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ABSTRACT 
Although the fields of educational data mining and learning analyt-
ics have grown significantly in terms of analytical sophistication 
and the breadth of applications, the impact on theory-building has 
been limited. To move these fields forward, studies should not only 
be driven by learning theories, but should also use analytics to in-
form and enrich theories. In this paper, we present an approach for 
integrating educational data mining models with design-based re-
search approaches to promote theory-building that is informed by 
data-based models. This approach aligns theory, design of the 
learning environment, data collection, and analytic methods 
through iterations that focus on the refinement and improvement of 
these components. We provide an example from our own work: the 
design and development of a digital learning environment for ele-
mentary-school (ages 8 to 13) children to learn about artificial 
intelligence within sociopolitical contexts. The project is driven by 
a critical constructionist learning framework and uses epistemic 
network analysis as a tool for modeling learning. We conclude with 
how this approach can be reciprocally beneficial in that educational 
data miners can use their models to inform theory and learning sci-
entists can augment their theory-building practices through big data 
models. 
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1. INTRODUCTION
The development of theory is needed in any scientific field. In ed-
ucational research, framing studies through theories contributes to 
a systematic understanding of teaching, learning, and the design of 
learning environments [9]. Specifically in the fields of educational 
data mining (EDM) and learning analytics (LA), aligning studies 
with theory reduces the risk of finding results based on chance and 

allows for the exploration of more nuanced metrics of learning as 
opposed to time-on-task or simple counts of activities [44].  

More recently, the focus has shifted to not just grounding analytics 
in theory but using analytics to develop or refine theory [14]. The 
abundance of sophisticated technical approaches in EDM and LA 
have great potential for building and improving upon existing 
learning theory in a fast growing and changing technical world. 
Moreover, theory building and theory refining drive the growth of 
scientific knowledge [34] and help establish emerging fields like 
EDM and LA.  

However, the impact of EDM and LA research on practice, theory, 
and frameworks has been limited. Dawson and colleagues [15] 
found that few studies suggested actions to interrogate data-based 
models and provide feedback to theory. The authors argue that re-
searchers must extend beyond individual analysis and provide rigor 
in evaluating assumptions, interventions and actions to refine es-
tablished or generate new theories of learning. Similarly, Romero 
and Ventura [37] argue for increasing the impact on practice and to 
move from exploratory models to more holistic and integrative sys-
tems-level research through developing theory and conceptual 
frameworks.  Thus, there is a need for EDM, LA, and related edu-
cational research communities to explore approaches that allow for 
theory-building to move the field forward and have broader impact 
for learners and teachers. 

One approach for theory-building in the learning sciences is 
through design-based research. The goals of design-based research 
are to test theory in naturalistic settings by designing and imple-
menting interventions and to generate new theory through cycles of 
testing and refinement [7]. In initial cycles, the theories may be 
piecemeal and applicable to local contexts. As researchers progress 
through the cycles, they will develop more broadly applicable the-
ories. In addition, design-based research provides guidance for 
aligning theory, design, and practice to more tightly connect find-
ings to practice and in turn, directly improve educational settings 
[16]. These characteristics of design-based research can support the 
need for EDM researchers to engage in theory grounding and build-
ing.  

In this paper, we propose an approach for integrating EDM and de-
sign-based research to inform theory building. We provide an 
example from our own work, designing and developing a digital 
learning environment for elementary-school-aged children to learn 
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about artificial intelligence within sociopolitical contexts. This pro-
ject is grounded in a critical constructionist learning framework, 
and we used epistemic network analysis as a tool for modeling 
learning data collected from this environment.  

