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ABSTRACT
This paper presents an in-depth analysis of student behav-
ior and score prediction in the ASSISTments online learn-
ing platform. We address four research questions related
to the impact of tutoring materials, skill mastery, feature
extraction, and graph representation learning. To investi-
gate the impact of tutoring materials, we analyze the influ-
ence of students requesting hints and explanations on their
performance in end-of-unit assignments. Our findings pro-
vide insights into the role of guidance in learning and in-
form the development of superior tutoring strategies. Ad-
ditionally, we explore the correlation between mastery/non-
mastery of specific skills during in-unit problems and per-
formance in corresponding end-of-unit assignments, shed-
ding light on the efficacy of standard-aligned curricula. In
terms of feature extraction, we extract relevant features from
extensive student activity data and determine their impor-
tance in predicting assignment grades. Furthermore, we
employ graph representation learning techniques to model
the complex relationships between different entities in the
dataset. This yields a more nuanced modeling of factors
influencing student performance and facilitates the devel-
opment of more accurate predictive models. Overall, our
study contributes to the practical application of data min-
ing techniques in online learning contexts, with implications
for personalized learning, interventions, and support mech-
anisms. The code is publicly available in https://github.

com/DSAatUSU/EDMCup2023.
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1. INTRODUCTION
Emerging technologies and evolving societal needs have pro-
pelled the digital transformation in education [1, 2, 3, 4, 5,
6, 7, 8]. A significant catalyst in this digital revolution is the
rise of online learning platforms [9, 10]. Recent global events,
such as the shift to remote learning, have further accelerated
this digital transformation [11, 12]. These platforms aim
to make quality education accessible to anyone, regardless
of their location, thus democratizing education [13]. They
also reach underserved communities and individuals with
limited mobility, ensuring equal learning opportunities for
all [14]. Online learning platforms generate abundant data,
including detailed clickstream and assessment data. This
data provides a unique opportunity to understand student
behavior and enhance learning outcomes using data mining
and machine learning techniques [15]. By predicting student
performance and tailoring learning experiences, these plat-
forms can create a student-centric educational environment.
This paper focuses on two key areas within this data-rich
landscape: analyzing student behavior and predicting exam
grades. Understanding student behavior helps uncover pat-
terns in engagement, motivation, and learning strategies [16,
17]. Predicting exam grades based on behavior data is cru-
cial for identifying at-risk students and adjusting teaching
strategies [16, 17]. In this study, we present our analysis,
machine learning models, and results from the EDM CUP
2023 competition. The competition involved predicting stu-
dents’ scores on end-of-unit assignments using clickstream
data and additional curriculum information. A detailed ex-
planation of the dataset can be found on the website [18]
(see Appendix A.1). We aim to answer the following re-
search questions:

RQ1: How does requesting tutoring materials impact stu-
dents’ performance in end-of-unit assignments, and what are
its implications for guidance and learning strategies? RQ2:
What patterns exist in the correlation between mastery of
specific skills during in-unit problems and performance in
corresponding end-of-unit assignments, and how does this
relate to educational standards? RQ3: How can we ex-
tract relevant features from extensive student activity data
within the ASSISTments platform for predicting assignment
grades, and what is the importance of these features? RQ4:
How can graph representation learning be used to model
complex relationships in the dataset, and can features ex-
tracted from these relationships improve assignment grade
prediction?
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Our contributions in this paper can be summarized as fol-
lows:

• We thoroughly investigate the impact of requesting
tutoring materials on student performance in an on-
line learning setting. Our quasi-experimental approach
provides valuable insights into the causal effects of
these elements on end-of-unit assignments.

• We establish a clear link between the mastery of spe-
cific Common Core State Standards (CCSS)-aligned
skills during in-unit problems and performance on end-
of-unit assignments. This contributes to a better un-
derstanding of the effectiveness of standard-aligned cur-
ricula.

• Extensive feature extraction from various dataset at-
tributes helps us determine their importance in pre-
dicting grades. This approach enhances our ability to
predict student performance and identify at-risk stu-
dents early.

• We apply graph representation learning algorithms to
model complex dataset relationships, offering a more
nuanced understanding of factors influencing student
performance.

• Our comprehensive approach not only addresses im-
portant research questions in online learning but also
provides a methodological framework that can be ap-
plied in similar studies, contributing to the field of ed-
ucational data mining.

2. STUDENT BEHAVIOR ANALYSIS AND
ACADEMIC ACHIEVEMENT

To address RQ1 and RQ2, we embark on a comprehensive
analysis of student behaviors and their impact on academic
outcomes. In Section 2.1, we explore the relationship be-
tween tutoring requests and the end-of-unit student perfor-
mance, considering various tutoring alternatives. Following
this, in Section 2.2, we employ association rule mining to
extract meaningful patterns (rules). These rules serve to
illuminate the relationship between two key concepts: a)
the mastery or non-mastery of CCSS-related skills during
in-unit assignments and b) the mastery or non-mastery of
CCSS-related skills during end-of-unit problems.

