
More, May not the Better: Insights from Applying Deep
Reinforcement Learning for Pedagogical Policy Induction

Gyuhun Jung, Markel Sanz Ausin, Tiffany Barnes, Min Chi
North Carolina State University

ejqmfc@gmail.com, {msanzau,mchi, tbarnes}@ncsu.edu

ABSTRACT
We presented two empirical studies to assess the efficacy
of two Deep Reinforcement Learning (DRL) frameworks on
two distinct Intelligent Tutoring Systems (ITSs) to exploring
the impact of Worked Example (WE) and Problem Solving
(PS) on student learning. The first study was conducted on
a probability tutor where we applied a classic DRL to induce
policies using the training data collected from the same tu-
tor. The second one was conducted on a logic tutor by lever-
aging a Multi-Task DRL framework to induce a Unified-DRL
(U-DRL) policy from two related training datasets collected
from the probability and logic tutors. Overall our results
found that in the first study, the DRL policy significantly
out-performs the Expert policy but no significant difference
was found between the two policies on the number of PS and
WE received. For the second study, while no significant dif-
ference between U-DRL and the Expert policy across various
learning performance, the U-DRL students received signifi-
cantly more PS and less WE than the latter. In short, our
findings shows that 1) the efficacy of DRL policies is not nec-
essarily enhanced when trained with multiple task-related
datasets compared to a single source dataset; 2) the effec-
tiveness lies not in how much PS and WE exposure students
receive, but rather in how and when they are delivered.

Keywords
Deep Reinforcement Learning, Multi-Task Learning, Prob-
lem Solving, Worked Example

1. INTRODUCTION
Worked examples (WE) and Problem-Solving (PS) have a
lengthy tradition of utilization in educational contexts for
instructional purposes [60, 35, 31, 58, 61, 69]. In PS, stu-
dents are assigned tasks to complete, either independently
or with assistance, whereas in WEs, students are provided
with detailed solutions. Generally speaking, presenting a
WE is more passive since it often does not require students
to act much; while PS is more active since it is expected
that students would produce the solution with or without

the tutor’s assistance. There has been a growing interest
in utilizing WEs and PSs in e-learning environments such
as Intelligent Tutoring Systems (ITSs) [39, 61, 45, 51, 42,
48, 74, 73, 72, 75, 70]. ITSs are interactive e-learning envi-
ronments for enhancing students’ learning through tailored
instruction, scaffolded practice, and on-demand assistance,
demonstrating significant effectiveness [29, 63]. While the
majority of current ITSs primarily emphasize PS, previous
research indicates that integrating WE with PS can be more
effective than relying solely on PS [38, 37, 39, 59].

In an ITS, the tutor’s decisions can be viewed as a tem-
poral sequence, each of which affects the student’s succes-
sive actions and performance. Pedagogical policies are the
decision-making policies inside an ITS that decide what ac-
tion to take next in the face of alternatives. The sequential
decision-making nature of Reinforcement Learning (RL) and
Deep RL (DRL), combined with its ability to learn from a
reward function, makes it a perfect fit to induce pedagogical
policies for ITSs and optimize the learning process for each
student individually. Indeed, a number of researchers have
studied RL [44, 53] and DRL for pedagogical policy induc-
tion [10, 52, 36, 47, 46, 44, 12, 56, 22, 23, 75, 76]. Despite
DRL’s great success, there are still many challenges prevent-
ing DRL from being applied more broadly in ITSs. One ma-
jor problem is limited training data. It takes original DRL
hundreds of millions of interactions with the environment to
learn a good policy and generalize to unseen states, while
we seek to learn policies from datasets with fewer than 1500
student-tutor interaction logs. While most of the prior work
has mainly focused on inducing effective pedagogical policy
using historical interaction logs collected from an individual
ITS, relative little prior work has investigated building ro-
bust and unified pedagogical policy induction models using
historical interaction logs collected across different ITSs.

In this work, we conducted two empirical investigations to
evaluate the effectiveness of two DRL frameworks within two
separate ITSs. In both studies, our emphasis was on exam-
ining the pedagogical choices related to Worked Example
(WE) and Problem Solving (PS). The first study was con-
ducted on a probability tutor by leveraging the classic Dou-
ble Deep Q-Network [62] with Long-Short Term Memory
[20] on the training data collected from the same tutor from
previous year to induce a DRL policy. We then proposed
a Multi-Task DRL framework combining Dreamer[18] and
bisimulation metrics [16] to induce a Unified-DRL (U-DRL)
policy. Our U-DRL framework addresses the challenge of
data inefficiency through the implementation of Multi-Task

G. Jung, M. S. Ausin, T. Barnes, and M. Chi. More, may not the
better: Insights from applying deep reinforcement learning for peda-
gogical policy induction. In B. Paaßen and C. D. Epp, editors, Pro-
ceedings of the 17th International Conference on Educational Data
Mining, pages 304–314, Atlanta, Georgia, USA, July 2024. Interna-
tional Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729822

https://doi.org/10.5281/zenodo.12729822

Learning (MTL). This technique enables the transfer of valu-
able yet relevant knowledge across various tasks to enhance
the learning capabilities of the RL agent. MTL excels in
effectively training tasks with limited data, leveraging mul-
tiple task-related datasets during the DRL training process.
Although in specific environments, such as Atari games,
MTL improves both data efficiency and performance of the
DRL policy, there is little empirical evidence that the multi-
ple data trained DRL policy is always helpful to students in
real world. Our second study was conducted on a logic tutor
by leveraging U-DRL trained on two related training data
collected from both the probability and logic tutors.

We have two research questions (RQs):

1. RQ 1. Would a DRL policy trained using multiple task-
related data bring better learning effects to students
than a DRL policy trained using single-task data?

2. RQ 2. When deciding on the pedagogical preference
between WE and PS, is it more effective for pedagogical
policies to lean towards WEs or PS?

Overall our results found that in the first study, the DRL
policy significantly out-performs an expert-designed policy
but no significant difference was found between the two poli-
cies on the number of PS and WE received. For the second
study, while no significant difference between U-DRL and
an expert-designed policy on various learning performance,
the U-DRL students received significantly more PS and less
WE than the latter. In summary, our findings indicate the
following: 1) The efficacy of DRL policies is not necessarily
enhanced when trained with multiple task-related datasets
compared to training on a single source dataset; 2) the effec-
tiveness lies not in how much PS and WE exposure students
receive, but rather in how and when they are delivered.

