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ABSTRACT 
Open science has become an important part of contemporary sci-
ence, and some open science practices (such as data sharing) have 
been prominent aspects of Educational Data Mining (EDM) since 
the start of the field. There have been recent pushes for EDM to 
more fully embrace the range of open science practices that are seen 
in other fields. In this paper, we review some of the practices that 
have become common in fields such as psychology, and critically 
examine the benefits and costs of adopting these practices within 
EDM. We conclude with a summary set of recommendations for 
the field.  
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1. INTRODUCTION
Though the idea can be arguably traced back to the 1600s when the 
first academic journals were formed, “open science” has become a 
popular topic in recent years [19, 66, 74]. Across fields, open sci-
ence has become an increasingly important part of the way research 
is conducted and disseminated – with the core ideas being that re-
search should be transparent and accessible. Such openness can 
take on many different forms – all of which are meant to make the 
processes and products of science more accessible and transparent 
for others – including publicly available data and/or code, and 
transparency in methods and materials for reproducibility. For ex-
ample, authors are now routinely encouraged by conferences and 
journals to share their data so that findings can be replicated or ex-
tended, as well as pre-registering their hypothesis in an effort to 
avoid problematic practices like p-hacking that lead to high rates of 
Type 1 errors (i.e., claiming there is a significant result, when in 
fact only chance is present). 

A general consensus now seems clear: scientific communities 
should have more open research practices in order to speed up pro-
gress and avoid situations where incorrect findings become widely 
believed [19, 66, 74]. Many scholars in EDM and related fields 
(such as learning analytics and artificial intelligence in education) 
have argued for wider use of open science practices [21, 29, 44, 76]. 

1 https://www.apa.org/pubs/journals/resources/open-science 

The potential benefits include more rapid improvement and de-
creased redundancy across scientific efforts, while also helping 
remove some of the barriers for early career researchers and less-
funded areas of research in general. These benefits have led the 
EDM Society and other organizations in our field to recommend 
that scholars follow open science practices, for example in a one 
paragraph statement within the EDM2024 call for papers. 

However, we have yet to reach consensus as to which open science 
practices EDM should adopt, as much of the work in our field does 
not fall under the traditional 5-step “scientific method” and null-
hypothesis testing paradigms that have dominated open science 
narratives so far. The question we address here then is, how should 
communities like EDM address open research practices? In the re-
mainder of this article, we discuss some of the key challenges and 
offer some recommendations for how researchers in our space may 
want to consider open science. We do not claim to have answered 
this question in full but hope to critique the notion that our commu-
nity should blindly adopt what other fields are doing – or, at the 
other extreme, that we have already done enough. We instead argue 
that EDM should apply in a thoughtful and targeted manner the 
open research practices which are most impactful and suitable for 
the field of EDM. 

2. BACKGROUND
Three events are commonly used to point out the existence of a re-
producibility “crisis” in recent years [66]: 1) the discovery of many 
cases of impactful scientific fraud, 2) a series of papers highlighting 
questionable research practices (e.g., researcher degrees of free-
dom, HARKing) [38, 43], and 3) the Open Science Collaboration’s 
grim report that only about 36% of results of findings from top tier 
journals replicated [56]. Such events, though largely based in the 
field of psychology, have fueled interest in open science more 
broadly, where researchers have found similarly grim rates of re-
producibility in other areas (including EDM) because of the lack of 
openness of data, code, or details about methods [19, 29, 30, 71]. 

One of the dominant narratives has been to “open up” research 
practices, and typically, this narrative leans strongly on recommen-
dations based on issues from the field of psychology (see, for 
instance, the APA’s open science guidelines1). These common 
practices include: 1) pre-registration of and full disclosure of mate-
rials; 2) sophisticated a priori power analysis to determine sample 
sizes; 3) disclosure of non-significant findings in addition to signif-
icant ones; and 4) sharing data and code for reproducibility. Similar 
efforts have been made to establish open practices for qualitative 
[16] and machine learning [60] as well. This has resulted in an in-
crease of support for many open science practices, including the
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availability of free pre-registration sites (e.g., aspredicted.com), 
open data repositories (e.g., Open Science Framework), badge in-
centives on certain publication venues (e.g., EDM and ACM 
Learning At Scale), and requirements to engage in open sharing 
practices as a prerequisite to submission (e.g., through mandatory 
checklists on replication within the AAAI conference) and/or re-
ceiving funding. 

However, there is some debate about whether this combination of 
approaches addresses the aforementioned problems and which of 
these practices are reasonable to apply to research processes in the 
field of EDM. Considering specifically the scope of work done in 
the EDM community, there are a number of different tensions in 
terms of the populations studied and research designs. For instance, 
whereas fields with strong laboratory research practices can set the 
nature and number of human participants, the fieldwork norm of 
education means that sample sizes are often not at the discretion of 
the researcher, and analyses of data are often secondary analyses 
and based on a combination of enrollment and parental consent. 
These aspects of our community’s research make it difficult to en-
gage in some open science practices, such as setting a strict a priori 
sample size number. Relatedly, deployment in education has an in-
trinsic context (measured or not), and combining contexts (e.g., 
classrooms, pupil populations, time periods) with the goal of estab-
lishing generality of findings has the potential to obscure context-
dependent findings. 

Beyond sample size, it is often complicated to share public data in 
communities like EDM, where legal and policy issues (e.g., IRB, 
FERPA, GDPR, COPPA) are nontrivial considerations and can ma-
terially affect research design. Even the nature of which research 
artifacts should be shared is not a straightforward decision and of-
ten involves questions ranging from intellectual property (e.g., 
instruments, source code, codebooks) to protections of the privacy 
of the subjects taking part in the research. Finally, specific behav-
iors considered problematic in other fields – such as p-hacking – 
may be less relevant to EDM given our field’s methods, but may 
have analogues such as using extensive hyperparameter tuning on 
some algorithms but not others. 

In order to make recommendations specifically for the EDM com-
munity’s adoption and utilization of open science practices, it is 
worth reflecting on the authentic research activities EDM scholars 
engage in, and how these activities differ from other fields. For in-
stance, verification of previous research, such as null hypothesis 
testing and direct replication of previous findings with the exact 
same methods, is an important activity in fields such as psychology 
but is a less common goal within EDM. Instead, EDM research 
more often involves the iterative refinement of research, where the 
computational methods, instruments, study design, and data collec-
tion methods are modified to narrow in on the phenomena being 
studied. Even when conceptually replicating previous approaches, 
many of the contributions within EDM aim to generalize to new 
contexts, which may include new populations, tasks, or systems be-
ing used. Exploratory analysis of novel situations is another 
common EDM goal, where the system being deployed to learners 
is unique, or the computational or learning paradigms being used 
are either new or borrowed from related fields and lack baselines, 
targets, or expected results within the new research context. There 
is opportunity to support open science across each of these kinds of 
activities, but wholesale adoption of practices from other fields may 
insufficiently support these kinds of investigations. 

