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ABSTRACT
This study evaluates the effectiveness of Large Language
Models in deductive coding within educational qualitative
research, compared to human coders. Employing a mixed-
methods approach, LLMs demonstrated an 8.5% higher over-
all accuracy, with significant improvements in nuanced cat-
egory identification through advanced prompt engineering.
The study advocates a hybrid approach of AI and human
cognitive skills for efficient educational data analysis.
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1. INTRODUCTION
Qualitative education research values the nuanced stories
that emerge from the lived experiences of participants, of-
ten analyzed through the labor-intensive process of manual
coding. In this traditional setup, coders employ their cog-
nitive skills to navigate complex data interpretations, typi-
cally utilizing deductive content analysis methods, such as
deductive coding. Deductive coding involves applying a pre-
defined set of codes to the data, based on existing theories
or the researcher’s prior knowledge and experiences [2, 9,
12, 23, 17, 22]. This method contrasts with inductive ap-
proaches where categories emerge from the data itself. De-
spite the meticulous attention to detail that human coders
bring to the analysis, their work is fraught with challenges
such as maintaining coding integrity, managing subjectivity,
and navigating logistical constraints—issues that are further
compounded by ambiguities and the incomplete nature of
the textual data [17, 20, 14].

The emergence of Large Language Models (LLMs) intro-
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duces a promising new methodology that could potentially
enhance the depth and precision of data interpretation in
qualitative research. These advanced models, equipped with
capabilities for In-context Learning (ICL), Chain-of-Thought
(COT), and Assertion Enhanced Few-Shot Learning (AEFL),
offer innovative approaches to generate contextually informed,
nuanced responses [4, 26, 24]. However, the application of
these technologies in handling the intricate and ambiguous
texts typical of educational research, particularly through
the lens of deductive content analysis, remains largely un-
explored.

This study hypothesizes that LLMs can achieve accuracy
and reliability in deductive coding comparable to or exceed-
ing that of human coders, potentially improving efficiency
and scalability in data analysis [15]. By exploring the effec-
tiveness of advanced prompt engineering, this paper aims to
investigate how LLMs perform in the context of deductive
coding and assess their potential to transform qualitative
research methodologies. We address critical research ques-
tions concerning their precision, accuracy, and the patterns
of misclassification compared to traditional human coding,
underlining the need for a collaborative approach that har-
nesses both human insight and machine efficiency.

2. RELATED WORK
Educational researchers have leveraged traditional AI tools,
incorporating natural language processing (NLP) and ma-
chine learning techniques, to support deductive content anal-
ysis in qualitative research. These tools traditionally utilized
specific dictionary approaches or coded documents based on
pre-existing examples [18, 13, 21]. Specifically, Inquire, de-
veloped by Paredes et al. [18], utilized NLP advancements
like word2vec to analyze large textual datasets, thereby en-
hancing the identification of semantically related passages
and facilitating data exploration. This development offered
a scalable, cost-efficient alternative to manual analysis, prov-
ing beneficial across multiple fields such as psychology, pri-
vacy, and well-being. However, the Inquire system faced
challenges related to data specificity and reliance on out-
dated datasets, which underscored the critical importance
of dataset relevance. In contrast, recent LLMs studies have
shown capability in qualitative deductive coding, synthesiz-
ing diverse information to identify underlying themes with-
out direct modeling, thus reducing selection bias and en-
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hancing research validity [1, 3].

The shift towards LLMs has been marked by the introduc-
tion of advanced techniques such as few-shot learning and
COT prompting, which have significantly enhanced the pre-
dictive accuracy and efficiency of these models [4, 26, 27].
Few-shot learning allows LLMs to utilize a minimal set of
examples to achieve agreement in coding complex syntactic
structures and analyzing the intricacies of question complex-
ity. The COT method, detailed by Wei et al. [26], involves a
structured reasoning process in natural language that guides
the model through logical steps towards problem resolution.
This technique has proven effective, with LLMs, such as
GPT-3, demonstrating a marked reduction in coding time
for extensive texts compared to human coders, showcasing
its efficiency in handling large datasets [6]. Additionally, the
Assertion Enhanced Few-Shot Learning (AEFL) technique
introduced by Shariar et al. [24] integrates domain-specific
assertions within prompts, enhancing the accuracy of LLMs
and minimizing error rates.These advancements collectively
signify a progression in LLM capabilities, decisively surpass-
ing traditional machine learning approaches in specific tasks,
and heralding a new era of efficiency and effectiveness in
qualitative data analysis, particularly in the nuanced tasks
of qualitative coding [6, 16].