2.1 Tutoring Request and Student Performance
When students engage in in-unit assignments, they have the
option to request tutoring if it is available for the specific
problem they are working on. The available core tutoring
options include hints, explanations, and answers. Addition-
ally, there are two auxiliary tutoring options including skill-
related videos, and live tutor. We aim to assess the effective-
ness of these tutoring options in improving student perfor-
mance in end-of-unit problems. To this end, we calculated
the percentage of each tutoring option requested for each
group of end-of-unit assignment and corresponding prob-
lem, which are associated with multiple in-unit problems.
The percentage of tutoring requested is determined by di-
viding the number of in-unit problems for which students
requested a particular tutoring option by the total number
of in-unit problems where that specific tutoring option was

available. This is expressed by the following formula:

% of tutoring option requested=

# of in-unit problems with tutoring option requested

Total # of in-unit problems with that tutoring option available
× 100

(1)

Table 1 presents the results of our examination of the asso-
ciation between students’ end-of-unit performance and their
requests for the five distinct tutoring options available, as
demonstrated in parts (a) through (e). Part (f) of the table
aggregates the results for all tutoring options. Additionally,
we conducted a grade-specific analysis by segmenting the
data based on the first part of the problem skill code, which
corresponds to the grade as per the CCSS guidelines. This
approach facilitated the computation of the proportion of
tutoring requests for each grade and tutoring option inde-
pendently. However, not all tutoring options were accessible
for every grade or had sufficient data to enable experimen-
tation, leading to variations across tables. The second and
third columns show the average score and sample size (SS)
of end-of-unit problems where students requested tutoring
more than 70% of the time and less than 30% of the time,
respectively. These thresholds were selected to create a clear
distinction, facilitating a robust assessment of tutoring’s im-
pact. While a binary categorization of 100% or 0% may seem
appealing, the infrequency of such extreme cases makes it
impractical for addressing RQ1. The fourth column, labeled
SD, showcases the score difference between students with
high tutoring requests (≥ 0.7) and those with low requests
(< 0.3). For example, for grade 1 with hint requested, SD =
HR (≥ 0.7) Score - HR (< 0.3) Score = -0.21. This differ-
ence helps to evaluate whether requesting a tutoring option
frequently within the unit yields a better grade on the end-
of-unit assignments (SD ≥ 0) or not (SD < 0). The fifth
column showcases the t-statistic, derived via a Student’s t-
test. As a measure used in hypothesis testing, the t-statistic
determines the likelihood of the observed difference between
sample means having occurred by chance, thereby assisting
in establishing statistical significance [19]. The final columns
exhibit the p-value. The outcomes of these analyses are il-
lustrated in Table 1. We make the following observations
based on these results.

• In general, students who requested help less often (<
0.3) performed better than those who requested more
often (≥ 0.7). This is observed in all grades for HR,
AR, ER, and TTR.

• In most instances across all tutoring options, the t-
statistic is significant (p-value < 0.05), indicating a
notable difference in means between the groups of stu-
dents who request help more frequently and those who
request it less often. However, for grade 8 in Live Tutor
Requested (LTR) and for all grades except grade 7 in
Skill Video Requested (SVR), the disparity in means
between these two groups is not statistically signifi-
cant (p > 0.05), making it difficult to draw conclusions
about these particular groups.

• The largest difference in performance (SD = 0.63) be-
tween the two groups is observed in Hint Requested
(HR) for grade HSF.

• In the case of Hint Requested (HR), there is a reverse
trend in HSG, where those who requested more often



Table 1: The experimental results of investigating the impact of tutoring requests on students’ performance

(a) % Hint Requested (HR)

Grade
HR (≥ 0.7) HR (< 0.3)

SD t-stat p-value
Score SS Score SS

1 0.65 23 0.86 8438 -0.21 -2.89 3.93e− 3
2 0.41 49 0.71 97905 -0.30 -4.63 3.65e− 6
3 0.21 189 0.60 44480 -0.39 -11.00 0.00e+ 0
4 0.42 823 0.53 44879 -0.11 -6.52 6.93e− 11
5 0.40 261 0.49 60968 -0.09 -2.99 2.79e− 3
6 0.34 3936 0.59 57721 -0.25 -30.53 0.00e+ 0
7 0.38 5973 0.56 20363 -0.18 -25.03 0.00e+ 0
8 0.45 1604 0.54 15177 -0.09 -7.10 1.27e− 12

HSA 0.48 31 0.71 869 -0.23 -2.78 5.52e− 3
HSG 1.00 15 0.79 182 0.21 2.01 4.56e− 2
HSF 0.00 2 0.63 222 -0.63 -1.84 6.72e− 2
HSN 0.33 15 0.61 104 -0.28 -2.09 3.88e− 2
HSS 0.25 4 0.60 244 -0.35 -1.41 1.61e− 1

All grades 0.38 13122 0.61 388096 -0.22 -51.93 0.00

(b) % Answer Requested (AR)

Grade
AR (≥ 0.7) AR (< 0.3)

SD t-stat p-value
Score SS Score SS

1 0.76 1018 0.78 14731 -0.01 -0.84 3.99e− 1
2 0.60 34310 0.77 39427 -0.17 -50.74 0.00e+ 0
3 0.45 15898 0.67 28104 -0.22 -45.56 0.00e+ 0
4 0.40 18127 0.67 23163 -0.27 -56.94 0.00e+ 0
5 0.32 19129 0.61 46255 -0.29 -69.48 0.00e+ 0
6 0.48 34011 0.67 20481 -0.19 -43.93 0.00e+ 0
7 0.45 19619 0.66 7342 -0.21 -31.66 5.16e− 216
8 0.41 9015 0.61 7858 -0.20 -26.69 9.19e− 154