We note that the distinction between each of these activities is fuzzy 
at best, and that any given EDM study may involve multiple types 
of research and make multiple contributions to the field. 

Nonetheless, thinking of EDM research in these terms allows us to 
consider more clearly the implications a given open science prac-
tice may have if adopted by the community. In particular, doing so 
provides a scaffold for reasoning about the potential negative im-
plications of some practices (e.g. pre-registration) when adopted for 
certain tasks (e.g. limiting the ability of researchers to engage in 
exploratory analysis of new situations).  

The considerations seen in other fields are not always easily trans-
ferable; and acting as if they are may do more harm than good for 
open science in our field. In the next section, we consider five spe-
cific open science practices – open data, open code, pre-
registration, multiple comparison analysis, and measurement of 
context – and how these practices might best be integrated into 
these research activities most frequently seen in EDM. 

3. RELEVANT OPEN SCIENCE PRAC-
TICES 
The open science movement has become prominent in a range of 
fields, but different fields have emphasized different values and as-
pects of open science. For instance, there has been particular 
emphasis on pre-registration in order to avoid cherry-picking and 
p-hacking within psychology and classroom studies in education 
[24, 53, 72], whereas reproducibility of code has been seen as par-
ticularly important within computer science [39, 45, 49]. 
Researchers working at the intersection of artificial intelligence and 
education (i.e., individuals who publish at AIED, EDM, LAK) find 
themselves at the nexus of several of these trends, and the question 
of whether we are ultimately educational researchers or computer 
scientists becomes particularly acute, as each of us decides which 
practices are relevant and irrelevant for individual projects. 

In the following section, we discuss some of the open science prac-
tices and their relevance for projects in our communities, with the 
ultimate goal of supporting transparency, replicability, and ulti-
mately producing a community of scholars whose work builds upon 
each other and where scientific errors are easily identified and cor-
rected over time. 

3.1 Open Data 
One of the core types of research within our communities is the 
analysis of large-scale data. Such analysis might include building 
student models [3, 26, 37], distilling insights about learners and 
learning [40, 63], or a range of other purposes. Indeed, the interest 
in new approaches for analyzing large-scale educational data and 
using that data analysis for a wide number of applications is prob-
ably the key reason why the educational data mining and learning 
analytics and knowledge conferences (and eventually, associated 
journals and scientific societies) emerged. 

In the years prior to the development of the educational data mining 
community, only a small number of researchers had access to large-
scale educational data, typically through personal or institutional 
connections to the organizations which stewarded the data. A new 
scientific community was only able to form and grow when access 
to at least some educational data became democratized, and a 
broader range of researchers could obtain access to large-scale data. 
One of the first such sources of large-scale open educational data 
was the Pittsburgh Science of Learning Center Datashop [47], 
which offered interaction log data from a variety of interactive 
learning environments (but most heavily from Cognitive Tutors). 
Another major source was data from individual universities’ online 
courses [18, 34, 62]. Combined, these two data sources accounted 
for over a quarter of the data used in papers published in the first 
two years of the educational data mining conference [9].  



These data sources – and a few other open data sources that fol-
lowed, particularly interaction log data from the ASSISTments 
platform [33] – have continued to be omnipresent in publications 
in our communities. For example, a small set of data sets are uti-
lized in the super-majority of recent papers on knowledge tracing 
[1, 50]. Other types of educational data are often less broadly avail-
able, and educational data remains open to researchers rarely 
enough that an annual competition was created by the International 
Educational Data Mining Society in 2021 to give an award to the 
best publicly available data set. However, despite this attempt by 
the community to publicize excellent new open data sets, the data 
sets that have won the competition in its 3 years are behavioral ac-
tivity data from 2 interactive learning environments and 1 online 
course platform. Although these data sets are themselves novel in 
various ways – Prihar et al. [61], for example, involves data from 
randomized controlled trials conducted within an interactive learn-
ing environment – they still involve the same types of behavioral 
activity data that have generally been available to researchers in our 
communities for some time. 

Not all papers in our communities come from these sources. Large 
numbers of papers involve other forms of data, including discussion 
forum posts [64], multimodal data involving sensors [68, 69], in-
terview data [70], games [23], and teacher videos [17, 46]. Some 
individual papers in these areas of research involve data sets which 
are publicly shared or are otherwise obtainable (e.g., through data 
enclaves). However, the vast majority of such papers involve data 
sets that cannot be inspected or utilized by other researchers. This 
distorts the research that can be conducted within our field and also 
reduces the reproducibility and replicability of research that is con-
ducted. Much of the research in these areas can only be done by 
those who can afford to collect these types of data (or, more accu-
rately, those who have funders willing to pay for them to collect 
these types of data). 

Changing this practice requires attention in advance as it can be 
difficult to share data once collected if the proper groundwork has 
not been laid. Two key challenges need to be addressed: authoriza-
tion to share and deidentification of the data. First of all, the default 
preference for most institutional review boards (IRBs, a legal over-
sight requirement of much research in the United States, with 
analogies such as ethics boards in other countries) generally is to 
prevent open data access. Making data available has potential for 
disclosure, and thus, many IRBs will prefer that data not be shared, 
even in deidentified form (especially if data is from a protected 
class, such as children), and will not approve protocols that propose 
to share data outside of the original research group, either in ad-
vance or after the fact. One key step to getting IRB agreement to 
data sharing is to include provisions for future sharing within the 
original consent form used in a study (if there is such a consent 
form). In cases where no consent form is available for the original 
data collection (such as in learning platforms already being used at 
scale), providing end users (or their guardians) with a clear state-
ment of how data is used for research prior to the student using the 
learning system can also facilitate future data sharing. Second, an 
increasing number of school districts now refuse to agree to student 
data being shared for research, based in some cases on local legis-
lation and in other cases on direct lobbying of school districts [6]. 
While projects have attempted to create standardized IRB agree-
ments and school agreements (e.g., the ASSISTments platform 
[33]), these efforts often fail to scale, as individual IRBs and 
schools often have “house rules” which require negotiations to be 
one-by-one and custom [14]. Still, the effort to achieve these agree-
ments can have dividends for our field, expanding access to data to 

a broader range of researchers and contributors, who often have 
new and useful ideas.  