2. BACKGROUND 
2.1 Learning Theories 
In learning analytics and the learning sciences, there is no clear def-
inition of what constitutes a learning theory [29]. For example, 
Doroudi [18] identified four core learning theories: behaviorism, 
cognitivism, constructivism, and situativism/sociocultural. Dor-
oudi argues that such theories can be viewed as worldviews for how 
to think about learning. These worldviews, or lenses, are developed 
through researcher’s collection of scientific evidence, their philo-
sophical ideas about learning, and their values regarding ways of 
learning, doing, and being. However, within these four broadly ap-
plicable big “T” Theories exist small “t” theories. For example, 
sociocultural theory views learning as inherently social and situated 
within a particular context. Within sociocultural theory, there are 
several narrower lenses, such as distributed cognition, embodied 
cognition, and communities of practice, which each focus on a par-
ticular aspect of social and situated learning. Researchers can 
synthesize several small “t” theories into a conceptual framework 
used to guide research questions, methods, and design. Often, the 
conceptual framework is represented in a visual diagram that de-
picts the relationships among theories and ideas in the literature 
[31]. Conceptual frameworks change over time as research studies 
are conducted and scientific evidence (re)informs theory.  
In EDM and LA large-scale datasets are analyzed to make claims 
about learning. For example, clickstream data can be analyzed to 
make predictions about student performance. However, as Kitto 
and colleagues [30] note, clickstream data is typically collected to 
aid developers in debugging software and not well-structured for 
describing educational phenomena. They argue that some studies 
that investigate clickstream data can lead to insightful findings; 
however, these studies often yield results that are already well un-
derstood or difficult to interpret and test. Referred to as the “clicks 
to constructs” problem, researchers may rely on existing low-level 
descriptive data on learning platforms to make meaningful claims 
about learning but are difficult to link to theoretically grounded 
concepts [12]. 
While some EDM and LA studies have grounded their work in 
learning theories, it is still not a common practice in EDM research. 
According to a recent literature review by Baek and Doleck [6], 
66% of published EDM research did not identify a theoretical ori-
entation. Of those studies that identified a theory, about half used 
the same theory: self-regulated learning. This review underscores 
the need for processes that guide EDM researchers towards ground-
ing their studies in wider varieties of learning sciences theories to 
contribute to advancing learning theory.  
Consequently, there have been calls for EDM and LA researchers 
to embed educational theory into advanced analytics tools and 
methods [43, 44]. One way to achieve this is to design theory-
driven studies that allow for driving actionable change in learning 
environments and ecosystems [43]. In large datasets with almost 
endless models and significant correlations, theoretical and concep-
tual frameworks justify variables to choose in a model, how to 
interpret results, and, importantly, how to guide stakeholders to 
make decisions about education and learning [30]. 

2.2 Design-Based Research 
Theory building in the learning sciences goes hand in hand with 
design-based research, which is a series of approaches for produc-
ing theory, artifacts, and practices that impact teaching and 
learning. In such studies, researchers systematically build and test 
new designs in learning settings and adjust the design context 
through cycles of implementations [11, 42].  Design-based research 
aims to develop theory-based learning interventions and generate 
new theories of learning [7]. Using this theory-based approach, 
learning theories are developed through reflective cycles of exper-
imentation within the context in which they will be used [24]. Such 
cycles of design involve design conjectures that claim if learners 
engage in this certain activity, then a particular mediating process 
will emerge that produces desired learning outcomes [38]. The out-
comes then inform novel design processes or principles [20], new 
hypotheses [11], or the development of new small “t” theories or 
ontological innovations [17] which are explanatory constructs, cat-
egories, or taxonomies that explain how things work. 
In design-based research, the outcomes of a learning environment 
that drive theory development are informed by data collection and 
analysis. In digital learning environments that collect and track 
multiple data streams, the datasets are large and require data ana-
lytic tools for building and interpreting models. This type of 
analysis is common in EDM and LA, and thus, such approaches are 
an apt fit for design-based research outcome analyses. However, 
few studies in EDM and LA have explored theory building through 
design-based research [15] although scholars have argued for this 
integration of fields to advance learning theory and the fields of 
EDM and LA [36]. A few recent studies have integrated EDM and 
design-based research for the purposes of improving the designed 
intervention itself or for developing design principles [28, 43]. For 
example, Quigley and colleagues [35] used sequencing and Naïve 
Bayes classifiers to model high school biology students’ science 
practices. The findings informed which scientific practices teachers 
should focus on in their instruction and use of the intervention and 
learning tools. However, studies that integrate EDM approaches 
and design-based research for the purposes of theory building are 
rare [15]. 
In this paper, we propose a process framework for how design-
based research can be integrated with large data-based models to 
inform learning theory development.  