2. RELATED WORK
2.1 Problem Solving vs Worked Example
A manifold of research has studied the establishment of an
adaptive education system that presents appropriate edu-
cational content according to the learning status of each
learner [61, 45, 42]. One of the most significant research
areas revolves around the question of whether pedagogical
policies should prioritize PS or WE for students. PS has
been a conventional strategy in ITS. Following [31], PS ac-
tivities are considered beneficial to learning because they
engage learners in active cognitive processing. Also, it can
promote the transfer of knowledge or skills that are appli-
cable beyond the specific tasks encountered in the tutoring
system. Based on these advantages, the PS-centric strat-
egy is frequently prioritized in ITS. However, there also has
been some prior research on the positive impact on WE on
learning. [58] suggests the advantage of WE such as reduc-
ing cognitive load or support for novice learners. Also, in
[61], four conditions of PS-only, WE-only, WE-PS pairs, and
PS-WE pairs (WE is used after PS) were compared in elec-
trical circuits troubleshooting tasks and showed that WE-
PS and WE-only groups outperformed the other groups. In
terms of improvement of learning efficiency by WEs, [69]
showed that students with WEs completed more tasks dur-
ing a fixed time. Although these studies give an insight that
a combination of PS and WE would be helpful, the ques-
tion of whether PS or WE should be weighted more heavily
also needs to be researched. [26, 71] already analyzed the

frequency of PS and WE decisions in pedagogical decisions
using policies such as RL to improve student learning, but
still, there is no common consensus about this issue.

2.2 Applying RL & DRL to ITSs:
In ITSs, the student-ITS interactions can be described as se-
quential decision-making problems under uncertainty, which
can be formulated as problems of RL, a learning paradigm
that depends on long-term rewards without knowing the
“correct” decisions at the immediate time-steps [57]. An in-
creasing number of prior research has explored the use of
RL and Deep RL (DRL) to ITSs (e.g. [30, 36, 47]) and
specifically, it has showed that they can be used to induce
effective pedagogical policies for ITSs [36, 65]. For exam-
ple, Shen et al. [52] utilized value iteration algorithm to
induce a pedagogical policy with the goal of enhancing stu-
dents’ learning performance. Empirical evaluation results
suggested that the RL policy can improve certain learners’
performance as compared to a random policy. Wang et al.
[65] applied a variety of DRL approaches to induce peda-
gogical policies that aim to improve students’ normalized
learning gain in an educational game. The simulation eval-
uation revealed that the DRL policies were more effective
than a linear model-based RL policy. Recently, Zhou et
al. [71] applied offline Hierarchical Reinforcement Learning
(HRL) to induce a pedagogical policy to improve students’
normalized learning gain. In a classroom study, the HRL
policy was significantly more effective than the other two
flat-RL baseline policies. Ausin et al. applied a Deep Q-
Network(DQN) algorithm to induce tutorial decisions be-
tween WE and PS[2], which inspires our model in the first
case study. Ju et al. identified critical decisions in DQN
based policy using long and short term rewards [27]. Most
recently, Condor et al. applied an advanced DQN algorithm
in ITS for providing automatic instructional feedback in an
open-ended question[13]. In summary, prior studies suggest
that RL and DRL can induce effective pedagogical policies.

2.3 Multi-Task Learning
Multi-Task Learning (MTL) is a technique where multiple
similar tasks are learned simultaneously, thereby enhancing
the model’s ability to perform each task [7]. By sharing
knowledge across tasks, MTL can improve overall capabili-
ties compared to models trained on single tasks. Addition-
ally, MTL is expected to impart generalized abilities across
all learned tasks [68]. This approach is particularly useful in
fields such as computer vision, natural language processing,
and education [15, 33, 40]. In the realm of RL, MTL holds
promise as well. RL agents typically require extensive inter-
actions with their environment to gather sufficient data for
optimal solutions, which can be challenging in real-world
settings. MTL offers a solution by leveraging information
transfer when data collection is limited [32].

However, a key challenge for MTL in RL is reconciling dif-
ferences in Markov Decision Processes across tasks. If task
environments vary significantly, it becomes difficult to learn
generalizable skills[64] or filter irrelevant knowledge. To ad-
dress this challenge, many approaches[66, 54] have been pro-
posed but a common strategy involves learning shared la-
tent representations, which serve as general knowledge for
all tasks [6, 14]. Extracting useful generalized knowledge di-
rectly from domains can facilitate the discovery of optimal
policies for task performance [6, 14]. In our work, we pro-
pose to construct an integrated model for two ITSs based

on this shared latent representation learning.

3. METHOD
In conventional RL, an agent interacts with an environ-
ment E over a series of decision-making steps, which can
be framed as a Markov Decision Process (MDP). At each
timestep t, the agent observes the environment E in state
st; it chooses an action at from a discrete set of possible ac-
tions; and E provides a scalar reward rt and evolves into the
next state st+1. The future rewards are discounted by the
factor γ ∈ (0, 1]. The return at time-step t is defined as Rt =∑T
t′=t γ

t′−trt′ , where T is the last time-step in the episode.
The agent’s goal is to maximize the expected discounted sum
of future rewards, also known as the return, which is equiv-
alent to finding the optimal action-value function Q∗(s, a)
for all states. Formally, Q∗(s, a) is defined as the highest
possible expected return starting from state s, taking action
a, and following the optimal policy π∗ thereafter. It can be
calculated as Q∗(s, a) = maxπ E[Rt|st = s, at = a, π∗] and
Q∗(s, a) must follow the Bellman Equation.

In the following, we will describe the two DRL frameworks
used in our two studies. For both studies, we evaluate our
DRL-induced policies using an offline Off-Policy evaluation
metric named Per-Decision Importance Sampling (PDIS)[43].

3.1 Per-Decision Importance Sampling (PDIS)
A primary challenge in RL and DRL for ITSs is the ab-
sence of reliable offline evaluation metrics. Much prior work
applied RL and DRL work took an offline RL approaches
to induce effective pedagogical strategies. This is done by
first collecting a training corpus and the success of offline
RL is often heavily dependent on the quality of the training
corpus. One common convention is to collect an exploratory
corpus by training a group of students on an ITS that makes
random yet reasonable decisions and then apply RL to in-
duce pedagogical policies from that training corpus. Em-
pirical study is then conducted from a new group of human
subjects interacting with different versions of the system.
The only difference among the system versions is the pol-
icy employed by the ITS. The students’ performance is then
statistically compared. Due to cost limitations, typically,
only the best RL-induced policy is deployed and compared
against some baseline policies.

On the other hand, we often have a large number of RL al-
gorithms (and associated hyperparameter settings), and it
is unclear which will work best in our setting. In these high-
stake situations, one needs confidence in the RL-induced
policy before risking deployment. Therefore, we need to
develop reliable yet robust evaluation metrics to evaluate
these RL-induced policies without collecting new data be-
fore being tested in the real world. This type of evaluation
is called off-policy evaluation (OPE) because the policy used
to collect the training data, also referred to as the behavior
policy, is different from the RL-induced policy, referred to as
the target policy to be evaluated. Previous work has shown
that a Per-Decision Importance Sampling (PDIS)[43] is un-
biased with lower variance while estimating the expected
reward than simple IS [24].

PDIS is a type of Importance Sampling method that approx-
imates the expected reward of the induced policy π by com-
puting a ratio of the probability of the target policy πt(a|s)
to behavior policy πb(a|s), as shown in Equation 1, where
t is a time step and T is the terminal time of one trajec-

tory. We applied soft-max transformation, shown in Eqn 2,
to estimate target policy πt(a|s) because it achieves a great
alignment between the theoretical and empirical evaluation
results for ITS[24]. For our validation data, we computed an
average of PDIS values of each students learning trajectory.
For PDIS, the higher the value of a policy, the more effective
it is expected to be.