Clarifying procedures for data deidentification can also make it 
more feasible to share data. Arguably, no data can ever be truly and 
conclusively considered deidentified (see, for instance, [75], which 
demonstrates the reidentification of a class’s clickstream data using 
a newspaper article on a class field trip), but steps can be taken to 
reduce risks of reidentification. These steps vary in difficulty de-
pending on the type of data represented. For example, video data 
can display student and teacher faces [4, 11]; keystroke data can be 
subject to reidentification through characteristic patterns of move-
ment [41]; and within discussion forum and interview data, 
participants occasionally share identifiable information such as 
their employers or cities or names [13]. These limitations can be 
addressed through various human and automated processes. For in-
stance, discussion forum and interview transcript data can be 
exhaustively checked by multiple humans for personally identify-
ing information (PII) [15], and contemporary large language 
models can also be employed to check for PII [13]. AI technologies 
may also be able to obfuscate characteristic movements in sensor 
or keystroke data (perhaps at some loss of information, as per [48]) 
and to resolve faces into facial action units in ways that discard rec-
ognizable features [10, 51]. 

3.2 Open Analyses 
A second core goal and principle is reproducibility and replicability 
of the analyses done on collected data. Within the EDM commu-
nity, analyses are most commonly done through code (e.g. python, 
R), and sharing one’s code is a positive practice which can enable 
scholarly review, promulgate novel techniques throughout the com-
munity, and decrease repetitive work. 

However, simply sharing code isn’t always enough to guarantee re-
producibility – notebooks, for example, though they represent 
everything that was done, also allow researchers to run code out of 
order and in non-systematic ways [59, 73]. In addition, issues like 
code rot/decay, where code no longer runs due to changes in pack-
ages it depends on – [20], and dependency hell, where a package 
that code depends on other packages that have changed [12], can 
make existing code no longer function the same way. As papers 
such as [12] have discussed, these challenges can be hard to sur-
mount if not planned for in advance, leading to many communities 
having very low proportions of code that are actually runnable after 
the fact. In a recent survey of papers published in educational data 
mining, [27] found that only 2.4% of papers studied involved code 
that could be run within a 6-hour time limit. This finding may seem 
overly pessimistic, as many code bases can be coaxed to run with 
further effort and cooperation from the original researchers; how-
ever, these researchers are not always available, able, or willing to 
cooperate with future researchers [22]. 

One partial solution is to use containerized approaches such as 
Docker [12, 35] or Kubernetes [65]. These containerized ap-
proaches contain not just the code itself, but the libraries needed for 
the code to run. Developed carefully, a combination of source code 
and a container can make it so that code can be run in many com-
putational contexts and continue to be used for longer. However, 
these approaches can create significant barriers to entry, as many 
researchers (even with programming backgrounds) find Docker 
and other containerization approaches challenging to use. For ex-
ample, the MORF project [35] has found that the use of Docker 
represents one of the largest barriers to external users, even after 
providing a range of code examples. 



3.3 Pre-registration 
One methodological approach that is heavily used in other fields is 
pre-registration, where the full details of an upcoming study and 
analysis methods are published in full, before any data is collected 
[53]. Pre-registration as a practice is now widespread (if still not 
dominant) in a range of fields, from psychology to medicine to po-
litical science [54, 2, 55]. Pre-registration is cited as a way to 
prevent p-hacking and, when combined with journals that accept 
articles based on pre-registration (generally called registered re-
ports [5, 52, 57]), it creates incentives to commit to an analysis 
approach before the fact, rather than re-running analyses in several 
ways after collecting data. There have, therefore, been recent calls 
to adopt pre-registration in our communities as well [28, 32, 31, 
29]. 

However, pre-registration may not be suitable for all kinds of in-
vestigations being undertaken by the EDM community. On the 
positive side, some research is intended to be confirmatory in na-
ture, closely tracking the classic “scientific method” – an initial 
hypothesis is generated, an experiment is developed to test whether 
that hypothesis is true or false (with some set of findings clearly not 
supporting the hypothesis), the experiment is conducted, data is an-
alyzed, and a conclusion on a small set of pre-defined questions is 
obtained. This is the case which pre-registration was originally de-
signed for [72] and it is a case where pre-registration makes a great 
deal of sense. Considerable research in educational technology – 
more in AIED/IJAIED than in the EDM or LAK communities – is 
of this nature.  

Other research in our community is concerned with generalization, 
and involves studies where a method or intervention is reproduced, 
but with one or more aspects of the sample or the instrument inten-
tionally manipulated [37]. For instance, an intervention that worked 
in one population of learners may be tested with a different group 
of learners, or it may be applied later in the course than was the case 
in the initial study. In the case of a machine learned model, a model 
that performed better than other alternatives in one learning system 
or population may be tested in different learning systems or popu-
lations. For these machine learning cases, preregistration may again 
make sense and be appropriate, but there are some limitations. First, 
it can be hard to verify that pre-registration is taking place prior to 
research rather than after, since no data collection, IRB, or class-
room procedures need to take place after preregistration – it comes 
down to the researcher attesting that the analysis (which generally 
could be done at any time) occurred after pre-registration rather 
than before. Second, generalization studies often raise additional 
questions as to the mechanisms of findings that may not have been 
clear during the planning phase.  

A third, very common (see [8]) category of research in our commu-
nity involves prediction modeling. In some cases, it may be 
appropriate to pre-register such an analysis with some of the same 
caveats as generalization research (e.g., the difficulty of verifying 
whether an analysis was done before or after pre-registration). Do-
ing so may, in fact, save quite a bit of time for a researcher. Take, 
for example, a researcher planning a knowledge tracing analysis 
where their plans for training/test validation or comparison algo-
rithms do not match guidelines or standards in the field (see next 
subsection for a further discussion of this). If they submit their anal-
ysis design for a “registered reports” review at pre-registration, 
these issues may be caught before they do the work. This would  
avoid the situation where the author’s paper is rejected by 
EDM/LAK/AIED, requiring the author to redo their analyses and 
resubmit (as well as the situation where they choose not to redo 
their analyses and simply resubmit as-is to a lower-tier venue). 

However, in other cases, pre-registration of prediction modeling 
may have negative impacts. Take, for example, the case where pre-
diction modeling is focused on engineering an automated detector 
of a complex construct. Within this type of prediction modeling, 
feature engineering is an iterative process (see, for instance, [67]) 
where model developers use their initial results to refine their fea-
ture engineering plan. In this case, preregistration would limit a 
researcher to a set of variables chosen in advance, hampering their 
ability to improve their model to the best degree possible. In a sit-
uation of this nature, it may be better to do model development 
thoroughly and without limitations in a first data set and then col-
lect an entirely new data set and test the model with that data set 
(perhaps pre-registering that final step, but it is not clear that pre-
registering the final step is as important as collecting the new data 
set). 

A fourth, again very common (see [8]) category of research in our 
community involves exploratory research. Many of the methods of 
EDM and LAK – clustering or association rule mining for instance 
– are entirely exploratory, and researchers do not know what they 
will find when they apply these methods. These methods are not 
designed to be used to make claims about generality, do not have 
statistical tests or anything analogous, and are generally considered 
propositive (i.e., generating new ideas or lines of investigation) ra-
ther than dispositive (i.e., selecting between alternate hypotheses). 
As such, pre-registration seems inappropriate for this type of re-
search and may discourage researchers from following up 
interesting preliminary findings with more in-depth exploratory 
analysis.  

