesis methods in the visual

Domain Background
{domain background}

Instruction
You should act as an expert in this domain and synthesize a
solution for the following task below.

Task
— Task: Representation —
{task representation}
— Task: Solution —

(a) Prompt for fine-tuning.

Fine-tuning dataset Dft

task

solution solution

Desired response y(k)

Base LLM
(e.g., GPT-3.5

or Llama2 )

Prompt x(k)

task

supervised

fine-tuning

Fine-tuned

LLM

Dataset

(b) Fine-tuning an LLM using synthetic data.

Figure 3: Fine-tuning an LLM using expert knowledge in
LLM-SS framework.

block-based programming domain of Hour of Code: Maze
Challenge by Code.org (HoCMaze) [30]. This programming
domain has been popularly used in several existing works
[11, 36–38]. Figure 1 shows an example of task T ref along
with a solution C∗

T ref – a task in HoCMaze is specified by
a visual grid containing an avatar (blue arrow), a goal (red
star), and some walls (gray cells); a solution code brings the
avatar to the goal’s location while avoiding hitting the walls.
StudentSyn is a challenging benchmark for our problem
setup, as evidenced by the huge performance gap between
human tutors and automated methods proposed in [11].

Benchmark scenarios. This benchmark comprises two refer-
ence tasks T ref, namely HoCMaze-4 and HoCMaze-18 [30],
and three target tasks T tar associated with each reference
task. In our illustration of problem setup in Figure 1, we
use HoCMaze-18 as T ref. The benchmark considers six types
of misconceptions, such as confusion between left/right di-
rections when turning, writing repetitive turn commands,
and ignoring the If-Else/While structure. The benchmark
provides a set of scenarios comprising a student stu with
a specific misconception, one coding attempt Cstu

T ref on each
reference task, and the stu’s attempt on each target task
Cstu

T tar serving as a ground-truth. In total, we evaluate on

these 36 scenarios ( 2 T ref × 3 T tar × 6 stu).

Dataset for fine-tuning. Along with benchmark scenarios,
[11] also provides a synthetic dataset consisting of (task, so-
lution) pairs, where tasks are similar to either HoCMaze-4 or
HoCMaze-18. Here, task similarity is measured conceptually
by edit distance in solution codes. This synthetic dataset was
created and used for pre-training models introduced in [11].
In our framework, we will use it to fine-tune a base LLM to
boost its domain expertise. In total, there are 10, 000 training
tasks and 500 validation tasks for HoCMaze-4, and 40, 000
training tasks and 500 validation tasks for HoCMaze-18.



HoCMaze-4 HoCMaze-18

Q-overall Q-stu Q-task Q-overall Q-stu Q-task

GPT-3.5-SS 0.28 0.56 0.50 0.14 0.61 0.25

GPT-4-SS 0.61 0.86 0.72 0.51 0.81 0.58

GPT-3.5ft-SS 0.64 0.69 0.75 0.82 0.92 0.86

Llama2-7B-SS 0.08 0.14 0.44 0.08 0.25 0.39

Llama2-70B-SS 0.36 0.58 0.50 0.26 0.56 0.50

Llama2-7Bft-SS 0.52 (0.05) 0.55 (0.07) 0.90 (0.05) 0.30 (0.08) 0.66 (0.11) 0.39 (0.09)

Llama2-70Bft-SS 0.65 (0.08) 0.87 (0.05) 0.73 (0.05) 0.53 (0.03) 0.83 (0.02) 0.63 (0.03)

NeurSS 0.43 0.56 0.67 0.25 0.78 0.36

TutorSS 0.84 0.92 0.89 0.85 0.89 0.95

(a) Detailed results w.r.t. to each attribute in the quality rubric: Q-overall, Q-stu,
and Q-task. Fine-tuned models are highlighted in green. Fine-tuning improves LLMs’
capabilities of capturing both student’s behavior and target task’s characteristics.
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(b) Overall performance (Q-overall). Green areas
correspond to fine-tuning improvements. TutorSS
(red lines) serves as a performance upper bound.

Figure 4: (a) shows performances of methods w.r.t. individual attributes in our quality rubric. (b) shows the overall performance
of capturing both student’s behavior and target task’s characteristics. Human tutors (TutorSS) serve as an oracle. For
methods using a fine-tuned LLM, we report numbers averaged over three fine-tuning runs with standard errors (except
GPT-3.5ft-SS with only one run, due to the high costs of using fine-tuning APIs from OpenAI).

Baseline methods. We compare our framework with baseline
method NeurSS [11], an LSTM-based neural network pre-
trained on expert knowledge and continually trained on real
students’ attempts. We also compare our framework with
human tutors in the visual programming domain, referred to
as TutorSS in [11]. Here, TutorSS can be considered an
oracle that provides performance upper bounds. We re-use
the students’ attempts synthesized by NeurSS and TutorSS
from [11], and re-assess them w.r.t. our rubric in Section 5.3.