PDISπt =

T∑
t=1

γt−1(

t∏
i=1

πt(ai|si)
πb(ai|si)

)rt (1)

πt(a|s) =
eQ(s,a)∑

a′∈A e
Q(s,a′)

(2)

3.2 Single-task DRL policy induction
3.2.1 Double Deep Q Network
Our DRL framework builds on Double Deep Q Network
(Double DQN), a refined version of DQN aimed at tackling
Q-value overestimation.

y := r + γmax
at+1

Q(st+1, at+1; θ
−) (3)

From Equation 3, DQN estimates the target value y as the
maximum Q-value by applying the target network. θ−. This
substantially overestimates the target value in several Atari
games[62]. To address this, in Double DQN, the main net-
work θ selects the best action, while the target network θ−

estimates the Q-value of the selected action. The loss func-
tion L minimizes the gap between estimated Q-values and
target values.

at = argmaxat Q(st, at; θ) (4)

y := rt + γQ(st+1, argmaxat+1
Q(st+1, at+1; θ); θ

−) (5)

L = E
[
(Q(s, a; θ)− y)2] (6)

While DQN and Double DQN share a similar structure,
we used Double DQN as our baseline model due to its en-
hanced stability by avoiding Q-value overestimation in the
next state and its great performance across various Atari
games.[62].

3.2.2 Long Short Term Memory
We combined naive Double DQN with both fully connected
and Long Short Term Memory (LSTM)[20] layers inspired
by prior work of [2]. It can tackle long-term dependency
issues in sequential data using gates to manage forgetting,
updating, and outputting information. This architecture re-
solves the vanishing gradient problem seen in simpler recur-
rent networks. As our training data is the students’ learning
trajectory based on long time sequences, we used LSTM as
the main neural network.

In our DRL framework, we define states, rewards, and ac-
tions as follows. For the state s, we explore two input config-
urations at time t: one utilizing the three most recent state
observations st, st−1, st−2(k = 3), and the other is four ob-
servations st, st−1, st−2, st−3(k = 4). Following [2], employ-
ing a pedagogical policy trained by DRL+LSTM with k = 3
outperforms the policies with smaller k in ITS. Motivated
by this finding, we adopt these input configurations to in-
vestigate the impact of higher values of k. These inputs
are sequentially processed through the LSTM layers. Con-
cerning the reward function, we used Normalized Learning
Gain(NLG = posttest−pretest

1−pretest), which can normalize the gap
between a student’s posttest and pretest scores. Also, to

explore the effectiveness of the pedagogical policy, we con-
struct a model to approximate the value for the actions: PS
or WE in a given state. To summarize, our policy is to esti-
mate the state-action value function utilizing Double DQN
and LSTM, given the choice of PS or WE, in three or four
consecutive states per learning step. The trained policy will
choose the action that results in the larger state-action value
between PS and WE, as shown below.

at = argmaxat Q(st, at; θ), at ∈ [PS,WE] (7)

where sk=3
t = [st, st−1, st−2] or s

k=4
t = [st, st−1, st−2, st−3].

3.2.3 Single-Task DRL Training data
Our training dataset comprises problem-solving trajectories
from 635 students over multiple semesters, from Fall 2016
to Spring 2021. We used accumulated learning experiences
for 10 problems per student in the training phase to develop
adaptive policies. To estimate state-action values, we utilize
tutor decisions (PS or WE) at each step alongside relevant
state features. The dataset encompasses 142 state features
derived from pedagogical criteria used in prior studies[26,
21, 50], covering aspects like workload, time, difficulty, per-
formance, and hints requested. Regarding rewards per step,
we employ inferred rewards generated through a deep neu-
ral network[5] to distribute delayed rewards, as immediate
rewards are only available at the end of each trajectory. We
divided datasets in 90% for training and 10% for evaluation
by adhering the same in prior works[1, 25, 27, 50]

Data Collection All student historical data(including second
study) were obtained anonymously through an exempt IRB-
approved protocol, and we scored them using double-blinded
grading rubrics. All data were de-identified and no demo-
graphic data or grades were collected. This research seeks
to remove societal harms that come from lower engagement
and retention of students who need more personalized inter-
ventions for introductory Computer Science Courses.

3.2.4 DRL Policy evaluation
Table 1 presents the results of the Double DQN + LSTM
policy with two input settings. The question label only in-
dicates the problem order. It illustrates that the impact of
input settings can vary depending on the problem. But no
significant patterns emerged regarding which problem fea-
tures favor one input setting over the other. Consequently,
we opted for deploying policies mixing both settings for our
initial experiment. Thus, our final DRL policy comprised 10
policies, one for each problem, with the policy highlighted
in bold in Table 1 deployed for each respective problem.

Table 1: PDIS values for Double DQN + LSTM policy

Question label PDIS(k = 3) PDIS(k = 4)

ex132 0.3810 0.2093
ex132a 0.0546 0.0378
ex152 11.9814 0.6722
ex152a 0.0979 0.1810
ex152b 6.9842 0.3826
ex212 -6.2527 -6.1222
ex242 29.7481 92.3439
ex252 9.7131 1.1763
ex252a 0.7554 0.0561
exc137 0.1765 0.1599

3.3 Unified DRL policy induction

For the second experiment in logic tutor, we aimed to gen-
erate a Unified-DRL (U-DRL) policy, which is expected to
be more effective than a single-task DRL policy by merg-
ing two different ITSs. As it is essential to find the general
knowledge between two systems, we put two environments
in latent space based on Dreamer[18] and merge them by
applying bisimulation metrics[16].

3.3.1 Latent representation learning
Our methodology for inducing U-DRL policy is based on
Dreamer, a model-based DRL in latent space environment[18].
It learns the latent dynamics model based on the Recurrent
State Space Model(RSSM)[19] to predict and estimate the
action and value model in latent space. Similarly, our model
architecture for learning latent presentation was constructed
as follows. We numbered our latent space model(1), value
model(2) and action model(3).

1.1) Encoder : ôt ∼ enc(ot) (8)

1.2) Decoder : ot ∼ dec(zt) (9)

1.3) Deterministic state : ht = f(ht−1, st−1, at−1) (10)

1.4) Stochastic state : st ∼ f(st|ht) (11)

1.5) Reward : rt ∼ R(zt) (12)

2) Value : vt ∼ V(zt) (13)

3) Policy : at ∼ π(at|zt) (14)

To elaborate on the model, the encoder/decoder pair re-
sembles a variational autoencoder[28], which learns a latent
space from input data through a probabilistic distribution.
At time t and with batches from one of the ITS datasets
B, our encoder embeds raw observations into a latent space
ôBt ∼ enc(oBt), while the decoder reconstructs the original
raw observation, oBt ∼ dec(zBt), where the latent state zt is
a concatenation of deterministic and stochastic latent states.
Moreover, we employed two distinct encoder/decoder sets
for merging two ITS systems. Specifically, we constructed
enc1 and enc2 for embedding raw observations into latent
states ôITS1t and ôITS2t , respectively, and dec1 and dec2 for
reconstructing latent states to original observation states.
Equations 10 and 11 explains our dynamics model, based
on the RSSM architecture, which necessitates both deter-
ministic and stochastic states. Here, the deterministic la-
tent state is generated by a Gated Recurrent Unit[11], which
typically outperforms RNN or LSTM in handling sequential
data, while the stochastic latent state is estimated by the
posterior probability p(st|ht, ôt) following the consideration
of new observations.