Overall, pre-registration is designed to prevent a specific type of 
problematic research – p-hacking and reporting secondary analyses 
as if they were primary. For cases where there is essentially no p to 
hack, and analyses are acknowledged to be exploratory or engineer-
ing-focused (e.g. prediction modeling for detector development), 
pre-registration seems unnecessary and even limiting. 

3.4 Avoiding Comparison Hacking 
A practice that is similar to p-hacking, but perhaps of more imme-
diate concern to the types of secondary data analysis predominant 
within educational data mining and learning analytics, is a practice 
we refer to as comparison hacking. In comparison hacking, a re-
searcher is working on a new algorithm variant, and finds ways to 
make their new algorithm variant perform better than previous al-
gorithm variants. Comparison hacking can take on two forms, 
which are not mutually exclusive. 

First, a researcher can conduct comparisons within a single data set 
and try a range of different variants until they find one that performs 
substantially better than past approaches. This form of comparison 
hacking does not distort the past approaches’ performance, but es-
sentially over-fits at the researcher level rather than the level of an 
individual algorithm, by trying approach after approach until one 
performs better. This approach, which is somewhat analogous to p-
hacking, has also been referred to as “graduate student descent” 
[25]. 

In its second form, a researcher compares a single new algorithm 
variant to other existing algorithm variants, but adjusts the flexibil-
ity of fit of their algorithm or for the testing procedure. For instance, 
a researcher may use existing published hyperparameters for other 
algorithms but tune their own algorithm’s hyperparameters to the 
current data. This practice can even be justified as representing 
prior algorithms fairly by not modifying them in any fashion, but 
in practice doing so gives the new algorithm the scope to better fit 



to the current data set than previous algorithms. Alternatively, a re-
searcher may search for different ways to conduct testing, such as 
different training/test splits or different random seeds, in order to 
find the method that makes their algorithm variant appear to per-
form better than other algorithm variants.  

This second form of comparison hacking appears, at a glance, to be 
common within research on knowledge tracing, particularly recent 
research on deep knowledge tracing (DKT) variants that appear 
outside of the premier publication venues in our community. There 
are a surprising number of papers that introduce new DKT variants 
that are slightly or subtly different than existing variants yet obtain 
much better reported performance, only to drop substantially in per-
formance in the next paper which itself reports much better 
performance for its own new approach, all with subtly different 
evaluation methods. While individual papers bearing these charac-
teristics may be innocent of any ill-intended attempts at comparison 
hacking, the overall pattern of published papers in this area suggests 
that this practice is widespread.  

What can be done? One option is to bring together a group of re-
searchers in the area to agree on fair rules and guidelines for 
comparing algorithms in this area, as well as guidelines for when 
these rules should be applied (for example, comparing multiple new 
variants of an algorithm to each other in order to answer scientific 
questions about a new mechanism could involve different rules 
than comparing a single new algorithm variant to existing best prac-
tice). These guidelines could then be communicated to reviewers as 
an expectation for the practices that future papers should follow. 
This approach would not prevent non-compliant papers from ap-
pearing at other venues, where reviewers may be unaware of the 
guidelines, but could provide a quick way for researchers to iden-
tify which papers are more likely to be free from comparison 
hacking. 

Another approach, already in progress, is for periodic “neutral” 
comparisons to be conducted by a group with no specific ties to any 
algorithm variant, on a range of different data sets. A particularly 
high-quality example of such a comparison is seen in Gervet et al. 
[26]. 

3.5 Representing Context  
A fifth important type of open science practice is fully representing 
the context of a study, not just so that it can be replicated, but also 
so that the findings can be better understood. Doing so enables re-
searchers conducting later research syntheses to be able to study the 
factors that lead to different studies obtaining contradictory results 
(see for instance, findings in [42], that showed that differences in 
affect dynamics patterns reported depended on learners’ national-
ity, age, and research setting). Unfortunately, papers in our 
communities often do a poor job at reporting on the learners who 
are being studied (see [58]) and the learning systems that contribute 
the data being studied. Given the lack of generalization of many 
findings, high quality and comprehensive discussion (or availabil-
ity of information on) of specific studies will help us to understand 
why findings manifest in some cases but not others (again, as in 
[42]). 

Three forms of context may be relevant to provide information on. 
A first relevant area is the learner experience and instrument of 
learning which was studied. Many papers provide a screenshot and 
a one paragraph representation of the task, but this information is 

 

2 https://www.pcla.wiki/index.php/Algorithmic_Bias_in_Education 

often insufficient. Ideally, a study will report extensive details of 
the learning activity, task, or platform; on the pedagogy it utilizes; 
on the content being taught; how it was communicated to students 
and integrated into their regular learning curriculum (where appro-
priate). In cases (such as conference proceedings) where space is 
inadequate, this sort of information can be provided in supple-
mental materials sections or in a repository within GitHub or the 
PSLC DataShop. No standard exists for all of these types of report-
ing, but by providing additional information, the authors make it 
easier for later researchers to compare studies and make hypotheses 
for why findings do not generalize. 

Second, it is relevant to report on the learners being studied. Baker 
and Hawn [7] and the Penn Center for Learning Analytics wiki2 
report on the range of factors for which algorithmic bias has been 
reported in educational technology, including race, ethnicity, gen-
der, socioeconomic status, national origin, native language and 
dialect, urbanicity, migrant and military-connected status, type of 
school (public or private), and parental educational background. 
Algorithmic bias serves as an indicator of differences in how stu-
dents interact with the learning experience, or other differences in 
the meaning of variables, and as such, these known factors (as well 
as other factors such as religion or the experience of being a minor-
ity in one’s educational setting) are likely to influence the results of 
studies in this space and as such may be appropriate to report to 
understand the differences between studies. 

Finally, it is relevant to report on contextual factors that represent 
an interaction between the learner themselves and the content they 
experience. For instance, past aspects of a learner’s educational 
background and socioeconomic status, as well as the region where 
they grew up, may lead to differences in prior knowledge of the 
content being experienced in the learning system, differences in 
student interest in the topic being studied, or different levels of ini-
tial familiarity and comfort with the pedagogy being used. We do 
not as a field have a full representation of the types of variables of 
this nature which are relevant for our field’s work, but reporting on 
as many of these as is practically feasible is likely to enhance later 
attempts to synthesize across findings. 