HSA 0.36 1190 0.69 2973 -0.33 -20.55 1.93e− 89
HSF 0.37 1628 0.69 5613 -0.32 -23.96 4.04e− 122
HSG 0.34 1402 0.61 5125 -0.27 -18.82 5.17e− 77
HSN 0.40 139 0.64 624 -0.24 -5.39 9.56e− 8
HSS 0.35 526 0.49 2147 -0.14 -5.71 1.25e− 8

All grades 0.47 168651 0.69 230979 -0.22 -145.87 0.00

(c) % Explanation Requested (ER)

Grade ER (≥ 0.7) ER (< 0.3) SD t-stat p-value
Score SS Score SS

5 0.17 24 0.41 323 -0.24 -2.35 1.91e− 2
6 0.27 988 0.64 20069 -0.37 -23.92 8.92e− 125
7 0.33 943 0.58 16286 -0.25 -15.36 6.47e− 53
8 0.32 422 0.55 5840 -0.23 -9.25 2.93e− 20

All grades 0.30 2387 0.61 43168 -0.31 -29.84 9.47e− 194

(d) % Live Tutor Requested (LTR)

Grade LTR (≥ 0.7) LTR (< 0.3) SD t-stat p-value
Score SS Score SS

6 0.00 1 0.54 52018 -0.54 - -
7 0.86 36 0.53 22684 0.33 4.01 6.13e− 5
8 0.80 5 0.54 9459 0.26 1.16 0.25

HSF 0.89 99 0.65 248 0.24 4.67 4.36e− 6
All grades 0.87 141 0.54 206946 0.33 7.83 5.03e− 15

(e) % Skill Video Requested (SVR)

Grade SVR (≥ 0.7) SVR (< 0.3) SD t-stat p-value
Score SS Score SS

2 0.83 18 0.77 7487 0.07 0.68 0.50
4 0.64 33 0.58 25560 0.05 0.63 0.53
5 0.43 77 0.50 75651 -0.07 -1.31 0.19
6 0.63 38 0.54 51835 0.09 1.11 0.27
7 0.12 26 0.53 22599 -0.41 -4.22 2.5e− 5
8 0.50 20 0.54 9237 -0.04 -0.35 0.73

HSF 0.75 8 0.64 210 0.11 0.62 0.54
All grades 0.52 241 0.54 205939 -0.03 -0.79 0.43

(f) % Total Tutoring Requested (TTR)

Grade TTR (≥ 0.7) TTR (< 0.3) SD t-stat p-value
Score SS Score SS

1 0.39 176 0.80 18200 -0.40 -13.18 1.67e− 39
2 0.32 2088 0.74 90748 -0.42 -43.45 0.00
3 0.25 3271 0.65 44481 -0.40 -46.45 0.00
4 0.27 4228 0.62 37544 -0.35 -44.22 0.00
5 0.24 8036 0.59 58846 -0.35 -59.95 0.00
6 0.33 8646 0.64 48147 -0.31 -56.11 0.00
7 0.32 6190 0.63 19655 -0.31 -44.64 0.00
8 0.34 3557 0.60 13268 -0.25 -27.57 1.25e− 163

HSA 0.31 1068 0.69 3148 -0.38 -22.99 2.84e− 110
HSF 0.37 1591 0.68 5629 -0.32 -23.92 9.15e− 122
HSG 0.34 1387 0.62 5283 -0.28 -19.52 1.39e− 82
HSN 0.27 85 0.63 660 -0.36 -6.58 8.89e− 11
HSS 0.30 395 0.50 2301 -0.20 -7.36 2.49e− 13

All grades 0.31 44089 0.67 385830 -0.36 -152.69 0.00



Table 2: The experimental results of investigating the impact of percentages of correct and wrong responses during in-unit
assignments on the end-of-unit problems

(a) % Correct Response (CR)

Grade CR (≥ 0.7) CR (< 0.3) SD t-stat p-value
Score SS Score SS

1 0.79 10985 0.64 588 0.15 8.83 1.20e− 18
2 0.75 76748 0.50 3065 0.25 31.28 1.78e− 213
3 0.61 34542 0.48 1345 0.12 9.13 7.30e− 20
4 0.54 40967 0.35 2118 0.19 17.19 5.38e− 66
5 0.51 57950 0.42 6165 0.09 12.78 2.47e− 37
6 0.51 17264 0.48 3873 0.04 4.14 3.56e− 5
7 0.56 17980 0.30 1516 0.26 19.55 2.80e− 84
8 0.50 6462 0.40 2399 0.09 7.89 3.48e− 15

HSA 0.61 953 0.43 666 0.18 7.26 6.06e− 13
HSF 0.58 731 0.52 821 0.06 2.57 1.03e− 2
HSG 0.52 2570 0.50 957 0.03 1.40 0.16
HSN 0.71 311 0.43 42 0.28 3.68 2.72e− 4
HSS 0.55 305 0.43 418 0.13 3.43 6.33e− 4

All grades 0.62 303094 0.45 25268 0.17 54.11 0.00

(b) % Wrong Response (WR)