3.3.2 Shared latent representation learning
Our main purpose for second study is to find out the latent
space of two different ITSs and the shared latent represen-
tation, which means a combination of two different environ-
ments(MDPs) in ITSs. We suppose that this integration
will improve capabilities in all tasks simultaneously learned
since we use various related tasks for learning. Here, we
used bisimulation metrics which can quantitatively measure
how the two states in MDPs are behaviorally similar[16] for
generating a shared latent state.

Bisimulation illutstrates a relationship between two different
states in MDPs. It can cluster two states if they are behav-
iorally equivalent. Specifically, if the two states si and sj
have the same reward function R and transition probability

p to the next bisimilar state, we can define the two states
are bisimilar. The relationship can be defined as follow[17].

Condition 1. ∀a ∈ A,R(si, a) = R(sj , a)

Condition 2. ∀a,∀C,
∑
s′∈C

p(si, a, s
′) =

∑
s′∈C

p(sj , a, s
′)

, where C is the set of all clusters of states that are bisimi-
larly equivalent.

The limitation of the bisimulation relationship is too strict to
be satisfied. The two states are no longer considered bisim-
ilar if there are slight differences in reward and transition
function. Bisimulation metrics[16], a pseudometrics-based
distance that can measure how much the two states are be-
haviorally similar, can tackle this problem. The equation for
bisimulation metrics is followed below.

Bisim(si, sj) = max
a∈A

(
(1−c)|rasi −r

a
sj |+cW2(p

a
si , p

a
sj)

)
(15)

,where c is a discount factor and W2 is a 2-Wasserstein dis-
tance between two different probability distribution. Here,
the smaller the value, the more behaviorally similar the two
states are. To make a generalized policy, we enforced the
latent space model(equations 8 to 12) to contain the char-
acteristics of bisimulation metrics. For that, by including
a loss function in the latent space model, we approximated
the L1 distance d between two latent states to be as same
as bisimulation metrics as follows. We numbered our bisim-
ulation metrics model as (4).

4) Bisimulation metrics : d(zit, z
j
t) ∼ Bisim(zit, z

j
t) (16)

,where zit ∈ BITS1 and zjt ∈ BITS2 and each states is from
batches by two ITS datasets, BITS1 and BITS2. This ap-
proach is inspired by [67] and [8]. [67] proposed a frame-
work to find out domain invariant characteristics in differ-
ent states using bisimulation metrics. By reducing irrelevant
features, they provide a generalization ability and improved
performance in a single task. [8] applies bisimulation metrics
to transfer policy between two different MDPs.

In summary, our U-DRL framework was initially constructed
by following three parts: 1) latent space model(encoder, de-
coder, transition model, reward model), 2) bisimulation met-
rics in latent space, and 3)estimated value and action model.
As lots of components are based on neural networks, we de-
scribed the parameters in an Appendix A. The whole loss
function during our model training can be defined as follows.

L = Llatent + Lvalue + Lpolicy (17)

Llatent = Ldec + Ltransition + Lreward + Lbisim (18)

Our latent space model uses Llatent as a loss function which
is similar to that of Dreamer, where the Ldec = −E

[
ln

p(ot|zt)
]
and Lreward = −E

[
ln p(rt|zt)

]
applying negative

log-likelihood, transition loss (Ltransition = KL(p(zt|zt−1

, at−1, ot)||p(zt|zt−1, at−1)), value loss (LV = 1
2
||vψ(zt) −

Vλ(zt)||2) where ψ is value network composed of FC layers
and Vλ(zt) is computed applying exponentially weighted av-

erage of rewards[18] , and policy loss (Lπ = −E(
∑t+H

t=t V (zt))).
Our framework combined them with the bisimulation loss
(Lbisim = ||zit − zjt ||1 − Bisim(zit, z

j
t)). Figure 1 shows how

our U-DRL framework works. The training process can be
summarized in three main steps. First, raw observations of
each ITS domain are mapped into a latent state using dif-
ferent encoders. Second, the distance of latent states from

Figure 1: Policy induction for unifying two ITSs

each domain is trained to be the same as bisimulation met-
rics for generating shared latent states between each task.
Third, the other properties like transition, reward, value,
and policy networks are trained in the latent space.

3.3.3 U-DRL Training data
We used log data of both logic tutor and probability tutor
for our training set. In logic tutor data, there are 1330 stu-
dents’ trajectories of problem solving in the training phase
from the Fall 17 to Fall 20 semester. We extracted 144 fea-
tures following relevant prior work[49]. The reward function
in logic tutor data is the difference between posttest and
pretest scores divided by training time as the main purpose
of logic tutor is maximizing learning performance while min-
imizing time for learning. In probability tutor data, there
are 1148 students learning trajectories including 133 state
features from Fall 16 to Fall 19 semester. The categories
for feature selection are the same as that of logic tutor, but
the inner elements are somewhat different because of the
differences in the system and teaching subjects between the
two ITSs. We applied normalization for each data and split
90% of students’ data into training data and the remain-
der for validation data. Here, we evaluate induced policy’s
performance only for our experiment’s logic tutor task.

3.3.4 U-DRL Policy evaluation

Table 2: PDIS values for U-DRL and DQN-based policies

Model PDIS

DQN+LSTM(k = 3) 5991.92
DQN+LSTM(k = 4) 3958.61
DDQN+LSTM(k = 3) 5619.66
DDQN+LSTM(k = 4) 2007.60

U-DRL 6330.35

Table 2 displays the performance of U-DRL compared to
other DRL policies. We computed the average of 50 PDIS
values for the U-DRL policy because the latent state con-
tains both deterministic and stochastic states, implying that
the same raw observations can result in different latent states
during evaluation. The results indicate that the PDIS value
for the U-DRL policy surpasses that of the other four DRL
models. Consequently, we conclude that the U-DRL policy
theoretically outperforms single-task DRL models and have
deployed the U-DRL policy to assess its effectiveness in a
real-world environment.

4. TWO INTELLIGENT TUTORS
4.1 Probability tutor
Probability tutor is an ITS teaching fundamental probabilis-
tic theory such as Bayes rule. It explicitly taught students
how to employ a general principle to calculate the required
probability of events. It can also provide immediate feed-
back for incorrect actions by students[9].

The learning process comprises four phases: Textbook, Pre-
test, Training, and Post-test. In the Textbook phase, stu-
dents receive an overview of the probabilistic theorem, help-
ing them recall necessary principles. The Pre-test consists
of 14 problems, without tutor feedback or hints.(This is the
same in the post-test phase.) During Training, students
tackle 12 problems sequentially, with the tutor’s interven-
tion on problem type but not content. In the Post-test, stu-
dents face 20 problems, including 14 problems isomorphic to
the Pre-test and 6 non-isomorphic problems applying mul-
tiple principles. The students are graded similarly to the
Pre-test.