4. OPEN SCIENCE AND THE FUTURE OF 
EDM 
As can be seen, there are a range of open science practices that 
could be adopted in EDM. Within this paper, we have discussed 
some of the most common and/or relevant practices. It is important 
to note that the activities outlined in the prior sections of this paper 
are not intended to be restrictive or exhaustive. Instead, this work 
aims to be illustrative of both the benefits (and risks) of adopting 
open science practices in order to encourage reflection among all 
of us about how we can implement open science in a responsible 
way that makes sense for our field.  

One key theme in our discussion is that EDM research and the work 
of our community diverges from the traditional research norms 
seen in Psychology and similar disciplines. While Psychology’s 
replication crisis has been a catalyst to the rise of open science prac-
tices (and subsequent proposed solutions), EDM should not simply 
mimic these approaches. There is a potential danger to trying to fit 
our work into the mold of another discipline; doing so may hinder 
much of our research in undesirable ways. As discussed above, pre-
registration is a clear example of a practice that makes great sense 
in many contexts, but may be inappropriate for many types of EDM 



research. Learning from other disciplines is valuable, but it is cru-
cial for EDM to tailor its open science goals and practices to our 
field’s particular needs and challenges, such as coping with strict 
data agreements and addressing algorithmic biases that negatively 
impact protected groups. We recommend that the community (per-
haps with support from a collective of related societies) work to 
articulate our open science goals and best practices formally – or at 
least more formally than what exists currently. Forging a clear, 
field-specific understanding of what open science means and 
should mean to us will help us avoid the pitfall of measuring our 
success by the standards of other fields.  

Once we have achieved this understanding, we then must embed 
the appropriate practices, expectations, and norms in the commu-
nity. The conference and journal proceedings are artifacts of the 
community, and thus, these are the most impactful places we can 
push the field towards appropriate practices. Pulling from our own 
field and our scientific knowledge of self-regulated learning, if in-
dividuals must reflect on their practice throughout the process, they 
will more critically examine the steps they will engage in. One 
method of doing this is to go beyond current statements in calls for 
papers and badges to require authors to complete an open science 
checklist – similar to other fields’ reproducibility checklists [60]- 
at the time of paper submission. Even if reviewers were to pay min-
imal attention to those checklists, in the theme of SRL, this 
checklist could still have a positive effect on author practices, as 
reflection alone is powerful for conceptual change and skill devel-
opment. 

As we publish (and review) in these academic spaces, we have a 
responsibility to keep open science and replicability front and cen-
ter. It is imperative that our work provide comprehensive 
retrospective reports accurately detailing our full processes – both 
what was successful and what was unsuccessful. Sharing a full ac-
count of work performed will aid interpretation and building on 
past work. It is critical for these descriptions to be thorough; publi-
cations or supplementary materials must include sufficient detail to 
enable the exact replication of our work, as well as reproducible 
code. While excessive technical details can sometimes disrupt the 
flow and coherence of a manuscript, this challenge can be effec-
tively addressed by including supplementary 
documents/appendices or providing digital repositories and code 
for precise replication instructions. Even in terms of the process of 
open science itself, we have a responsibility to be more thorough 
and share the challenges we have faced in implementing these prac-
tices; it is only through understanding the challenges of the field 
that we can create a robust path forward.  

In terms of supporting reproducibility and reuse of code, Docker 
(or Kubernetes) containers present considerable utility for promot-
ing long-term runability. We propose that the field should move 
towards sharing Docker containers as a standard rather than sharing 
code or repositories in isolation. Docker containers can comple-
ment these existing code sharing methodologies. However, creating 
Docker containers does have a “barrier for entry”. As mentioned 
above, there is some technical skill required to create (and use) such 
containers. As a community, we must ensure that if we do decide 
that Docker containers present a best practice for the field, we also 
provide adequate support so that this practice does not become ex-
clusionary to some researchers.  

When it comes to data, Open Data is a desirable goal for our field, 
but it is necessary to acknowledge the numerous constraints upon 
how data is shared. Data sharing needs to be considered before data 
is even collected when signing data agreements in order to achieve 
open data. Privacy-preserving data enclaves (such as MORF [35]) 

may aid us in making data available for reproduction and reuse, 
without directly sharing. It is also important to note that changes in 
legislation and policies surrounding data are likely to impact data 
sharing and data sharing practices (see discussion in [36]); as regu-
lations change, the challenges for researchers and practitioners in 
our field are likely to change as well. 

5. CONCLUSION 
In conclusion, open science is a worthwhile endeavor for almost all 
data-driven scientific fields. EDM/AIED/LAK are no different. In 
this paper, we argue that we need to reflect on our open science 
practices to ensure that our community decides on standard and ex-
pected practices thoughtfully and appropriately, so that the 
practices that are recommended, encouraged, and (hopefully) sys-
tematically adopted reflect the nuances of our field. Such an 
approach should be bottom-up, with community members sharing 
their challenges and contributing to the definition of our commu-
nity goals to improve open science.  But as we move towards 
consensus, building these practices into conference and journal re-
viewing processes will help us to build a field where research is 
open, transparent, robust, and valid. 

6. ACKNOWLEDGMENTS 
We would like to thank Chelsea Porter for assistance in document 
preparation and editing. 

7. REFERENCES 
[1] Abdelrahman, G., Wang, Q., & Nunes, B. (2023). 

Knowledge Tracing: A Survey. ACM Computing Surveys, 
55(11), 1–37. https://doi.org/10.1145/3569576  

[2] Al-Durra, M., Nolan, R. P., Seto, E., & Cafazzo, J. A. 
(2020). Prospective registration and reporting of trial number 
in randomised clinical trials: Global cross sectional study of 
the adoption of ICMJE and Declaration of Helsinki recom-
mendations. BMJ, m982. https://doi.org/10.1136/bmj.m982  

[3] Almoubayyed, H., Fancsali, S., & Ritter, S. (2023). General-
izing Predictive Models of Reading Ability in Adaptive 
Mathematics Software. Proceedings of the 16th International 
Conference on Educational Data Mining, 207–216. 
https://doi.org/10.5281/ZENODO.8115782  

[4] Andrejevic, M., & Selwyn, N. (2020). Facial recognition 
technology in schools: Critical questions and concerns. 
Learning, Media and Technology, 45(2), 115–128. 
https://doi.org/10.1080/17439884.2020.1686014  

[5] APS Registered Reports. (n.d.). Association for Psychologi-
cal Science -– APS. Retrieved January 5, 2024, from 
https://www.psychologicalscience.org/publications/replica-
tion  

[6] Baker, R.S. (2023) The Current Trade-off Between Privacy 
and Equity in Educational Technology. In G. Brown III, C. 
Makridis (Eds.) The Economics of Equity in K-12 Educa-
tion: Necessary Programming, Policy, and Systemic Changes 
to Improve the Economic Life Chances of American Stu-
dents, pp. 123-138. Lanham, MD: Rowman & Littlefield. 