3. METHODOLOGY
This exploratory study examines a subset of data from high
school students engaged in an English Language Arts cur-
riculum that is centered around artificial intelligence [5].
Over three weeks, 28 de-identified students from diverse
racial and grade backgrounds engaged in daily 45-minute
sessions that spanned eight modules, with particular atten-
tion to ”Sentiment Analysis,” ”Features and Models,” and
”All Words.”The primary analysis entailed coding 840 open-
ended student responses using an adapted Cognitive engage-
ment framework called ICAP [7], which classifies cognitive
engagement into Passive (basic recall, N=266), Active (inte-
gration of new information, N=241), and Constructive (cre-
ation of new ideas, N=32) categories. The framework has
been previously validated in various educational studies for
enhancing cognitive engagement through active learning [25,
19]. To ensure robustness the researchers codebook was re-
fined through coding sessions and a validation process where
researchers independently applied the guidelines, achieving
an inter-rater reliability (IRR) of Cohen’s K = .84 [8].

The participants included two educational graduate student
researchers proficient in Bloom’s Taxonomy and cognitive
engagement. In addition, GPT-4 was utilized via the Colab
Python OpenAI API, setting the temperature to 0 which
allowed for the most probable response to maintain uni-
formity and predictability in precision-critical applications.
[25]. The LLM’s performance on the same subset of pre-
processed data, which was carefully curated to maintain the
integrity of student responses, provided a basis for compar-
ing the coding accuracy of human coders versus advanced
AI technology.

3.1 Experiments
The human coders and LLMs conducted a series of three
experiments, each designed to progressively build upon the
previous one, involving a total of 100 diverse random sam-

ples. The first experiment included 25 samples categorized
into Passive (10), Active (14), and Constructive (1) en-
gagement levels, utilizing a streamlined COT (Completion-
Oriented Task) prompt. This prompt was specially crafted
with three steps, incorporating domain-specific details to
clarify the engagement levels, and required LLMs to explain
their reasoning for each classification.

The second experiment also involved 25 samples and revis-
ited the COT prompt, this time enhanced with Few-Shot
learning examples in a tripartite format of Question, Re-
sponse, and Label, offering four instances per cognitive en-
gagement category. The third experiment expanded to 50
samples, merging elements from the first two experiments
and integrating the reasoning component from AEFL [24].
This included a ”Reasoning” step in the Few-Shot format
to better align with the reasoning processes defined in the
original codebook. Further details on these prompts and the
structured approach used in the experiments can be found
in the supplemental materials link.

3.2 Evaluation Process
To evaluate the coding performance of both human coders
and LLMs, we adopted a mixed-methods approach combin-
ing comparative, class-based, and thematic analyses [9]. We
conducted quantitative assessments, including precision, re-
call, and F1 scores, to compare coding accuracy between hu-
mans and LLMs in a multiclass context, where these metrics
gauge a model’s predictive accuracy, completeness, and bal-
anced performance [10]. Additionally, ANOVA statistical
analyses were employed to detect any significant differences
in the results of the experiments [11].

4. RESULTS AND DISCUSSION
4.1 RQ1. How do the F1 score, precision, and

accuracy of deductive coding decisions made
by LLMs compare to those made by hu-
man coders?

Table 1: Performance Measures (a) Experiment 1, (b) Exper-
iment 2, (c) Experiment 3

(a) Experiment 1
Human Coder 1 Human Coder 2 LLM-GPT4

Type P R F1 P R F1 P R F1
Passive .10 .60 .75 .10 .30 .46 .83 .50 .60
Active .69 .62 .66 .50 .57 .53 .68 .93 .79
Constructive 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Experiment 2
Human Coder 1 Human Coder 2 LLM-GPT4

Type P R F1 P R F1 P R F1
Passive .80 .80 .80 .78 .70 .74 .77 .10 .87
Active .87 .87 .87 .75 .60 .67 .10 .80 .89
Constructive 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(c) Experiment 3
Human Coder 1 Human Coder 2 LLM-GPT4

Type P R F1 P R F1 P R F1
Passive .59 .10 .74 .71 .85 .77 .77 .79 .77
Active .77 .40 .53 .74 .61 .71 .67 .64 .65
Constructive .33 .20 .25 .33 .20 .25 .29 .40 .33

Initial observations highlighted a common challenge in Con-
structive engagement, where both LLMs and human coders



recorded minimal scores, with LLMs later achieving a 33%
F1 score improvement in this category by the third exper-
iment. This demonstrates LLMs’ adaptability, particularly
when enhanced by reasoning-based inputs (see Table 1).

In terms of Active and Passive engagement, LLMs demon-
strated notable performance improvements in the second ex-
periment, achieving an 89% F1 score for Active engagement
with a precision of 10%, and in the third experiment, they
reached up to 100% precision and an 87% F1 score for Pas-
sive engagement. These results underscore LLMs’ potential
efficiency and superiority in coding tasks, even amidst the in-
herent ambiguities and complexities discussed by qualitative
researchers [22, 17, 20]. The strategic use of ICL, COT, and
AEFL prompting techniques has enhanced LLMs’ perfor-
mance, particularly in differentiating between Passive and
Active engagements, achieving over 70% in both precision
and recall rates in the third experiment.