Grading criteria The pre- and post-test problems required
students to derive an answer by writing and solving one or
more equations. We used three scoring rubrics: binary, par-
tial credit, and one-point-per-principle. Under the binary
rubric, a solution was worth 1 point if it was completely
correct or 0 if not. Under the partial credit rubric, each
problem score was defined by the proportion of correct prin-
ciple applications evident in the solution. A student who
correctly applied 4 of 5 possible principles would get a score
of 0.8. The One-point-per-principle rubric in turn gave a
point for each correct principle application. All of the tests
were graded in a double-blind manner by a single experi-
enced grader. The results presented below were based upon
the partial-credit rubric but the same results hold for the
other two. For comparison purposes, all test scores were
normalized to the range of [0, 1].

4.2 Logic tutor
Logic tutor is an intelligent tutoring system teaching basic
theories about propositional logic. It shows the premises
and allows students to derive a required conclusion by ap-
plying logical axioms and theorems[55]. Many researchers
have already applied effective techniques in logic tutor such
as data-driven hints[41], problem selection[34, 41], or rein-
forcement learning[2].

Students progress through seven levels to complete the logic
tutor’s learning process. The initial level features four ques-
tions, with the first two introducing the workflow and inter-
face, followed by a pre-test of the next two questions solved
independently. Levels 2 to 6 are training phase, where stu-
dents tackle four out of eight problems per level. Three prob-
lems are tailored to the student’s performance level, while
the fourth is a fixed and challenging level post-test problem.
As logic tutor uses the same problem selection algorithm
for all students, our pedagogical approach, utilizing DRL,
focuses on selecting the problem type (PS or WE) for each
student[3] in training phase. Finally, students take a post-
test with more challenging problems than those encountered
during training.

Grading criteria The scores for the pre-test and post-test are
calculated by two criteria. One is the number of incorrect
actions, and the other is the time for solving the problem.

Table 3: Result of probability tutor experiment

Expert DRL p value

Pre-test .796(.135) .737(.171) .146

Iso-post .812(.140) .814(.228) .126

Iso-NLG -.008(.619) .351(.646) <.05*

Post-test .727(.144) .765(.251) <.05*

NLG -.567(.772) .140(.689) <.05*

Training time 87.43(30.79) 88.47(31.05) .892

PSratio 0.448(0.12) 0.449(0.112) .969

*The statistics with the prefix Iso only consider the 14
questions in the post-test that are isomorphic to the

pre-test.

More specifically, a good score can be obtained by making
small mistakes and taking less time to finish problem [3].

5. EXPERIMENT SETUP
For the probability tutor, the study was given to students
as a homework assignment in an undergraduate Computer
Science class in the Fall of 2022. Students were told to com-
plete the study in two weeks, and they were graded based
on demonstrated effort rather than learning performance.
79 students were randomly assigned into the two conditions:
N = 55 for Expert and N = 24 for DRL. It is impor-
tant to note that the difference in size between the two con-
ditions is due to the fact that we prioritized having a suf-
ficient number of participants in the Control condition to
compare the system performance across different semesters.
During the training phase in the Expert, a human-crafted
Expert policy designed by an expert with over 15 years of
experience was implemented to students. It alternates be-
tween reasonable instructional interventions while adhering
to constraints. For instance, these constraints ensure stu-
dents receive predetermined types of interventions at each
level, as specified by instructors. The Expert policy is used
as a baseline policy for comparing the effect of RL policy
in a lot of previous works[2, 4, 25, 27]. Also, our induced
policy was applied to train students who are in DRL con-
dition. A t-test showed that there is no significant differ-
ence on average of pre-test score between Expert and DRL
(t(77) = 1.487, p = 0.146); with Expert and DRL. This im-
plies that no significant difference was found in the students’
incoming competencies between the two conditions.

For the logic tutor, the study was given to students as a
homework assignment in an undergraduate Computer Sci-
ence class in the Spring 2023 for two weeks. Students were
randomly divided into the two conditions: N = 37 for Expert
and N = 29 for U − DRL. The way how policies are ap-
plied to students is same as the study on probability tutor.
To assess the initial competence of students in Expert and
U−DRL conditions, we followed the same way conducted on
the first study. The results indicated no significant difference
between Expert and U − DRL (t(64) = 0.003, p = 0.907).
This statistical analysis suggests that the initial competence
levels of students in both conditions were similar.

6. RESULTS
6.1 DRL in probability tutor

Table 4: Result of logic tutor experiment

Expert U −DRL p value

Pre-test .512(.298) .503(.258) .907

Post-test .664(.208) .608(.171) .275

NLG .115(.482) .003(.481) .271

Training time 71.28(22.79) 67.43(22.17) .523

PSratio 0.49(0.08) 0.65(1.06) <.05*

Table 3 summarizes the study results on the probability tu-
tor, presenting average and standard deviations for seven
performance measurements: Pre-test, Iso-post, Iso-NLG, Post-
test, NLG, and PSratio. PSratio represents the ratio of PS
decisions to total decisions in each student’s learning trajec-
tory. To consider student competencies, NLG and Iso-NLG
were analyzed. Initial analysis using ANCOVA test, with
pre-test scores as covariates, focused on post-test scores and
NLG for isomorphic problems. Results show no significant
difference in Iso-post mean scores between Expert and DRL
(F (1, 77) = 2.3992, p = .126), but significant differences in
Iso-NLG (F (1, 77) = 4.652, p = 0.034, η2 = 0.06). In addi-
tion, ANCOVA tests revealed significant differences between
Expert andDRL policies in Post-test (F (1, 77) = 8.296, p =
0.005, η2 = 0.1) and NLG (F (1, 77) = 11.9, p = 0.0009, η2 =
0.14). Overall, theDRL policy significantly outperforms the
Expert policy in enhancing student learning.

For log analysis, we analyzed the training time in minutes at
first and there is no significant differences between Expert
and DRL. Additionally, we analyzed the PS ratio in stu-
dents’ learning trajectories to further understand the impact
of PS but there is no statistically significant difference be-
tween the Expert and DRL condition. Based on the results,
we can conclude that the way pedagogical decisions are pre-
sented to students has a greater impact on learning outcomes
than simply adjusting the numerical ratio of PS to WE. In
other words, how educational strategies are contextualized
and delivered could play a more significant role in determin-
ing students’ learning gains compared to the specific balance
between PS and WE tasks.