[7] Baker, R. S., & Hawn, A. (2021). Algorithmic bias in educa-
tion. International Journal of Artificial Intelligence in 
Education, 32, 1-41. 

[8] Baker, R.S.J.d., Inventado, P.S. (2014) Educational Data 
Mining and Learning Analytics. In J.A. Larusson, B. White 



(Eds.) Learning Analytics: From Research to Practice. Ber-
lin, Germany: Springer  

[9] Baker, R. S., & Yacef, K. (2009). The state of educational 
data mining in 2009: A review and future visions. Journal of 
educational data mining, 1(1), 3-17. 

[10] Baltrusaitis, T., Zadeh, A., Lim, Y. C., & Morency, L.-P. 
(2018). OpenFace 2.0: Facial Behavior Analysis Toolkit. 
2018 13th IEEE International Conference on Automatic 
Face & Gesture Recognition (FG 2018), 59–66. 
https://doi.org/10.1109/FG.2018.00019  

[11] Banzon, A. M., Beever, J., & Taub, M. (2023). Facial Ex-
pression Recognition in Classrooms: Ethical Considerations 
and Proposed Guidelines for Affect Detection in Educational 
Settings. IEEE Transactions on Affective Computing, 1–13. 
https://doi.org/10.1109/TAFFC.2023.3275624  

[12] Boettiger, C. (2015). An introduction to Docker for repro-
ducible research. ACM SIGOPS Operating Systems Review, 
49(1), 71–79. https://doi.org/10.1145/2723872.2723882  

[13] Bosch, N., Crues, R. W., & Shaik, N. (2020). “Hello, [RE-
DACTED]”: Protecting Student Privacy in Analyses of 
Online Discussion Forums. Proceedings of The 13th Interna-
tional Conference on Educational Data Mining (EDM 2020), 
39–49. 

[14] Briggs, R. (2022, March). The Abject Failure of IRBs. The 
Chronicle of Higher Education. Retrieved February 5, 2024, 
from https://www.chronicle.com/article/the-abject-failure-of-
irbs  

[15] Campbell, R., Javorka, M., Engleton, J., Fishwick, K., Greg-
ory, K., & Goodman-Williams, R. (2023). Open-Science 
Guidance for Qualitative Research: An Empirically Vali-
dated Approach for De-Identifying Sensitive Narrative Data. 
Advances in Methods and Practices in Psychological Sci-
ence, 6(4), 25152459231205832. 
https://doi.org/10.1177/25152459231205832  

[16] Class, B., de Bruyne, M., Wuillemin, C., Donzé, D., & Clai-
vaz, J.-B. (2021). Towards Open Science for the Qualitative 
Researcher: From a Positivist to an Open Interpretation. In-
ternational Journal of Qualitative Methods, 20, 
16094069211034641. 
https://doi.org/10.1177/16094069211034641  

[17] Colliot, T., & Jamet, É. (2018). Understanding the effects of 
a teacher video on learning from a multimedia document: An 
eye-tracking study. Educational Technology Research and 
Development, 66(6), 1415–1433. 
https://doi.org/10.1007/s11423-018-9594-x  

[18] Dekker, G. W., Pechenizkiy, M., & Vleeshouwers, J. M. 
(2009). Predicting students drop out: A case study. In T. 
Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Pro-
ceedings of the 2nd International Conference on Educational 
Data Mining, EDM 2009, July 1-3, 2009. Cordoba, Spain 
(pp. 41–50). 

[19] Echtler, F., & Häußler, M. (2018). Open Source, Open Sci-
ence, and the Replication Crisis in HCI. Extended Abstracts 
of the 2018 CHI Conference on Human Factors in Compu-
ting Systems, 1–8. https://doi.org/10.1145/3170427.3188395  

[20] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & 
Mockus, A. (2001). Does code decay? Assessing the evi-
dence from change management data. IEEE Transactions on 

Software Engineering, 27(1), 1–12. 
https://doi.org/10.1109/32.895984  

[21] Fyfe, E. R., de Leeuw, J. R., Carvalho, P. F., Goldstone, R. 
L., Sherman, J., Admiraal, D., … & Motz, B. A. (2021). 
ManyClasses 1: Assessing the generalizable effect of imme-
diate feedback versus delayed feedback across many college 
classes. Advances in Methods and Practices in Psychological 
Science, 4(3), 25152459211027575. 

[22] Gardner, J., Brooks, C., Andres, J. M., & Baker, R. (2018). 
Replicating MOOC predictive models at scale. Proceedings 
of the Fifth Annual ACM Conference on Learning at Scale, 
1–10. https://doi.org/10.1145/3231644.3231656  

[23] Geden, M., Emerson, A., Rowe, J., Azevedo, R., & Lester, J. 
(2020). Predictive Student Modeling in Educational Games 
with Multi-Task Learning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(01), 654–661. 
https://doi.org/10.1609/aaai.v34i01.5406  

[24] Gehlbach, H., & Robinson, C. D. (2018). Mitigating Illusory 
Results through Preregistration in Education. Journal of Re-
search on Educational Effectiveness, 11(2), 296–315. 
https://doi.org/10.1080/19345747.2017.1387950  

[25] Gencoglu, O., van Gils, M., Guldogan, E., Morikawa, C., 
Süzen, M., Gruber, M., Leinonen, J., & Huttunen, H. (2019). 
HARK Side of Deep Learning—From Grad Student Descent 
to Automated Machine Learning. 
https://doi.org/10.48550/ARXIV.1904.07633  

[26] Gervet, T., Koedinger, K., Schneider, J., & Mitchell, T. 
(2020). When is Deep Learning the Best Approach to 
Knowledge Tracing? Journal of Educational Data Mining, 
12(3), 31–54. https://doi.org/10.5281/ZENODO.4143614  

[27] Haim, A., Gyurcsan, R., Baxter, C., Shaw, S. T., & Heffer-
nan, N. T. (2023a). How to Open Science: Debugging 
Reproducibility within the Educational Data Mining Confer-
ence. Proceedings of the 16th International Conference on 
Educational Data Mining (EDM ’23), 114–124. 
https://doi.org/10.5281/ZENODO.8115651  

[28] Haim, A., Heffernan, N., & Shaw, S. T. (2022). How to Open 
Science: Promoting Principles and Reproducibility Practices 
within the Learning Analytics Community. 
https://doi.org/10.17605/OSF.IO/KYXBA  

[29] Haim, A., Shaw, S., & Heffernan, N. (2023a). How to Open 
Science: Promoting Principles and Reproducibility Practices 
within the Educational Data Mining Community. 
https://doi.org/10.5281/ZENODO.8115776  

[30] Haim, A., Shaw, S. T., & Heffernan, N. (2023b). How to 
Open Science: A Reproducibility Author Survey of the Artifi-
cial Intelligence in Education Conference. 
https://edarxiv.org/xkmfw/download?format=pdf  