5.2 Methods Based on LLM-SS Framework
Methods using a base LLM without fine-tuning. Based on
our LLM-SS framework, we develop the following concrete
methods using base models without fine-tuning step described
in Section 4.3: GPT-3.5-SS using GPT-3.5 [39], GPT-4-SS
using GPT-4 [40], Llama2-7B-SS using Llama2-7B-Chat [35],
and Llama2-70B-SS using Llama2-70B-Chat [35].

Methods using a fine-tuned LLM. We further develop the
following three concrete methods by fine-tuning three models:
GPT-3.5ft-SS using fine-tuned GPT-3.5 [39], Llama2-7Bft-SS
using fine-tuned Llama2-7B-Chat [35], and Llama2-70Bft-SS
using fine-tuned Llama2-70B-Chat [35]. We did not fine-tune
the GPT-4 model as APIs are not publicly available. Details
of our fine-tuning procedure are explained in Section 4.3.4

5.3 Evaluation Procedure
For each scenario from the StudentSyn benchmark (see
Section 5.1), we create a prompt following the template in
Figure 2 to use it as input to an LLM. We use the domain
background representation for HoCMaze based on prompts in
recent works [27]. Subsequently, all scenarios together with
student attempts synthesized by the LLM are presented to
two independent experts for assessment – these two experts

4For fine-tuning Llama2-70B models, we used a cluster of
2×36 cores, 2.40 GHz Intel Xeon Platinum Processor 8360Y,
and 8×Nvidia A100 80GB, with parallelization under a 64-
bit Debian. We fine-tuned a model for each reference task
separately, and one run on a reference task took up to 35
hours. For GPT-3.5, we fine-tuned the GPT-3.5-turbo-0613
model for each reference task separately, and one run on a
reference task took up to 7 hours. We paid about 1000$ in
total for using fine-tuning APIs provided by OpenAI.

have extensive knowledge in computer science and visual
programming domains, and follow the evaluation rubric from
Section 3. The annotation process is done in a blind condition,
in which experts do not know from which method a coding
attempt is synthesized. In total, there are about 500 codes
to be annotated by each expert corresponding to different
scenarios and methods.

These two experts annotated the synthesized codes by using
binary values {0, 1} for annotation, i.e., each quality at-
tribute could take a value of 0 (bad) or 1 (good). Concretely,

Q-stu = 1 means that Ĉstu
T tar captures the student stu’s

behavior in terms of the problem-solving strategy and un-
derlying misconceptions, and otherwise Q-stu = 0; similarly,

Q-task = 1 means that Ĉstu
T tar captures the characteristics

of target task T tar, and otherwise Q-task = 0. Q-overall,
defined as Q-stu × Q-task, takes values of {0, 1}. We vali-
date the expert annotations w.r.t. Q-overall using Cohen’s
kappa inter-agreement reliability [41], obtaining a value of
0.71, indicating substantial agreement between two experts.

Nevertheless, further investigation into the annotations re-
vealed that the majority of disagreements between two ex-
perts were borderline cases where the quality attribute value
was unclear. This motivated us to refine the scale of as-
sessment where Q-stu and Q-task would take values of
{0, 0.5, 1}, with 0.5 now indicating partially capturing the
student’s behavior or the target task’s characteristics. We
note that Q-overall, defined as Q-stu × Q-task, now
takes values of {0, 0.25, 0.5, 1}. With this refined scale, one
expert did the entire annotations again and the final results
reported in Section 5.4 are based on these new annotations.
We report averaged results in the range [0.0, 1.0] by aggre-
gating across all scenarios for a given reference task.

5.4 Results
Without fine-tuning: GPT-4-SS outperforms NEURSS. Among
our methods that use a base LLM model without fine-tuning,
GPT-4-SS achieved the highest scores in all quality attributes
across both reference tasks, followed by Llama2-70B-SS (see
Figure 4a). Additionally, GPT-4-SS performs significantly
better than the NeurSS baseline w.r.t. Q-overall in both
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Figure 5: Losses and evaluations during fine-tuning our two best-performing methods GPT-3.5ft-SS and Llama2-70Bft-SS. We
plot data per 0.1 epoch. Losses are plotted on log scale for better visibility of dynamics. Validation BLEU/accuracy metrics are
decided by the fine-tuning library/platform and shown as a sanity check and are not used for optimization. For GPT-3.5ft-SS,
the number of epochs depends on the budget spent for OpenAI APIs; we spent roughly half of the total budget for each task.
For Llama2-70Bft-SS, the number of epochs is determined by generative performance on a small validation set of examples.

def Run(){
RepeatUntil(goal){
moveForward
turnRight
moveForward
turnRight
moveForward

}
}

(a) Cstu
T tar

Q-overall:1,

Q-stu:1, Q-task:1

def Run(){
RepeatUntil(goal){
moveForward
moveForward
turnRight
moveForward
moveForward
turnRight
moveForward

}
}

(b) TutorSS
Q-overall:1,

Q-stu:1, Q-task:1

def Run(){
RepeatUntil(goal){
moveForward
moveForward
moveForward
turnRight
moveForward
moveForward
moveForward
turnRight