Grade WR (≥ 0.7) WR (< 0.3) SD t-stat p-value
Score SS Score SS

1 0.57 382 0.81 17455 -0.24 -11.47 2.29e− 30
2 0.50 5026 0.75 77445 -0.25 -39.49 0.00
3 0.39 5153 0.64 35325 -0.25 -35.47 2.30e− 271
4 0.39 7789 0.62 26086 -0.23 -36.92 1.55e− 292
5 0.38 13036 0.57 44434 -0.19 -38.84 0.00
6 0.41 9332 0.63 43403 -0.23 -40.95 0.00
7 0.38 5918 0.60 18708 -0.22 -29.70 1.70e− 190
8 0.41 3192 0.55 13591 -0.14 -14.31 3.55e− 46

HSA 0.40 452 0.61 3843 -0.21 -8.63 8.41e− 18
HSF 0.47 391 0.63 7232 -0.17 -6.71 2.14e− 11
HSG 0.35 1560 0.61 4866 -0.26 -18.11 1.53e− 71
HSN 0.50 86 0.63 614 -0.13 -2.24 0.03
HSS 0.29 278 0.49 3168 -0.20 -6.31 3.25e− 10

All grades 0.42 59280 0.67 322948 -0.24 -114.70 0.00

performed better. A similar reverse trend is observed
in grade 7, 8 and HSF for Live Tutor Requested (LTR).

• In the case of Live Tutor Requested (LTR), there is
a large difference (SD = 0.54) in grade 6, but the t-
statistic is not reported, suggesting an insufficient sam-
ple size.

Additionally, we explored the percentage of correct and wrong
responses in the action logs of in-unit assignments to assess
their impact on student’s scores in end-of-unit problems. Ta-
ble 2 shows the results. The data from Table 2 offers several
key observations about the impact of students’ correct and
wrong response rates on in-unit assignments on their final
grades.

• Students with higher percentages of correct responses
(CR ≥ 0.7) consistently achieve higher scores across
all grades, with the most significant difference seen in
grade 2.

• Conversely, students with lower percentages of wrong
responses (WR< 0.3) consistently attain higher scores,
particularly notable in grade 3, where students with
lower WR had a 0.25 higher grade.

• These trends are statistically significant (p < 0.05),
suggest that the frequency of correct and wrong re-
sponses during in-unit assignments is predictive of a
student’s final grade.

The analysis suggests that students who infrequently request
tutoring often perform better, indicating self-reliance and
problem-solving capability. In contrast, direct interactions
via live tutor requests (LTR) appear beneficial, enhancing
performance. However, these correlations should not be in-
terpreted as causation due to their context-specific nature.
Conversely, frequent requests for hints, explanations, or fre-
quent incorrect responses may indicate struggles with the
material, suggesting a need for more teacher support or per-
sonalized interventions to improve understanding and per-
formance [20, 21, 22]. Identifying and addressing these areas
is essential for educators to effectively support student suc-
cess.

2.2 CCSS Skill Mastery and Student Perfor-
mance

Understanding the relationship between mastery of skills in
in-unit assignments and end-of-unit outcomes is vital for ed-
ucators to identify which skills affect students’ success or
failure in corresponding end-of-unit tasks [23, 24, 25]. Mas-
tery of prerequisite skills in in-unit problems often leads to
success in end-of-unit assignments, while failure to master
these can result in poor outcomes. As the dataset lacks
scores for in-unit problems, we assigned scores based on cri-
teria from end-of-unit problems as described in Section A.1.
A correct first attempt scores 1 (success); otherwise, actions
like hints request score 0 (failure).

Once we determined the scores for in-unit problems, we
needed to extract and fix skill codes since, as mentioned, we
are interested in mastery/non-mastery for skills, not specific
problems. The CCSS skill codes follow a hierarchical struc-
ture, where the first level corresponds to the grade, and the
second level represents the topic or subject. The later lev-
els of a CCSS skill code provide more specific descriptions,
such as specific problem details. However, these detailed lev-
els may not be as useful since they can potentially generate
skill-related patterns that are overly specific. Therefore, for
the purpose of generating meaningful patterns, we focused
on the first two levels of the skill code hierarchy, which cap-
ture the broader grade and topic information, respectively.

So far, we have scores (success or failure) for all in-unit
and end-of-unit problems as well as their corresponding skill
codes. Now, we need to specify how we can extract mean-
ingful “patterns”. One effective approach for achieving this
is by utilizing association rule learning/mining, which is a
data mining technique employed to discover interesting rela-
tionships or patterns within extensive datasets [26, 27] such
as educational data [28]. They identify frequently occur-
ring itemsets and generate rules that describe associations
between different items based on their co-occurrence. By
leveraging these rules, educators can gain valuable insights
into patterns and dependencies among skills. See appendix
A.2 for formal definition of the association rule mining pro-
cess on the CCSS skill codes.



Table 3: Extracted association rules for mastery (score 1) for the entire dataset

Rule S C Rule Description

8.EE → HSA.REI 0.81 1.00 Expressions and Equations → Reasoning with Equations and
Inequalities

HSN.RN → HSA.REI 0.93 0.99 The Real Number System → Reasoning with Equations and
Inequalities

HSN.RN, HSN.CN → HSA.REI 0.86 0.99 The Real Number System, The Complex Number System →
Reasoning with Equations and Inequalities

HSN.CN → HSA.REI 0.92 0.99 The Complex Number System → Reasoning with Equations and
Inequalities

HSA.REI → HSN.RN 0.93 0.94
Reasoning with Equations and Inequalities → The Real Number
System

HSN.RN → HSN.CN 0.87 0.93 The Real Number System → The Complex Number System

Table 4: Extracted association rules for non-mastery (score 0) for the entire dataset