6.2 U-DRL in Logic tutor
The study results for the logic tutor are presented in Ta-
ble 4, mirroring Table 3. To account for the wide score
range of the logic tutor, we analyzed learning performance
using squared Normalized Learning Gains (posttest−pretest√

1−pretest),

which reduces variance and differences between incoming
competence groups. Following our result, we were unable
to yield statistically significant evidence that our U −DRL
outperformed the Expert policy. For post-test scores, an
ANCOVA test with pre-test scores as covariates revealed no
significant difference between Expert and U − DRL poli-
cies (F (1, 64) = 1.381, p = 0.275). Similarly, the ANCOVA
test for NLG scores showed no significant difference between
the two policies (F (1, 64) = 1.236, p = 0.271). Moreover, in
terms of training time in minutes, a one-way ANOVA test
using the condition as a factor found no significant differ-
ence in average training time between the two conditions
(F (1, 64) = 0.413, p = 0.523).

Although the NLG result is not statistically meaningful, our
U −DRL policy is not capable of improving student perfor-

mance compared with Expert policy. As the learning effect
of the U − DRL policy was not significant, we decided to
look at the impact of PSratio under both the Expert and
U −DRL to identify the differences in terms of pedagogical
decision. The PSratio of Expert is 0.49 and U − DRL is
0.66 and there were significant differences between the two
groups (F (1, 64) = 46.01, p < .05, η2 = 0.46). In other
words, the students in Expert relatively take PS and WE
in a balanced way, but the students in U −DRL tended to
learn following PS-centered pedagogical decisions. Based on
our NLG result, we can infer that the learning effect of the
U−DRL policy, which made unbalanced decisions, may not
be excellent.

7. CONCLUSIONS
In this study, we empirically examined the impact of PS
and WE alongside DRL policies trained on various datasets
across two ITSs. Initially, we utilized Double DQN and
LSTM networks in the probability tutor domain, evaluat-
ing two input configurations to determine the most effective
policy. Results revealed that the DRL policy significantly
enhanced learning compared to an Expert policy, despite
no significant differences in the distribution of PS and WE
strategies. We then expanded our analysis to the logic tu-
tor domain, aiming to capitalize on the benefits of Multi-
Task Learning. However, the U-DRL policy, derived from
shared latent representation learning, did not yield signifi-
cant learning effects compared to an Expert policy and fa-
vored PS strategies. Hence, while DRL policies trained on
diverse datasets may improve learning outcomes in certain
domains, this effect is not consistent across all settings, and
learning gains do not consistently align with PS-centric ap-
proaches or specific PS and WE proportions.

One potential reason on why our U-DRL fails to perform
well is that we need more meaningful way to united the
two training datasets. In this work, we leverage bisimu-
lation metrics which assumes behavioral similarity encap-
sulating that states with similar observable behaviors are
functionally equivalent. This assumption may not be valid
with ITS and educational settings. Students can be pro-
vided a WE because he/she’s knowledge is too low and thus
PS may cause frustration or when the student mastered all
the knowledge and a WE would be more efficient than PS.

We believe this work provides a step forward in learning
shared pedagogical policies across multiple ITSs. This method
allows a single policy to learn from multiple datasets at the
same time, to then optimize student learning across both tu-
tors. However, we acknowledge the imperative for additional
evaluation and testing. It is paramount that our method
should undergo further scrutiny and validation across var-
ious tutoring systems to ascertain its robustness and effec-
tiveness. Thus, our future work will focus on investigating
the better offline off-policy evaluation (OPE) to develop a
validity of induced DRL policy. Also, we will aim to refine
the DRL policy based on MTL by collecting more stable
and consistent data while simplifying the neural network
structure to address issues related to data inconsistency and
model instability.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-
tional Science Foundation projects: Integrated Data-driven

Technologies for Individualized Instruction in STEM Learn-
ing Environments (1726550), CAREER: Improving Adap-
tive Decision Making in Interactive Learning Environments
(1651909). Any opinions, findings, and conclusions expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the NSF.

9. REFERENCES
[1] M. Abdelshiheed, J. W. Hostetter, T. Barnes, and

M. Chi. Leveraging deep reinforcement learning for
metacognitive interventions across intelligent tutoring
systems. In International Conference on Artificial
Intelligence in Education, pages 291–303. Springer,
2023.

[2] M. S. Ausin. Leveraging deep reinforcement learning
for pedagogical policy induction in an intelligent
tutoring system. In In: Proceedings of the 12th
International Conference on Educational Data Mining
(EDM 2019),, 2019.

[3] M. S. Ausin. A Transfer Learning Framework for
Human-Centric Deep Reinforcement Learning with
Reward Engineering. North Carolina State University,
2021.

[4] M. S. Ausin, M. Abdelshiheed, T. Barnes, and M. Chi.
A unified batch hierarchical reinforcement learning
framework for pedagogical policy induction with deep
bisimulation metrics. In International Conference on
Artificial Intelligence in Education, pages 599–605.
Springer, 2023.

[5] M. S. Ausin, M. Maniktala, T. Barnes, and M. Chi.
Tackling the credit assignment problem in
reinforcement learning-induced pedagogical policies
with neural networks. In Artificial Intelligence in
Education: 22nd International Conference, AIED
2021, Utrecht, The Netherlands, June 14–18, 2021,
Proceedings, Part I, pages 356–368. Springer, 2021.

[6] D. Borsa, T. Graepel, and J. Shawe-Taylor. Learning
shared representations in multi-task reinforcement
learning. arXiv preprint arXiv:1603.02041, 2016.

[7] R. Caruana. Multitask learning. Springer, 1998.

[8] P. Castro and D. Precup. Using bisimulation for
policy transfer in mdps. In Proceedings of the AAAI
conference on artificial intelligence, volume 24, pages
1065–1070, 2010.

[9] M. Chi and K. VanLehn. Meta-cognitive strategy
instruction in intelligent tutoring systems: how, when,
and why. Journal of Educational Technology &
Society, 13(1):25–39, 2010.

[10] M. Chi, K. VanLehn, D. Litman, and P. Jordan.
Empirically evaluating the application of
reinforcement learning to the induction of effective
and adaptive pedagogical strategies. User Modeling
and User-Adapted Interaction, 21:137–180, 2011.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio.
Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[12] B. Clement, P.-Y. Oudeyer, and M. Lopes. A
comparison of automatic teaching strategies for
heterogeneous student populations. In EDM 16-9th
International Conference on Educational Data Mining,
2016.

[13] A. Condor and Z. Pardos. A deep reinforcement
learning approach to automatic formative feedback.
2022.

[14] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli,
J. Peters, et al. Sharing knowledge in multi-task deep
reinforcement learning. In 8th International
Conference on Learning Representations,{ICLR}
2020, Addis Ababa, Ethiopia, April 26-30, 2020, pages
1–11. OpenReview. net, 2020.

[15] T. Evgeniou and M. Pontil. Regularized multi–task
learning. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 109–117, 2004.

[16] N. Ferns, P. Panangaden, and D. Precup. Bisimulation
metrics for continuous markov decision processes.
SIAM Journal on Computing, 40(6):1662–1714, 2011.

[17] R. Givan, T. Dean, and M. Greig. Equivalence notions
and model minimization in markov decision processes.
Artificial Intelligence, 147(1-2):163–223, 2003.

[18] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream
to control: Learning behaviors by latent imagination.
arXiv preprint arXiv:1912.01603, 2019.