3. PROPOSED DATA-BASED MODEL DE-
SIGN PROCESS FRAMEWORK 

 

 



Figure 1. Proposed model-based design process framework 

In our proposed framework (figure 1), the process begins with a 
learning theory that guides the remainder of the study. This theory 
is the lens through which the design of the learning environment 
activities and tools will be designed. Through the theory's lens, the 
activities' design drives the design of database and choices for data 
collection. After the implementation of the digital learning environ-
ment, the large amount of data collected is modeled and analyzed 
to answer research questions. These large data-based models then 
inform the next iteration of database design and activities and re-
flection on advancing learning theory.    

4. APPLIED EXAMPLE: SPOT DIGITAL 
LEARNING ENVIRONMENT 

To concretize the proposed framework, we offer an example from 
our recent research project: the SPOT digital learning environment. 
The goal of the project is to develop theory-based learning activities 
for elementary-school-aged children to engage in computational 
thinking practices [3, 10, 23] by developing machine learning im-
age classification algorithms and programing robots to respond to 
these algorithms. Children engage in these computational thinking 
practices through a critical lens [22]: interrogating, dismantling, 
and reimaging technologies that oppress marginalized populations. 
This work is motivated by recent abundance of artificial intelli-
gence applications, concerns for biased and harmful machine 
learning algorithms [13, 32], and calls for an early education around 
computational thinking and computer science for children [46]. The 
overarching research question in this project asks how children de-
velop computational practices through a critical lens? The long-
term goals are to inform the design of critical computational think-
ing learning environments and to develop learning theory at the 
intersection of critical pedagogies and computational thinking for 
elementary-school-aged children.   

4.1 Cycle 1 
The big “T” Theory framing this project is sociocultural theory. 
Within this worldview, we draw on constructionism [33], critical 
pedagogies [22], and rely on a newly proposed small “t” theory of 
critical computational thinking [26, 27] and critical constructionism 
[25]. Based on our theoretical orientation, our assumptions and val-
ues around learning are: 1) construction of and reflection with an 
object facilitates children’s meaning-making and 2) learning is in-
herently political and children should engage in questioning, 
dismantling, and reimagining systemic oppression.  

Through this lens, in the first iteration of this research project, we 
designed activities that allowed children to engage in machine 
learning practices and reflect on their learning through a sociopo-
litical lens that involve questioning machine learning outputs and 
creating interest-based machine learning objects. [2, 21]. One key 
activity was developing a “robot story” to draw and write a story 
about a robot for social good. Children were encouraged to create 
fantastical stories (Figure 2). Then, with the assistance of adults, 
children used 1) their computer webcam to train an image classifier 
to recognize classes of images (Google Teachable Machine), and 
2) a block-based programming language (Scratch) to train a robot 
prototype inspired by their stories to respond to their classification 
system, and 3) investigate and mitigate bias in their training da-
tasets such that groups of users were not excluded or discriminated 
against. A full description of activities are available in [2, 5, 21] 

 

 
Figure 2. One example of a robot story drawing of a robot help-
ing children learn their colors. An adult and three children 
programming a robot together.  

In this example, the theoretical orientation is critical computational 
thinking and constructionism, which is still a developing orienta-
tion. This small t “theory” drove the design of the activities that 
focused on creating objects for learning computational thinking 
practices in a sociopolitical context.  

The data collected in this first cycle consisted of 44 children’s 
block-based programming code files, children’s machine learning 
classification algorithms, recorded video of activities, and other 
written or drawn artifacts from children. The database choices were 
driven by identifying the forms of evidence for learning that needed 
to be extracted within the scope of the designed activities. At times, 
we reconfigured the structure of the activity to better collect evi-
dence of children’s learning and engagement. For example, we 
asked children at specific timepoints during the programming ac-
tivities to deposit their code and projects into shared folders for data 
collection purposes. 