[31] Haim, A., Shaw, S. T., & Heffernan, N. T. (2023c). How to 
Open Science: Promoting Principles and Reproducibility 
Practices Within the Artificial Intelligence in Education 
Community. In N. Wang, G. Rebolledo-Mendez, V. Dimi-
trova, N. Matsuda, & O. C. Santos (Eds.), Artificial 
Intelligence in Education. Posters and Late Breaking Re-
sults, Workshops and Tutorials, Industry and Innovation 
Tracks, Practitioners, Doctoral Consortium and Blue Sky 
(Vol. 1831, pp. 74–78). Springer Nature Switzerland. 
https://doi.org/10.1007/978-3-031-36336-8_11  



[32] Haim, A., Shaw, S. T., & Heffernan, N. T. (2023d). How to 
Open Science: Promoting Principles and Reproducibility 
Practices within the Learning @ Scale Community. Proceed-
ings of the Tenth ACM Conference on Learning @ Scale, 
248–250. https://doi.org/10.1145/3573051.3593398  

[33] Heffernan, N. T., & Heffernan, C. L. (2014). The ASSIST-
ments Ecosystem: Building a Platform that Brings Scientists 
and Teachers Together for Minimally Invasive Research on 
Human Learning and Teaching. International Journal of Ar-
tificial Intelligence in Education, 24(4), 470–497. 
https://doi.org/10.1007/s40593-014-0024-x  

[34] Hershkovitz, A., & Nachmias, R. (2009). Consistency of Stu-
dents’ Pace in Online Learning. In Proceedings of the 2nd 
International Conference on Educational Data Mining (pp. 
71–80). 

[35] Hutt, S., Baker, R. S., Ashenafi, M. M., Andres‐Bray, J. M., 
& Brooks, C. (2022). Controlled outputs, full data: A pri-
vacy‐protecting infrastructure for MOOC data. British 
Journal of Educational Technology, 53(4), 756–775. 
https://doi.org/10.1111/bjet.13231  

[36] Hutt, S., Das, S., & Baker, R. S. (2023). The Right to Be For-
gotten and Educational Data Mining: Challenges and Paths 
Forward. Proceedings of the 16th International Conference 
on Educational Data Mining, EDM 2023. 
https://eric.ed.gov/?id=ED630886  

[37] Hutt, S., Grafsgaard, J. F., & D’Mello, S. K. (2019). Time to 
Scale: Generalizable Affect Detection for Tens of Thousands 
of Students across An Entire School Year. Proceedings of the 
2019 CHI Conference on Human Factors in Computing Sys-
tems, 1–14. https://doi.org/10.1145/3290605.3300726  

[38] Ioannidis, J. P. (2005). Why most published research find-
ings are false. PloS Medicine, 2(8), e124. 

[39] Ivie, P., & Thain, D. (2019). Reproducibility in Scientific 
Computing. ACM Computing Surveys, 51(3), 1–36. 
https://doi.org/10.1145/3186266  

[40] Joksimović, S., Poquet, O., Kovanović, V., Dowell, N., 
Mills, C., Gašević, D., Dawson, S., Graesser, A. C., & 
Brooks, C. (2018). How Do We Model Learning at Scale? A 
Systematic Review of Research on MOOCs. Review of Edu-
cational Research, 88(1), 43–86. 
https://doi.org/10.3102/0034654317740335  

[41] Karnan, M., Akila, M., & Krishnaraj, N. (2011). Biometric 
personal authentication using keystroke dynamics: A review. 
Applied Soft Computing, 11(2), 1565–1573. 
https://doi.org/10.1016/j.asoc.2010.08.003  

[42] Karumbaiah, S., Baker, R.S., Ocumpaugh, J., Andres, 
J.M.A.L. (2023) A Re-Analysis and Synthesis of Data on Af-
fect Dynamics in Learning. IEEE Transactions on Affective 
Computing, 14(2), 1696-1710. 

[43] Kerr, N. L. (1998). HARKing: Hypothesizing After the Re-
sults are Known. Personality and Social Psychology Review, 
2(3), 196–217. 
https://doi.org/10.1207/s15327957pspr0203_4  

[44] Kitto, K., Manly, C. A., Ferguson, R., & Poquet, O. (2023, 
March). Towards more replicable content analysis for learn-
ing analytics. In LAK23: 13th International Learning 
Analytics and Knowledge Conference (pp. 303-314). 

[45] Kitzes, J., Turek, D., & Deniz, F. (Eds.). (2018). The practice 
of reproducible research: Case studies and lessons from the 
data-intensive sciences. University of California Press. 

[46] Kizilcec, R. F., Bailenson, J. N., & Gomez, C. J. (2015). The 
instructor’s face in video instruction: Evidence from two 
large-scale field studies. Journal of Educational Psychology, 
107(3), 724–739. https://doi.org/10.1037/edu0000013  

[47] Koedinger, K. R., Baker, R. S., Cunningham, K., Skogsholm, 
A., Leber, B., & Stamper, J. (2010). A data repository for the 
EDM community: The PSLC DataShop. Handbook of Edu-
cational Data Mining, 43, 43-56. 

[48] Leinonen, J., Ihantola, P., & Hellas, A. (2017). Preventing 
Keystroke Based Identification in Open Data Sets. Proceed-
ings of the Fourth (2017) ACM Conference on Learning @ 
Scale, 101–109. https://doi.org/10.1145/3051457.3051458  

[49] LeVeque, R. J., Mitchell, I. M., & Stodden, V. (2012). Re-
producible research for scientific computing: Tools and 
strategies for changing the culture. Computing in Science & 
Engineering, 14(4), 13–17. 
https://doi.org/10.1109/MCSE.2012.38  

[50] Liu, Q., Shen, S., Huang, Z., Chen, E., & Zheng, Y. (2021). 
A Survey of Knowledge Tracing. 
https://doi.org/10.48550/ARXIV.2105.15106  

[51] Mase, J. M., Leesakul, N., Figueredo, G. P., & Torres, M. T. 
(2023). Facial identity protection using deep learning tech-
nologies: An application in affective computing. AI and 
Ethics, 3(3), 937–946. https://doi.org/10.1007/s43681-022-
00215-y  

[52] Nature Human Behaviour Registered Reports. (n.d.). Re-
trieved January 5, 2024, from 
https://www.nature.com/nathumbehav/submission-guide-
lines/registeredreports  

[53] Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. 
T. (2018). The preregistration revolution. Proceedings of the 
National Academy of Sciences, 115(11), 2600–2606. 
https://doi.org/10.1073/pnas.1708274114  

[54] Nosek, B. A., & Lindsay, D. S. (2018). Preregistration Be-
coming the Norm in Psychological Science. APS Observer. 
https://www.psychologicalscience.org/observer/preregistra-
tion-becoming-the-norm-in-psychological-science  

[55] Nyhan, B. (2015). Increasing the Credibility of Political Sci-
ence Research: A Proposal for Journal Reforms. PS: 
Political Science & Politics, 48(S1), 78–83. 
https://doi.org/10.1017/S1049096515000463  

[56] Open Science Collaboration. (2015). Estimating the repro-
ducibility of psychological science. Science, 349(6251), 
aac4716. https://doi.org/10.1126/science.aac4716  

[57] Open Science Registered Reports. (n.d.). Retrieved January 
5, 2024, from https://www.cos.io/initiatives/registered-re-
ports  

[58] Paquette, L., Ocumpaugh, J., Li, Z., Andres, J.M.A.L., 
Baker, R.S. (2020) Who's Learning? Using Demographics in 
EDM Research. Journal of Educational Data Mining, 12(3), 
1-30. 