[19] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha,
H. Lee, and J. Davidson. Learning latent dynamics for
planning from pixels. In International conference on
machine learning, pages 2555–2565. PMLR, 2019.

[20] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[21] J. W. Hostetter, M. Abdelshiheed, T. Barnes, and
M. Chi. A self-organizing neuro-fuzzy q-network:
Systematic design with offline hybrid learning. In
Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pages
1248–1257, 2023.

[22] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández.
Learning teaching strategies in an adaptive and
intelligent educational system through reinforcement
learning. Applied Intelligence, 31(1):89–106, 2009.

[23] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández.
Reinforcement learning of pedagogical policies in
adaptive and intelligent educational systems.
Knowledge-Based Systems, 22(4):266–270, 2009.

[24] S. Ju, S. Shen, H. Azizsoltani, T. Barnes, and M. Chi.
Importance sampling to identify empirically valid
policies and their critical decisions. In EDM
(Workshops), pages 69–78, 2019.

[25] S. Ju, X. Yang, T. Barnes, and M. Chi. Student-tutor
mixed-initiative decision-making supported by deep
reinforcement learning. In International Conference on
Artificial Intelligence in Education, pages 440–452.
Springer, 2022.

[26] S. Ju, G. Zhou, M. Abdelshiheed, T. Barnes, and
M. Chi. Evaluating critical reinforcement learning
framework in the field. In International conference on
artificial intelligence in education, pages 215–227.
Springer, 2021.

[27] S. Ju, G. Zhou, T. Barnes, and M. Chi. Pick the
moment: Identifying critical pedagogical decisions
using long-short term rewards. International
Educational Data Mining Society, 2020.

[28] D. P. Kingma and M. Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,

2013.

[29] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and
M. A. Mark. Intelligent tutoring goes to school in the
big city. 1997.

[30] K. R. Koedinger, E. Brunskill, R. S. Baker, E. A.
McLaughlin, and J. Stamper. New potentials for
data-driven intelligent tutoring system development
and optimization. AI Magazine, 34(3):27–41, 2013.

[31] K. R. Koedinger, A. Corbett, et al. Cognitive tutors:
Technology bringing learning sciences to the classroom.
na, 2006.

[32] A. Lazaric and M. Ghavamzadeh. Bayesian multi-task
reinforcement learning. In ICML-27th international
conference on machine learning, pages 599–606.
Omnipress, 2010.

[33] P. Liu, X. Qiu, and X. Huang. Recurrent neural
network for text classification with multi-task
learning. arXiv preprint arXiv:1605.05101, 2016.

[34] Z. Liu, B. Mostafavi, and T. Barnes. Combining
worked examples and problem solving in a data-driven
logic tutor. In Intelligent Tutoring Systems: 13th
International Conference, ITS 2016, Zagreb, Croatia,
June 7-10, 2016. Proceedings 13, pages 347–353.
Springer, 2016.

[35] B. Liz, T. Dreyfus, J. Mason, P. Tsamir, A. Watson,
and O. Zaslavsky. Exemplification in mathematics
education. In Proceedings of the 30th Conference of
the International Group for the Psychology of
Mathematics Education, volume 1, pages 126–154.
ERIC, 2006.

[36] T. Mandel, Y.-E. Liu, S. Levine, E. Brunskill, and
Z. Popovic. Offline policy evaluation across
representations with applications to educational
games. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent
systems, pages 1077–1084. International Foundation
for Autonomous Agents and Multiagent Systems,
2014.

[37] B. M. McLaren and S. Isotani. When is it best to
learn with all worked examples? In International
Conference on Artificial Intelligence in Education,
pages 222–229. Springer, 2011.

[38] B. M. McLaren, S.-J. Lim, and K. R. Koedinger.
When and how often should worked examples be given
to students? new results and a summary of the current
state of research. In CogSci, pages 2176–2181, 2008.

[39] B. M. McLaren, T. van Gog, C. Ganoe, D. Yaron, and
M. Karabinos. Exploring the assistance dilemma:
Comparing instructional support in examples and
problems. In Intelligent Tutoring Systems, pages
354–361. Springer, 2014.

[40] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert.
Cross-stitch networks for multi-task learning. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3994–4003, 2016.

[41] B. Mostafavi and T. Barnes. Evolution of an
intelligent deductive logic tutor using data-driven
elements. International Journal of Artificial
Intelligence in Education, 27:5–36, 2017.

[42] A. S. Najar, A. Mitrovic, and B. M. McLaren.
Adaptive support versus alternating worked examples
and tutored problems: Which leads to better learning?

In UMAP, pages 171–182. Springer, 2014.

[43] D. Precup. Eligibility traces for off-policy policy
evaluation. Computer Science Department Faculty
Publication Series, page 80, 2000.

[44] A. N. Rafferty, E. Brunskill, T. L. Griffiths, and
P. Shafto. Faster teaching via pomdp planning.
Cognitive science, 40(6):1290–1332, 2016.

[45] A. Renkl, R. K. Atkinson, U. H. Maier, and R. Staley.
From example study to problem solving: Smooth
transitions help learning. The Journal of Experimental
Education, 70(4):293–315, 2002.

[46] J. Rowe, B. Mott, and J. Lester. Optimizing player
experience in interactive narrative planning: a
modular reinforcement learning approach. In Tenth
Artificial Intelligence and Interactive Digital
Entertainment Conference, 2014.

[47] J. P. Rowe and J. C. Lester. Improving student
problem solving in narrative-centered learning
environments: A modular reinforcement learning
framework. In International Conference on Artificial
Intelligence in Education, pages 419–428. Springer,
2015.

[48] R. J. Salden, V. Aleven, R. Schwonke, and A. Renkl.
The expertise reversal effect and worked examples in
tutored problem solving. Instructional Science,
38(3):289–307, 2010.

[49] M. Sanz Ausin, M. Maniktala, T. Barnes, and M. Chi.
Exploring the impact of simple explanations and
agency on batch deep reinforcement learning induced
pedagogical policies. In Artificial Intelligence in
Education: 21st International Conference, AIED
2020, Ifrane, Morocco, July 6–10, 2020, Proceedings,
Part I 21, pages 472–485. Springer, 2020.

[50] M. Sanz Ausin, M. Maniktala, T. Barnes, and M. Chi.
The impact of batch deep reinforcement learning on
student performance: A simple act of explanation can
go a long way. International Journal of Artificial
Intelligence in Education, 33(4):1031–1056, 2023.

[51] R. Schwonke, A. Renkl, C. Krieg, J. Wittwer,
V. Aleven, and R. Salden. The worked-example effect:
Not an artefact of lousy control conditions. Computers
in Human Behavior, 25(2):258–266, 2009.

[52] S. Shen and M. Chi. Reinforcement learning: the
sooner the better, or the later the better? In
Proceedings of the 2016 Conference on User Modeling
Adaptation and Personalization, pages 37–44. ACM,
2016.

[53] A. Singla et al. Reinforcement learning for education:
Opportunities and challenges. arXiv preprint
arXiv:2107.08828, 2021.