This database then informed the type of analytic models we con-
structed to answer our research questions about children’s critical 
computational practices and the design of a critical machine learn-
ing education program. In this first iteration, we relied on epistemic 
network analysis (ENA) to create data-based models from chil-
dren’s artifacts and discourse data. Before building the model, the 
data must be organized in rows and columns in a format that is ma-
chine readable by the ENA webtool. The data are segmented into 
meaningful divisions of discourse [4]. For example, in our study, 
each row in the data represented one student, one column repre-
sented their discourse or activity at a point in time, and each column 
was a meta-data variable. After segmentation, each line of dis-
course or activity is codified numerically. In our studies, we added 
columns to the dataset for each code that represent children’s 
knowledge of critical computational thinking practices. The data 
were coded for three categories: how humans develop machine 
learning applications (5 codes), harmful machine learning applica-
tions (3 codes), and helpful machine learning applications (2 codes) 



(full coding description available in cml paper). From here, we used 
ENA to build network models of children’s discourse and activity.  

ENA measures the connections between discourse elements, or 
codes, by quantifying the co-occurrence of those elements within a 
defined segmentation [39–41]. In our studies, co-occurrences of 
codes were calculated if they occurred within a child’s response. 
Each child’s co-occurrences for each of the nine activities were to-
taled and each activity was visualized as a single weighted node-
link network representation. Each network represented a summa-
tion of all the children’s co-occurrences within an activity.  

To analyze several networks at one time, we used an alternative 
ENA representation in which the centroid (center of mass) of each 
network was calculated and plotted in a fixed two-dimensional 
space that was mathematically created by conducting a multi-di-
mensional scaling routine (a singular value decomposition) and a 
sphere normalization. The space is interpreted by examining the lo-
cation of the nodes in the two-dimensional space and evaluating the 
goodness of fit. In this analysis, the Spearman goodness of fit was 
0 for both the x and y axis and the Pearson goodness of fit was 1.0 
for both the x and y axis, indicating the location placement of the 
nodes was reliable. For more detailed mathematical explanations of 
ENA, see work by Bowman and colleagues [8], authors and col-
leagues [3], and Shaffer and Ruis [41]. 

 
Figure 3. Epistemic network visualization of all children’s dis-
course for Robot Superhero Story activity. Triangle represents 
the center of mass of the weighted network and is plotted in a 
two-dimensional mathematical space. Node labels for Helpful 
ML Applications are pink, for Harmful ML Applications codes 
are red, and for How People Develop ML Applications are grey. 
Figure from [5]. 

Figure 3 displays one of the network visualizations that was cre-
ated. This network represents the data collected and modeled from 
children’s robot stories. In this activity, children connected among 
TECHNOLOGY FOR KIDS, TECHNOLOGY TO ADDRESS 
SOCIAL ISSUES, CLASSIFICATION ALGORITHMS, and DI-
VERSE USERS suggesting an understanding of how machine 
learning classification algorithms can be used to design technology 
for kids, for social good, and for a diverse range of users. These 

connections reflect the goal of the designed activity for children to 
imagine and design their own machine learning based robot that 
could benefit a potentially marginalized population. For example, 
LaToya, an African American child, designed a robot that relied on 
a color classification algorithm that would identify the colors of 
real-world objects and teach colors to young children. She was in-
spired by her younger cousin’s lack of access to learning tools. The 
remainder of the ENA models and interpretations can be seen in 
authors and colleagues’ publication [5].  

The collection of ENA networks in our models advanced charac-
terizations of the small t “theory” of critical computational thinking 
by showing varies engagements of children’s application of a criti-
cal lens to designing and discussing machine learning technologies. 
The models showed evidence of youth creating products using ex-
isting tools and designing more equitable and socially beneficial 
alternatives. Based on these models, we proposed a framework of 
critical machine learning education that involves 1) posing and an-
swering questions about the roles of producers and consumers of 
AI technologies, specifically who designs technologies, for what 
purposes, who benefits, who is harmed, and what are the histories 
embedded in the data being used, and 2) identifying how people 
design AI technologies and applying this knowledge to build appli-
cations for marginalized populations. This is a first step towards 
advancing ideas around critical computational thinking.  