}
}

(c) GPT-3.5ft-SS
Q-overall:1,

Q-stu:1, Q-task:1

def Run(){
RepeatUntil(goal){
moveForward
turnRight
moveForward
turnLeft

}
}

(d) Llama2-70Bft-SS
Q-overall:0.5,

Q-stu:1, Q-task:0.5

def Run(){
RepeatUntil(goal){
moveForward
turnLeft
moveForward
turnLeft

}
}

(e) NeurSS
Q-overall:0,

Q-stu:1, Q-task:0

Figure 6: Student stu’s attempts for the scenario shown in Figure 1. (a) shows ground-truth student stu’s attempt Cstu
T tar

provided in the StudentSyn benchmark. (b-e) show synthesized student stu’s attempts Ĉstu
T tar provided by different methods.

reference tasks (p ≤ 0.05), based on the χ2 test [42].5 Q-
overall scores of GPT-3.5-SS and Llama2-7B-SS are lower
than that of the baseline NeurSS (which also motivates why
we need to do fine-tuning discussed in Section 4.3).

Fine-tuning shows significant improvements. Our methods
using fine-tuning, namely GPT-3.5ft-SS, Llama2-7Bft-SS,
and Llama2-70Bft-SS, demonstrate significant improvements
compared to using their base versions without fine-tuning
(p ≤ 0.05), as shown in Figure 4b. Remarkably, for HoCMaze-
18, there is no significant difference between the performances
of GPT-3.5ft-SS and human tutors in TutorSS (p > 0.05).
We observe that fine-tuning enhances a base LLM’s ability
to capture the target task’s structure (Q-task), as shown
in Figure 4a – this improvement is expected given they are
fine-tuned to generate solutions for tasks. More importantly,
their ability to capture the student’s behavior (Q-stu) also
increases across all reference tasks and fine-tuned models.
Figure 5 provides insights into the fine-tuning process.

Example of synthesized student’s attempt. In Figure 6, we in-
vestigate the scenario for HoCMaze-18 from Figure 1. In this
scenario, the student stu’s misconception is ignoring condi-
tionals when attempting to solve the given task. Figure 6(a)
shows student code Cstu

T tar for the target task provided in the

5χ2 tests reported here are computed on aggregated data
across both the reference tasks.

benchmark. Figures 6(b-e) show student codes Ĉstu
T tar syn-

thesized by different methods. Student code synthesized by
GPT-3.5ft-SS has the same misconception observed in Cstu

T ref ,
while adapting to T tar (Q-overall=1). Notably, it is very
close to the code written by human tutors in TutorSS (Q-
overall=1). Llama2-70Bft-SS synthesized a code that cap-
tures the student’s misconception, but only partially reflects
the target task’s characteristics (Q-overall=0.5). In con-
trast, the NeurSS baseline synthesized a code that overfits
Cstu

T ref , failing to reflect the layout of T tar as it uses turnLeft
blocks instead of turnRight blocks (Q-overall=0).

6. CONCLUDING DISCUSSIONS
We proposed a novel LLM-based framework, LLM-SS, for
in-context student modeling in open-ended learning domains.
The results showcase that methods instantiated from LLM-
SS are capable of modeling a student’s observed behavior and
synthesizing the student’s attempt on a target task. We also
highlight that fine-tuning a base LLM using expert knowledge
in a given open-ended learning domain significantly improves
its effectiveness in student modeling. More importantly,
our framework does not require building a complex training
pipeline as existing works, making it broadly applicable
to new domains. In summary, our work demonstrates the
potential of using LLMs for in-context student modeling,
especially in challenging open-ended learning domains.

Next, we discuss some limitations of our current work and



ideas to tackle them in the future. First, our framework
was evaluated on one visual programming domain, and the
scenarios we considered do not fully capture the wide spec-
trum of open-ended learning domains; it would be interesting
to evaluate our framework in other open-ended learning do-
mains (e.g., algebra or text-based programming). Moreover,
it would also be useful to do a more systematic analysis to
see which misconceptions or students’ behaviors are not well
captured by our framework. Second, we provided a student’s
context through only one example of a problem-solving at-
tempt; it would be interesting to evaluate the effectiveness of
our framework when the student’s context contains richer in-
formation, including the student’s background and attempts
on different tasks. Third, we evaluated our framework on
student modeling metrics but have not evaluated how this
modeling helps improve the performance of downstream ap-
plications; as future work, it would also be important to
investigate the usefulness of our modeling framework directly
in downstream applications, such as performance prediction,
task recommendation, or synthetic behavioral dataset gener-
ation for training data-intensive models. In particular, since
our framework allows fine-grained synthesis of a student’s
attempts beyond binary performance prediction, it would
be interesting to see how our framework can potentially be
applied for providing finer-grained feedback to the student
about possible misconceptions.

Finally, we note that there are several ethical implications re-
garding the use of LLMs for student modeling. For instance,
the attempts synthesized by LLMs may not accurately re-
flect a student’s understanding or ability. Moreover, LLMs
are prone to hallucination and might generate inaccurate
information. Therefore, it is crucial to implement appropri-
ate validation mechanisms and safeguards when deploying
LLM-based student modeling techniques in classrooms.
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