Rule S C Rule Description

HSA.REI → HSN.CN 0.79 0.93 Reasoning with Equations and Inequalities → The Complex Number
System

HSN.RN, HSA.REI → HSN.CN 0.71 0.93 The Real Number System, Reasoning with Equations and Inequalities
→ The Complex Number System

HSN.RN → HSN.CN 0.81 0.92 The Real Number System → The Complex Number System

HSA.REI → HSN.RN 0.77 0.91 Reasoning with Equations and Inequalities → The Real Number
System

HSN.CN, HSA.REI → HSN.RN 0.71 0.90
The Complex Number System, Reasoning with Equations and
Inequalities → The Real Number System

HSF.BF → HSF.IF 0.71 0.89 Building Functions → Interpreting Functions

In association rule learning, “strong” rules are captured by
two rule-related concepts: support and confidence. Support
(S) is the proportion of transactions in the dataset that con-
tain a particular itemset. Confidence (C) is a measure of
the reliability of the inference made by a rule. To extract
rules, we used mlxtend python library [29], which uses the
famous Apriori algorithm [30, 31] for efficient rule mining.
To generate frequent item sets, we identified items that oc-
cur frequently by setting a minimum support threshold of
0.8 for mastery (score 1) and 0.7 for non-mastery (score 0).
Subsequently, we derived association rules using the confi-
dence metric, with a minimum threshold of 0.9 for mastery
(score 1) and 0.8 for non-mastery (score 0). Tables 3 and 4
demonstrate the results of association rule learning for skill
mastery and non-mastery, respectively. The first column is
the rule, the second column is the support, the third column
is the confidence, and the last column is the rule where the
codes have been replaced with their English description. We
obtained the descriptions for skill codes up to level 2 from
CCSS [32] since they were not included in the dataset. Ta-
bles 3 and 4 display the most reliable rules among all the
transactions with high support and confidence. Based on
the results in Tables 3 and 4, we make the following obser-
vations:

• The high support and confidence of most rules in both
tables indicate that there are strong associations among
the different math skills in the dataset. For example,
the rule “8.EE → HSA.REI” in Table 3, with a sup-
port of 0.81 and confidence of 1.00, suggests that stu-
dents who have mastered “Expressions and Equations”
(8.EE) are also very likely to have mastered “Reason-

ing with Equations and Inequalities” (HSA.REI).
• The rule “HSN.RN, HSN.CN → HSA.REI” in Table 3

shows that the mastery of the Real Number System
(HSN.RN) and the Complex Number System (HSN.CN)
is highly associated with the mastery of Reasoning
with Equations and Inequalities (HSA.REI). This re-
flects the progressive complexity in learning mathe-
matics, where advanced concepts often rely on the
mastery of more basic concepts.

• There is one unique rule in the non-mastery table,
“HSF.BF → HSF.IF”, which suggests that students
who have not mastered“Building Functions”(HSF.BF)
are also likely not to have mastered“Interpreting Func-
tions” (HSF.IF). This could imply that the skills re-
quired for interpreting functions are contingent on the
ability to build functions, or vice versa.

• Another observation is the high frequency of HSA.REI
(Reasoning with Equations and Inequalities), HSN.RN
(High School Number and Quantity - The Real Num-
ber System), and HSN.CN (The Complex Number Sys-
tem) in the rules, which implies that these concepts
might be fundamental to mastery for High School sub-
jects in this ASSISTments platform.

• Certain rules are evident in both Tables 3 and 4, in-
cluding “The Real Number System → The Complex
Number System”. Interpreting from Table 3, it is in-
ferred that mastery in the real number system is a
strong predictor for mastery in the complex number
system. Conversely, Table 4 implies that students who
struggle with the real number system are likely to face
challenges in understanding the complex number sys-
tem. These rules underscore the interdependency of



understanding these two mathematical concepts.
• Finally, it is worth noting that while support and con-

fidence are high for most rules, they are not absolute
indicators of causality. The relationships could be af-
fected by other factors such as the order of teaching,
student demographics, etc. They do, however, offer a
strong basis for further investigation into these associ-
ations.

3. STUDENT SCORE PREDICTION
In this section, we primarily address RQ3 and RQ4 through
the presentation and discussion of our experimental results.
The process of feature engineering, which is crucial to our
approach, is detailed in Section 3.1. In Section 3.2, we delve
into a unique type of feature, the graph representation learn-
ing. Following this, we outline the machine learning predic-
tive models used in our study in Section 3.3. Finally, we
detail the experimental results of predicting end-of-unit stu-
dent grades in Section 3.4, where we also discuss the signif-
icance and implications of our findings.

3.1 Feature Extraction
The feature extraction process involved combining the train-
ing and evaluation data and extracting relevant information
mainly from four tables: Action logs, Assignment details,
Problem details, and Sequence details– See Appendix A.1.
Next, we explain each group of features.

• Action Log Features. We utilized the assignment relation-
ships table to retrieve action logs associated with end-of-
unit assignments. Given the variation in feature values for
different in-unit problems within the same end-of-unit as-
signment, we aggregated information by selecting the most
frequently occurring values for certain features like ‘max at-
tempts’, ‘score viewable’, and ‘continuous score viewable’.
For ‘action’ and ‘available core tutoring’ features, we per-
formed one-hot encoding and took the sum of values for the
group. This aggregation process resulted in a feature set of
21 dimensions.