Our models and supplementary observational data collection sug-
gested that children engaged deeply in activities when provided 
with a narrative and allowed to create their own stories and tech-
nologies. Our models also suggested that children intermittently 
took a critical lens to their work, but they did not fully integrate a 
critical perspective into their investigations. This missing link was 
problematic because our main goal was for children to integrate a 
critical lens into their computational thinking practices throughout 
the program. 

We hypothesized that this lack of an integrated critical lens was 
because some activities included computational thinking practices 
without focusing on sociopolitical issues, while other activities in-
volved discussion of sociopolitical issues without integrating 
computational thinking practices. Moreover, students were not in-
vited to explore oppressive histories of marginalized populations, 
which is important for situating students’ understanding of systemic 
oppression. Finally, we realized that we adopted existing program-
ming tools that were not specifically designed for students to 
explore socio-political issues in AI.  

Thus, in this first design-based iteration cycle, our data-based ENA 
models informed the characterization of a newly developing theo-
retical orientation of critical computational thinking, the refinement 
of our programmatic activities to integrate sociopolitical issues and 
computational thinking practices within every activity, to include 
more narrative-based activities to increase engagement, and to de-
velop our own programming tools that center critical lenses in 
computing.  

4.2 Cycle 2 
In the second iteration of this research project, we redesigned the 
activities to be in the form of a digital game driven by a cohesive 
narrative while integrating a sociopolitical and constructionism 
lens within every activity [1]. We hypothesized that through game-
play and immersion, students will actively construct their own 
understanding of the world and gain computational thinking skills.  

In addition, we involved children from the after-school centers in 
the redesign of the activities based on our findings from our models. 



Using cooperative inquiry techniques [19, 45] we provided oppor-
tunities for children to gather in groups and generate ideas for the 
game design and activities. One re-occurring theme was the desire 
to customize their space and objects. For example, children wanted 
to customize other characters’ appearance and capabilities. In an-
other example, one child expressed their desire to have a personal 
space to “hang up and look at” earned badges and wanted to deco-
rate this space.  

In our research lab, we ideated, designed, and developed a hybrid 
physical/digital role-playing game in which students role-play as 
agents-in-training for a top-secret agency called Solving Problems 
of Tomorrow (S.P.O.T). In the game, children play the role of the 
protagonist as they work as secret agents for the S.P.O.T. agency. 
They undertake the task of traveling into the future to investigate 
and solve technology-related problems that they encounter and then 
bring back the knowledge and skills they acquire to solve present 
problems. To sign up for their mission, children receive signup in-
structions from their classroom teacher, who role-plays as a senior 
S.P.O.T agent providing the child agent with the resources they will 
need as they proceed to login and signup as a young S.P.O.T agent. 

The game experience is divided into progressive levels, and child 
agents must complete a series of activities to earn badges and 
powerups that take them to the next level. When they travel to the 
future, the agents discover that the main mode of transportation are 
self-driving cars that use facial recognition for access. In this futur-
istic scenario, children are having trouble accessing the cars 
because the facial recognition technology does not consistently 
classify children’s faces correctly. The purpose of this activity is 
for children to learn about machine learning classification algo-
rithms while at the same time exploring algorithm bias and the 
consequences on vulnerable populations, such as children. We 
chose children as the initial vulnerable population because this is a 
shared identity of all the game players. The frontend of the web-
based game is developed using the Svelte framework which com-
piles components into efficient JavaScript and HTML at the same 
time x(figure 4).  

 
Figure 4. Svelte interface for the game-based environment with 
typing and speech-to-text options for responses.  

Finally, we developed an adapted version of block-based program-
ming language (inspired by Scratch) and a user interface for an 

image classification trainer using tensorflow.js that is developmen-
tally appropriate for children (inspired by Google Teachable 
Machine). Users will be able to train an image classifier, import the 
trained machine learning algorithm into the block-based program-
ming tool, and program a robot to respond to the classification 
algorithm (Figure 5).  