[54] S. Sodhani, A. Zhang, and J. Pineau. Multi-task
reinforcement learning with context-based
representations. In International Conference on
Machine Learning, pages 9767–9779. PMLR, 2021.

[55] J. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. International Journal of Artificial
Intelligence in Education, 22(1-2):3–17, 2013.

[56] J. C. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. In International Conference on
Artificial Intelligence in Education, pages 345–352.

Springer, 2011.

[57] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 2018.

[58] J. Sweller. The worked example effect and human
cognition. Learning and instruction, 2006.

[59] J. Sweller and G. A. Cooper. The use of worked
examples as a substitute for problem solving in
learning algebra. Cognition and Instruction,
2(1):59–89, 1985.

[60] F. J. Swetz. Capitalism and arithmetic: the new math
of the 15th century, including the full text of the
Treviso arithmetic of 1478, translated by David
Eugene Smith. Open Court Publishing, 1987.

[61] T. Van Gog, L. Kester, and F. Paas. Effects of worked
examples, example-problem, and problem-example
pairs on novices’ learning. Contemporary Educational
Psychology, 36(3):212–218, 2011.

[62] H. Van Hasselt, A. Guez, and D. Silver. Deep
reinforcement learning with double q-learning. In
Proceedings of the AAAI conference on artificial
intelligence, volume 30, 2016.

[63] K. Vanlehn. The behavior of tutoring systems.
IJAIED, 16(3):227–265, 2006.

[64] N. Vithayathil Varghese and Q. H. Mahmoud. A
survey of multi-task deep reinforcement learning.
Electronics, 9(9):1363, 2020.

[65] P. Wang, J. Rowe, W. Min, B. Mott, and J. Lester.
Interactive narrative personalization with deep
reinforcement learning. In Proceedings of the
Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017.

[66] A. Wilson, A. Fern, S. Ray, and P. Tadepalli.
Multi-task reinforcement learning: a hierarchical
bayesian approach. In Proceedings of the 24th
international conference on Machine learning, pages
1015–1022, 2007.

[67] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and
S. Levine. Learning invariant representations for
reinforcement learning without reconstruction. arXiv
preprint arXiv:2006.10742, 2020.

[68] Y. Zhang and Q. Yang. A survey on multi-task
learning. IEEE Transactions on Knowledge and Data
Engineering, 34(12):5586–5609, 2021.

[69] R. Zhi, M. Chi, T. Barnes, and T. W. Price.
Evaluating the effectiveness of parsons problems for
block-based programming. In Proceedings of the 2019
ACM Conference on International Computing
Education Research, pages 51–59, 2019.

[70] G. Zhou, H. Azizsoltani, M. S. Ausin, T. Barnes, and
M. Chi. Hierarchical reinforcement learning for
pedagogical policy induction. In International
Conference on Artificial Intelligence in Education,
2019.

[71] G. Zhou, H. Azizsoltani, M. S. Ausin, T. Barnes, and
M. Chi. Hierarchical reinforcement learning for
pedagogical policy induction. In Artificial Intelligence
in Education: 20th International Conference, AIED
2019, Chicago, IL, USA, June 25-29, 2019,
Proceedings, Part I 20, pages 544–556. Springer, 2019.

[72] G. Zhou and M. Chi. The impact of decision agency &
granularity on aptitude treatment interaction in

tutoring. In Proceedings of the 39th annual conference
of the cognitive science society, pages 3652–3657, 2017.

[73] G. Zhou, C. Lynch, T. W. Price, T. Barnes, and
M. Chi. The impact of granularity on the effectiveness
of students’ pedagogical decision. In Proceedings of the
38th annual conference of the cognitive science society,
pages 2801–2806, 2016.

[74] G. Zhou, T. W. Price, C. Lynch, T. Barnes, and
M. Chi. The impact of granularity on worked
examples and problem solving. In Proceedings of the
37th annual conference of the cognitive science society,
pages 2817–2822, 2015.

[75] G. Zhou, J. Wang, C. Lynch, and M. Chi. Towards
closing the loop: Bridging machine-induced
pedagogical policies to learning theories. In EDM,
2017.

[76] G. Zhou, X. Yang, H. Azizsoltani, T. Barnes, and
M. Chi. Improving student-tutor interaction through
data-driven explanation of hierarchical reinforcement
induced pedagogical policies. In In proceedings of the
28th Conference on User Modeling, Adaptation and
Personalization. ACM, 2020.

APPENDIX
A. PARAMETERS
A.1 Single Task DRL
Our neural net structure in DRL + LSTM consists of three
LSTM layers with 1000 units, respectively, and one FC layer
for the output. The FC layer has two units as the policy
should compare two state action-value functions when PS
and WE. All layers use a Rectified Linear Unit(ReLU) as the
activation function. In addition, we use L2 regularization
with penalty factor λ = 10−4 to prevent our model from
being overfitting. We trained our model using 500 batches
which are randomly selected from a static dataset for 150K
steps.

A.2 Unified DRL
Our encoder comprises three FC layers with 256 × 128 ×
64 units. For the decoder, we used three FC layers with
128 × 128 × N units, where N is the number of features
in raw observation. We used a recurrent state space model
for the transition model, which consists of 32 latent units
for each deterministic and stochastic state. The reward,
policy and value net is also formed based on FC layers for
estimating probability distribution given zt. For training, we
sampled 64 batches with a length of 3 and used Adam as an
optimizer. We have learning rates of 6× 10−4, 8× 10−5, 8×
10−5, 10−5 for latent space, value, action, and bisimulation
model, respectively.

B. INTERFACE OF TUTORS
B.1 Probability Tutor
Figure 2 shows the interface of the probability tutor. The
current problem is on the Problem statement window. The
probabilities of events on the problems can be explicit or
implicit(applying the problem in real life). In the Variables
window, students can define variables by directly extract-
ing them from problems or using probabilistic equations.
Through the Dialog window, the tutor provides students
feedback, hints, or instructions for the next step. From the

Figure 2: Interface of probability tutor

Response window, students can interact with the tutors by
selecting their next actions. Throughout the interaction, the
equations required for solving the problem are displayed on
the Equation window.

B.2 Logic Tutor
Figure 3 shows the first round of the PS step in logic tu-
tor. If the current problem type is PS, students should solve
the problem by themselves without any intervention from
the tutor. As we can see, there are four main categories in
the interface. First, in the student workspace, a procedure
of student for deriving a goal statement is visualized. On
the top of the workspace, three nodes of premises can be
used for extracting conclusions. By applying propositional
logic rules to the premises, students can finally reach the
goal node at the bottom of the workspace. The question
mark above the conclusion indicates that the problem is not
solved yet. Second, there are fundamental logic theorems
on the central window. Under the rules box is a frequency
bar. This bar shows the frequency of how often the state-
ments derived by students were used for concluding the past.
Third, students can get a hint about which rules apply to
the question in the information box. Lastly, on the hint and
controls box, students can receive a direct hint for deriving
rules by clicking the ”Get Hint” box. Also, the other op-
tions in this part allow students to refresh, skip or solve the
problem in indirect proof ways.

Figure 3: Interface of logic tutor