• Assignment Detail Features. We obtained sequence details
for all end-of-unit assignments from the assignment details
table. Additionally, we introduced a new feature called ‘%
of assignment not finished’, based on the assignment end
date. By calculating the percentage of uncompleted in-unit
assignments for each end-of-unit assignment, we captured
valuable information about student engagement and com-
pletion rates.

• Sequence Detail Features. We retrieved sequence-related
features such as ‘sequence folder path levels’ 1, 2, 3, and
4 from the sequence details table. These four features were
represented using one-hot encoding, adding 172 dimensions
to the feature vector due to the unique values in each of the
sequence folder path levels.

• Problem Detail Features. We extracted all problem-related
features for the end-of-unit problems in the training and
evaluation sets from the problem details table. This in-
cluded splitting the feature ‘problem skill code’ into four
parts, one-hot encoding the ‘problem type’ feature, and rep-
resenting the ‘problem skill description’ feature using 32-
dimensional BERT PCA embeddings. We also retained ex-
isting binary features such as ‘problem contains image’ and
introduced a new feature called ‘problem multipart ID fre-
quency’ This feature captures the number of occurrences of

a specific problem multipart ID within the dataset. Taken
together, the size of Problem Detail Features ended up being
210.

3.2 Graph Representation Learning
Graph Representation and Construction. In our study on the
ASSISTments learning platform, we combined graph struc-
ture and graph construction methods to model and under-
stand student behavior. We utilized graph representation
learning, which focuses on capturing relationships within
a graph to derive informative representations of nodes and
edges [33]. Our hypothesis was that the structural features
captured in relationships among various entities could pre-
dict outcomes on end-of-unit tests. We identified five key
entities as nodes: ‘student’, ‘teacher’, ‘class’, ‘problem’, and
‘sequence’. The connections between these entities were rep-
resented by four edge types: ‘teacher-class’, ‘class-student’,
‘student-problem’, and ‘problem-sequence’. By employing
these specific connections, we managed to maintain essential
structural information while avoiding an overly dense graph
structure. To construct the graph, we began by adding
nodes for students involved in end-of-unit assignments and
traced their connected in-unit assignments using the assign-
ment relationships table. Nodes for their classes and teach-
ers were added, linking students to their respective classes
and the classes to their teachers. We also added nodes for
both in-unit and end-of-unit problems, establishing connec-
tions between these problems and the students who tackled
them, as well as linking problems to their corresponding se-
quences based on the action log records. This comprehensive
construction allowed us to analyze the interconnected ele-
ments within the dataset effectively and explore the predic-
tive power of the graph structure on student performance in
end-of-unit assessments. Figure 2 in Appendix A.3 demon-
strates the structure of the constructed graph. Also, Ta-
ble 7 in Appendix A.3 includes the basic properties of the
constructed graph.

Graph Representation Learning. We applied the node2vec
algorithm, a random-walk-based representation learning tech-
nique, to generate low-dimensional vector embeddings for
nodes in a graph, capturing their structural and community
properties [34]. This method uses random walks to explore
local neighborhood information, where nodes close in the
graph share similar roles and functions. Node embeddings
were learned using a modified Skip-gram model from natu-
ral language processing [35]. We utilized these embeddings
for the end-of-unit problem to enhance representation and
conducted experiments to assess their effectiveness in grade
prediction, bypassing the need for hand-crafted features as
discussed in Section 3.1.

3.3 Predictive Models
We employ a variety of predictive machine learning mod-
els, such as Random Forest, Gradient Boosting, XGBoost,
LightGBM, ExtraTrees, and a Mean Ensemble, to forecast
end-of-unit grades within the ASSISTments platform. These
models are chosen for their robustness, flexibility, and per-
formance, particularly in handling high-dimensional data
and providing accurate predictions. The paper details the
unique features of each model and explains how the Mean
Ensemble model, which averages the predictions of individ-
ual models, enhances overall predictive performance. This



Table 5: Performance of developed ML models across three settings and for different evaulation metrics. In each column and for
each setting, the bold value indicates the best model according to that metric. The underlined value indicates the best across
all settings.

Setting Model Accuracy Precision Recall F1 score AUC

(I) Hand-crafted features (Section 3.1)

XGBoost 0.72238 0.74441 0.80658 0.77425 0.78295
Random Forest 0.71402 0.73045 0.81694 0.77128 0.77005
Extra Trees 0.69865 0.70906 0.83001 0.76479 0.74925
LightGBM 0.72370 0.74361 0.81177 0.77620 0.78473

Gradient Boosting 0.72257 0.74296 0.81030 0.77517 0.78245
Mean Ensemble 0.72437 0.74043 0.82075 0.77853 0.78383

(II) Student+Problem embedding (Section 3.2)

XGBoost 0.68305 0.72894 0.73711 0.73300 0.73251
Random Forest 0.69458 0.72626 0.77444 0.74958 0.74286
Extra Trees 0.69094 0.72168 0.77543 0.74759 0.74115
LightGBM 0.68579 0.72203 0.76039 0.74071 0.73338

Gradient Boosting 0.69068 0.72525 0.76621 0.74517 0.73982
Mean Ensemble 0.69165 0.72763 0.76329 0.74504 0.74174

(III) Hand-crafted (Section 3.1) + Problem embedding (Section 3.2)

XGBoost 0.70857 0.74560 0.76843 0.75685 0.76520
Random Forest 0.71218 0.73662 0.79750 0.76585 0.77084
Extra Trees 0.71737 0.74689 0.78831 0.76704 0.77279
LightGBM 0.71967 0.74990 0.78780 0.76838 0.78145

Gradient Boosting 0.71507 0.74887 0.77825 0.76328 0.77443
Mean Ensemble 0.72784 0.74979 0.80880 0.77818 0.78977

approach aims to provide more accurate and robust grade
predictions by combining the strengths of different models.
Appendix A.4 includes details of implementation settings.