 

  
Figure 5. Image learning classification model using tensor-
flow.js and adapted version of Scratch block-based 
programming with custom blocks to program a TPBot robot 
with a micro:bit processor to respond to the classification algo-
rithm through the computer webcam.  

These designed activities influenced our data collection decisions. 
Data collection in this iteration include students’ personal and de-
mographic data, timestamped preliminary information about their 
existing knowledge and perception about AI concepts and technol-
ogies, timestamped text-based reflections and answers to question 
prompts, students’ digital sketches using a drawing application, 
short video recordings asking children to reflect on their work, drag 
and drop icon responses, decorative customization choices, and 
saved files from their classification algorithms and block-based 
programming.  

In turn, the design of the database was influenced by the activities 
and choices for data collection. The application uses NodeJS for 
backend operations, complemented by MongoDB and Amazon 
web services (AWS) cloud for data storage. MongoDB stores data 
in collections comprising documents that are analogous to rows in 
conventional databases. Text data are posted and stored directly to 
the MongoDB database while multimedia data like videos, audios, 
and visuals, are stored in an Amazon Web Service (AWS) S3 
bucket through an API that allows us to send media data to the S3 
bucket and returns a link that is eventually stored and linked to each 
user in the MongoDB database. The data in the MongoDB database 
and the S3 bucket are securely saved and can be virtually accessed 
by researchers for data access and analysis.  

Currently, this project is ongoing, and the implementation of the 
game and the model creation has not been completed. S.P.O.T. will 
be implemented in classrooms in 2025 and ENA models will be 
created and analyzed to further inform theory building, design ac-
tivities, and design of the database.  

Figure 6 provides a summary of the model-based design process 
framework applied to the S.P.O.T. digital learning environment re-
search project. In short, in each design-based research cycle, our 



worldview is framed by the small “t” theories of critical construc-
tionism and critical computational thinking. This worldview guides 
the design of the activities such that learners are designing and re-
flecting on computational objects in the context of oppressive 
power structures and equity. These activities influence the data col-
lection choices and design of the digital database. Finally, the 
student discourse and activity data are analyzed by coding data and 
then building and interpreting ENA models. These data-based mod-
els further help us to refine our theoretical orientations by providing 
evidence that align with or contradict tenets of the theories.    

 
Figure 6. Data-based model design process framework applied 
to the SPOT digital learning environment research project  

5. CONCLUSION 
With the recent advancements of sophisticated tools and analyses 
in EDM and LA, theory matters more than ever [44]. Theories elu-
cidate the mechanisms behind student learning and are instrumental 
in shaping the design of digital learning environments and inter-
preting the data derived from these settings [29, 43]. The EDM and 
LA fields are making strides towards theory driven studies. How-
ever, using EDM models to inform and build theory is still rare. 
Thus, in this paper we propose a model-based design process 
framework to guide theory grounding and building in educational 
research.  

Our approach emphasizes the importance of anchoring data collec-
tion and analytics in a broad range of educational theories or 
frameworks—what we refer to as small "t" theories. This founda-
tional perspective enables us to gather comprehensive multimodal 
data essential for discourse ENA models, moving beyond the reli-
ance on superficial metrics such as clickstream data. 

By embedding our analytics within a theoretical framework, we 
capture richer data and gain insights that prompt us to revisit and 
refine our initial educational theories and the design of learning ac-
tivities. The discrepancies and alignments between our theoretical 

assumptions and the empirical evidence from the data inform this 
reflective process. Such an iterative interaction between theory and 
data analytics fosters continuous improvement, enhancing our un-
derstanding of learning behaviors and our methodologies in digital 
environments. 

Such iterative data-based model design frameworks that inform 
data collection and analytics through theory and at the same time 
inform theory through analytics is crucial for moving the field of 
EDM and the learning sciences forward. Design-based research 
that relies on large data-based models can be reciprocally beneficial 
in that educational data miners can use their models to inform the-
ory and learning scientists can augment their theory-building 
practices through big data models.  
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