Moreover, a precision-recall analysis across the experiments
revealed consistent patterns of LLMs achieving higher preci-
sion than human coders, with performance converging in the
third experiment where the coding differences were less pro-
nounced (see Figure 1). Statistical analysis using ANOVA
showed no significant differences among the groups (Preci-
sion: F =0.033, P = 0.97; Recall: F = 0.15, P= 0.87;
F1: F=0.03, P=0.98), suggesting that while LLMs show
promise, their application needs careful management to fully
realize their potential in enhancing qualitative research method-
ologies.

4.2 RQ2. What are the specific similarities
and differences of using LLMs for deduc-
tive coding in qualitative research, as com-
pared to traditional human coding processes?

The comparative analysis between LLMs and human coders
in qualitative research offers insights into their respective
strengths and limitations within the deductive coding pro-
cess. While LLMs effectively address some of the inherent
subjectivity and logistical constraints of human coding, they
also struggle with the complexities of interpreting nuanced
student texts, which can exacerbate traditional coding chal-
lenges [17, 20, 14]. This aligns with qualitative educational
research that values detailed narratives [2, 9, 12].

Throughout the experiments, the coding performance of LLMs
and human coders varied significantly:

• Experiment 1: Employing basic prompt designs, this
experiment revealed distinct error patterns; LLMs and
Human Coder 2 showed higher misclassification counts,
particularly when categorizing ’Passive’ instead of ’Ac-
tive’ engagements, with LLMs mirroring the error rates
of Human Coder 2.

• Experiment 2: Introduction of few-shot learning aimed
to refine the coding process, enhancing LLMs’ accu-
racy. This approach reduced error counts in LLMs
significantly in ’Active instead of Passive’ categories,
aligning more closely with the more accurate Human
Coder 1.

Figure 1: Precision-Recall plots for each experiment compar-
ing the performance of Human coders 1 and 2 with LLM -
GPT4.



Figure 2: Experiment accuracy scores for two human coders
and the LLMs across three experiments.

• Experiment 3: This experiment increased complexity
by incorporating reasoning tasks into the coding pro-
cess, resulting in a spike in misclassification rates for
both human coders and LLMs, especially notable in
Human Coder 1’s errors in ’Active instead of Passive’
categories, demonstrating the challenges of applying
complex coding schemes.

These initial results demonstrate that while LLMs can ef-
ficiently process and categorize large datasets, their per-
formance in complex coding scenarios often requires fur-
ther refinement. Human coders show greater variability in
their judgments, which can be a strength in interpreting
complex, nuanced responses but also leads to inconsistency.
This contrast highlights LLMs’ potential as supportive tools
in qualitative research, suggesting that a hybrid approach
combining human oversight with LLM efficiency could opti-
mize coding outcomes, particularly for complex interpreta-
tive tasks.

4.3 Limitation and Conclusion
This study offers crucial insights into the efficacy of LLMs in
deductive coding within educational research, benchmarking
their performance against traditional human coders. The re-
sults substantiate our hypothesis that LLMs, through strate-
gically engineered prompts, can exceed human accuracy and
efficiency, achieving an average of 8.5% greater accuracy,
particularly when employing complex combination prompts
[2, 9, 12, 22, 23]. This emphasizes the importance of prompt
engineering in amplifying the capabilities of LLMs, present-
ing a scalable and efficient approach for educational data
analysis [15]. However, the study’s findings are bound by
certain limitations, including the narrow scope of our dataset
and the specific nature of the educational content, which
may limit the generalizability of our results to other con-
texts or disciplines. Additionally, our primary reliance on
the current functionalities of GPT-4 and methodologies like
COT, Few-Shot, and partial AEFL reasoning could have re-
stricted a more profound exploration of LLMs’ potential in
qualitative analysis.

The study significantly enhances LLM effectiveness over tra-
ditional methods by adopting Shariar et al.’s reasoning strat-
egy [24], highlighting the need for broader coding tasks and
more varied datasets. Future research will integrate targeted
assertions to improve LLM accuracy and contextual rele-
vance and develop a universal prompt framework for diverse

responses [24]. Additionally, we will explore the implications
of LLMs in real-time educational settings to enhance collab-
oration between human cognitive skills and AI’s analytical
capabilities, advancing the effectiveness of educational data
mining for context-aware analysis. This ongoing research
promises robust, scalable, and objective methodologies in
educational research, showcasing the significant potential of
LLMs with proper prompt engineering [18, 1].
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