3.4 Experimental Results
Table 5 summarizes the results of our extensive experiments.
We define three experimental settings to illustrate the effec-
tiveness of graph embedding techniques in the end-of-unit
grade prediction task. Setting (I): This setting only uses
hand-crafted features, detailed in Section 3.1, as input to the
machine learning models. These features are derived from
the raw data without the application of graph embedding
techniques. The aim here is to evaluate the performance of
models based on explicit feature engineering. Setting (II):
This setting uses a combination of the end-of-unit problem
embeddings and student embeddings as inputs to the mod-
els. Embedding techniques are used here to represent the
problems and students in a high-dimensional space. The
purpose of this setting is to investigate the effectiveness of
embedding methods in representing students and problems.
Setting (III): In this setting, the models are trained on data
that combines both hand-crafted features and problem em-
beddings. This setting is designed to study whether the
combination of hand-crafted features and embeddings can
improve the performance of the models in predicting stu-
dents’ scores. Based on the results presented in Table 5, we
make the following observations.

• In setting (I), which uses only hand-crafted features,
the Mean Ensemble model performs best in terms of
accuracy and F1 score. Notably, Extra Trees model
gives the best recall, indicating that it is the best at
identifying true positive cases.

• For setting (II), where we only use the embeddings of
the student and end-of-unit problem, the Random For-
est model seems to outperform the others, providing
the highest accuracy and F1 score. However, the Ex-
tra Trees model provides the highest recall, similar to

setting (I).
• In setting (II), despite only using low-dimensional fea-

tures and lacking information related to students’ ac-
tions within the units, a relatively high AUC is achieved.
This indicates the power of embedding techniques in
capturing complex structural relationships in the data
without the need for complicated hand-crafted fea-
tures, which may not be obtained readily.

• In setting (III), where both hand-crafted features and
problem embeddings are used, the Mean Ensemble model
outperforms all other models in terms of accuracy, F1
score, and AUC.

• In setting (III), the results not only confirmed the effec-
tiveness of graph embedding but also showed that com-
bining these embeddings with hand-crafted features
can further enhance prediction performance. This set-
ting achieved the best results in terms of accuracy,
precision and AUC among all settings.

• The Mean Ensemble model consistently demonstrates
strong performance across all settings, often achieving
the highest or near-highest values for several metrics.
This suggests that the ensemble approach, which lever-
ages the strengths of multiple models, can effectively
enhance the prediction performance.

• Overall, we observe that combining hand-crafted fea-
tures with problem embeddings (setting III) provides
the highest performance across most metrics, underlin-
ing the importance of integrating domain-specific fea-
tures with learned embeddings for educational grade
prediction. Notably, the AUC, the metric used in EDM
Cup 2023 Kaggle Competition, is the highest in this
setting compared to the other two.

We analyzed the feature importance of all hand-crafted fea-
tures, identifying the end-of-unit problem text, student ac-
tions within the unit, and problem skill descriptions as the
top three predictors of student grades– See Appendix A.5).



APPENDIX

A. ADDITIONAL INFORMATION
In this part, we provide supplementary figures, tables, and
detailed explanations of dataset and implementation set-
tings used in experiments.

A.1 Dataset
We provide an overview of the dataset from the EDM Cup
2023 Kaggle Competition [18], detailing the tables and their
salient attributes. ASSISTments is a digital platform de-
signed for daily math practice and assessment, aiding class-
room instruction by offering digital assignments and feed-
back. Each student is given a set of math problems(sequence)
to solve, referred to as an assignment within the dataset.
The dataset contains millions of student interactions within
the platform, detailing their completion of math assignments.
It also encompasses information about the curriculum, as-
signments, problems, and any tutoring provided to the stu-
dents. Table 6 shows the basic statistics for all entities in
the dataset.

Student 1

Student 2

Student 3

Problem 1

Sequence 1

Sequence 3

Sequence 2

Problem Id
Problem Skill code
Problem text
……..
……..

Problem details

Problem id
Max attempts
Action
Hint id
Explanation id
……..
……….

Action logs

Problem started
Wrong response
Hint requested
Explanation req.
Answer requested
Skill video req.
Live tutor req.
Problem ended

Action

School grade Topic Problem specific details

Problem 2 Problem 3

Problem 1 Problem 2 Problem 3 Problem 4

Exam Prob1 Exam Prob 2 Exam Prob 3

Sequence Id 
Sequence Name
Problem ids
Sequence Topic
…….

Sequence details

Figure 1: The relationship between different entities in the
dataset

• Action Logs: Captures student interactions with in-
unit assignments, including correctness of responses,
hint or explanation requests, and tutoring availability.

• Training and Evaluation Unit Test Scores: Contains bi-
nary scores for end-of-unit assignments, which serve as
training and evaluation data for score prediction mod-
els. Score of 1 denotes completion of an open-ended re-
sponse problem or correct first-attempt response with-
out tutoring, while 0 signifies otherwise.