[59] Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. 
(2019). A Large-Scale Study About Quality and Reproduci-
bility of Jupyter Notebooks. 2019 IEEE/ACM 16th 



International Conference on Mining Software Repositories 
(MSR), 507–517. https://doi.org/10.1109/MSR.2019.00077  

[60] Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., 
Beygelzimer, A., d’Alché-Buc, F., Fox, E., & Larochelle, H. 
(2021). Improving Reproducibility in Machine Learning Re-
search (a Report from the NeurIPS 2019 Reproducibility 
Program). The Journal of Machine Learning Research, 
22(1). 

[61] Prihar, E., Syed, M., Ostrow, K., Shaw, S., Sales, A., & Hef-
fernan, N. (2022). Exploring common trends in online 
educational experiments. In Proceedings of the 15th Interna-
tional Conference on Educational Data Mining. 

[62] Romero, C., Ventura, S., Espejo, P. G., & Hervás, C. (2008). 
Data Mining Algorithms to Classify Students. In R. S. J. de 
Baker, T. Barnes, & J. E. Beck (Eds.), Educational Data 
Mining 2008, The 1st International Conference on Educa-
tional Data Mining, Montreal, Québec, Canada, June 20-21, 
2008. Proceedings (pp. 8–17). www.educationaldatamin-
ing.org.  

[63] Sabourin, J. L., & Lester, J. C. (2014). Affect and Engage-
ment in Game-Based Learning Environments. IEEE 
Transactions on Affective Computing, 5(1), 45–56. 
https://doi.org/10.1109/T-AFFC.2013.27  

[64] Sha, L., Raković, M., Lin, J., Guan, Q., Whitelock-Wain-
wright, A., Gašević, D., & Chen, G. (2023). Is the Latest the 
Greatest? A Comparative Study of Automatic Approaches 
for Classifying Educational Forum Posts. IEEE Transactions 
on Learning Technologies, 16(3), 339–352. 
https://doi.org/10.1109/TLT.2022.3227013  

[65] Shah, J., & Dubaria, D. (2019). Building Modern Clouds: 
Using Docker, Kubernetes & Google Cloud Platform. 2019 
IEEE 9th Annual Computing and Communication Workshop 
and Conference (CCWC), 0184–0189. 
https://doi.org/10.1109/CCWC.2019.8666479  

[66] Shrout, P. E., & Rodgers, J. L. (2018). Psychology, Science, 
and Knowledge Construction: Broadening Perspectives from 
the Replication Crisis. Annual Review of Psychology, 69(1), 
487–510. https://doi.org/10.1146/annurev-psych-122216-
011845  

[67] Slater, S., Baker, R.S., Wang, Y. (2020) Iterative Feature En-
gineering Through Text Replays of Model Errors. 
Proceedings of the 13th International Conference on Educa-
tional Data Mining, 503-508. 

[68] Srivastava, N., Nawaz, S., Lodge, J. M., Velloso, E., Erfani, 
S., & Bailey, J. (2020). Exploring the usage of thermal 

imaging for understanding video lecture designs and stu-
dents’ experiences. Proceedings of the Tenth International 
Conference on Learning Analytics & Knowledge, 250–259. 
https://doi.org/10.1145/3375462.3375514  

[69] Srivastava, N., Nawaz, S., Newn, J., Lodge, J., Velloso, E., 
M. Erfani, S., Gasevic, D., & Bailey, J. (2021). Are you with 
me? Measurement of Learners’ Video-Watching Attention 
with Eye Tracking. LAK21: 11th International Learning An-
alytics and Knowledge Conference, 88–98. 
https://doi.org/10.1145/3448139.3448148  

[70] Tsai, Y.-S., Singh, S., Rakovic, M., Lim, L.-A., Roy-
choudhury, A., & Gasevic, D. (2022). Charting Design 
Needs and Strategic Approaches for Academic Analytics 
Systems through Co-Design. LAK22: 12th International 
Learning Analytics and Knowledge Conference, 381–391. 
https://doi.org/10.1145/3506860.3506939  

[71] Wacharamanotham, C., Eisenring, L., Haroz, S., & Echtler, 
F. (2020). Transparency of CHI Research Artifacts: Results 
of a Self-Reported Survey. Proceedings of the 2020 CHI 
Conference on Human Factors in Computing Systems, 1–14. 
https://doi.org/10.1145/3313831.3376448  

[72] Wagenmakers, E.-J., Wetzels, R., Borsboom, D., Van Der 
Maas, H. L. J., & Kievit, R. A. (2012). An Agenda for Purely 
Confirmatory Research. Perspectives on Psychological Sci-
ence, 7(6), 632–638. 
https://doi.org/10.1177/1745691612463078  

[73] Wang, J., Li, L., & Zeller, A. (2020). Better code, better 
sharing: On the need of analyzing Jupyter notebooks. Pro-
ceedings of the ACM/IEEE 42nd International Conference 
on Software Engineering: New Ideas and Emerging Results, 
53–56. https://doi.org/10.1145/3377816.3381724  

[74] Wilson, M. L. L., Resnick, P., Coyle, D., & Chi, E. H. 
(2013). RepliCHI: The workshop. CHI ’13 Extended Ab-
stracts on Human Factors in Computing Systems, 3159–
3162. https://doi.org/10.1145/2468356.2479636 

[75] Yacobson, E., Fuhrman, O., Hershkovitz, S., & Alexandron, 
G. (2021). De-identification is Insufficient to Protect Student 
Privacy, or – What Can a Field Trip Reveal? Journal of 
Learning Analytics, 8(2), 83–92. 
https://doi.org/10.18608/jla.2021.7353  

[76] Kitto, K., Manly, C.A., Ferguson, R., &  Poquet, O.   (2023) 
Towards more replicable content analysis for learning analyt-
ics. Proceedings of the 13th Annual Learning Analytics and 
Knowledge Conference, 303-314.

 