• Assignment Details: Records the details of both in-unit
and end-of-unit assignments, including the problem se-
quences assigned to individual students.

• Sequence Details: Represents set of problems struc-
tured into sequences, which are further organized into
folder paths that denote attributes such as curriculum
or grade.

• Problem Details: Contains information on both prob-
lems, including the Common Core State Standards
(CCSS) for Mathematics [32] skill code and BERT em-
beddings for textual content.

• Hint and Explanation Details: Holds information on
hints and explanations, including BERT embeddings

for textual content.
• Assignment and Sequence Relationships: Specifies cor-

respondences between in-unit and end-of-unit assign-
ments, and sequences.

In-unit assignments resemble practice problems conducted
throughout the unit, while end-of-unit assignments resemble
exams administered at the end of each unit. Scores are ex-
clusively provided for end-of-unit assignments, whereas ac-
tion logs are solely available for in-unit assignments. More
details about the dataset can be found in website [18]. Fig-
ure 1 shows the connection between different entities in dataset.

Table 6: Basic statistics of the dataset
Entity Count

# Students 651253
# Teachers 23523
# Classes 47401

# Sequences 10228
# Problems 132738

# Assignments 9319676
# Hints 8381

# Explanations 4132
# Problems per sequence µ=13
# Unfinished assignments 1878016

Abbreviations: In the rest of manuscript, HSS stands for
High School Statistics and Probability, HSF for High School
Functions, HSG for High School Geometry, HSN for High
School Number and Quantity, and HSA for High School Al-
gebra.

A.2 Association Rule Mining Problem State-
ment

We formally define the association rule mining process on the
CCSS skill codes as follows: Let C = {C1, C2 · · ·Ck} denote
a set of CCSS skill code levels e.g., the Complex Number
System. We’ve categorized our end-of-unit problems into
two groups: P s for successful outcomes (scored 1) and P f for
unsuccessful outcomes (scored 0). Each successful end-of-
unit problem psi in P s corresponds to a“transaction”, labeled
as Ti. These transactions contain the skill code of the end-of-
unit problem (Imi) and the skill codes of all related in-unit
problems (I1 to Imi−1). Similarly, each failed end-of-unit

problem pfi in P f is associated with its own transaction.
Our goal is to uncover patterns related to skill mastery and
non-mastery. For skill mastery, we’re interested in strong
rules of the form X → y, where X is a subset of skills (from
C) and y represents the skill code of the end-of-unit problem.
We’re also seeking similar rules for non-mastery.

A.3 Constructed Graph
Figure 2 shows the structure of the final constructed graph.
Table 7 shows the basic properties of the constructed graph.

A.4 Implementation settings
After extracting all the features as explained in Section 3.1,
we standardized both training and evaluation data using the



Table 7: Properties of the constructed graph.

Attribute Value

Type Heterogeneous
# Node types 5
# Students 34652
# Problems 59109
# Sequences 5766
# Teachers 2024
# Classes 3055
# Total nodes 104606
# Edges 5527865
Density 0.001
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Teacher 1

Teacher 2

Teacher 3

Student 1

Student 2
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Problem 6

Sequence 1

Sequence 2

Sequence 3

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Figure 2: The constructed graph between different entities in
the dataset

StandardScaler package from scikit-learn [36]. Standardiza-
tion helps to bring the features to a common scale, enabling
fair comparisons and preventing features with larger mag-
nitudes from dominating the model’s learning process. For
tuning the hyperparameters of each predictive model men-
tioned in Section 3.3, we utilized the RandomizedSearchCV
from scikit-learn. We performed 10-fold cross-validation while
tuning the hyperparameters. Additionally, we used the scikit-
learn package to implement the Random Forest, Gradient
Boosting, and Extra Trees methods. For the XGBoost model,
we employed the XGBoost Python package [37], while we
used the lightgbm package [38] for implementing the LGBM
model. We made use of the node2vec package (https://
pypi.org/project/node2vec/) for the node2vec implemen-
tation described in Section 3.2. The hyperparameters used
in learning node embeddings with node2vec are as follows:
embedding dimension: 32, number of walks: 100, walk length:
10, and window size: 10. In the end, we utilized various
evaluation metrics, including accuracy, precision, recall, F1-
score, and AUC, employing the scikit-learn package.

A.5 Feature Importance
Figure 3 demonstrates the relative importance of different
hand-crafted features in predicting the student grade in set-
ting (I). We make the following observations based on the
results presented in this figure.

• The most important feature appears to be the end-of-
unit problem text, which is provided as a 32-dimensional
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Figure 3: Feature importance of hand-crafted features ex-
plained in Section 3.1

embedding vector in the dataset.
• Actions that students took within the unit, such as tu-

toring requests and responses to questions, are shown
to significantly affect the student grades, reinforcing
our analysis in Section 2.1.

• The problem skill description and problem skill code
also feature among the top 5 most important features,
reflecting the relationship between students’ grades and
the skills they are being tested on. This point under-
scores the importance of our analysis in Subsection 2.2.

• The sequence folder path level 3, which describes what
unit the sequence is part of, is among the top 5 impor-
tant features. More descriptions for other sequence
path levels can be found on the dataset website [18].

• The importance of available core tutoring types within
the unit in predicting the student’s grade is worth not-
ing, implying that instructional methods can be indica-
tive of student performance.
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