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ABSTRACT
Assessing the difficulty of reading comprehension questions
is crucial to educational methodologies and language un-
derstanding technologies. Traditional methods of assessing
question difficulty rely frequently on human judgments or
shallow metrics, often failing to accurately capture the intri-
cate cognitive demands of answering a question. This study
tackles the task of automated question difficulty assessment,
exploring the potential of leveraging Large Language Models
(LLMs) to enhance the comprehension of the context and in-
terconnections required to address a question. Our method
incorporates multiple LLM-based difficulty measures and
compares their performance on the FairytaleQA educational
dataset with the human-annotated difficulty labels. Besides
comparing different computational methods, this study also
bridges the gap between machine and human understanding
of question difficulty by analyzing the correlation between
LLM-based measures and human perceptions. Our results
provide valuable insights into the capabilities of LLMs in
educational settings, particularly in the context of reading
comprehension.
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1. INTRODUCTION
Assessing question difficulty in educational settings is a crit-
ical yet challenging task relevant for both educators and re-
searchers. The ability to identify what determines the diffi-
culty of reading comprehension questions holds value since it
can serve as a base for educational methods. It informs the
design of educational content, tailoring learning experiences

to meet individual student needs, and assists in developing
more effective language understanding technologies.

Understanding and predicting question difficulty is crucial
in adaptive education systems, where learning experiences
are personalized to each student’s capabilities and progress.
Adaptive education relies on accurately assessing learners’
comprehension levels and presenting them with appropri-
ately challenging material. By ensuring that questions are
diverse in terms of difficulty, these systems can maintain
student engagement, encourage growth, and prevent frus-
tration. Effective question difficulty assessment enables the
creation of dynamic and responsive educational experiences
that adapt to the evolving needs of diverse learners. More-
over, the significance of accurately predicting question diffi-
culty extends beyond the domain of adaptive education and
directly impacts automatic question generation. The gener-
ated questions can be tailored to specific learning objectives
and proficiency levels by incorporating question difficulty
estimation.

Traditional approaches to determining question difficulty
have relied heavily on subjective human judgments and sim-
plistic metrics, often overlooking the intricate cognitive pro-
cesses involved in answering questions effectively. This pa-
per introduces a novel approach to automated question diffi-
culty assessment, leveraging the potential of Large Language
Models (LLMs) to better understand the context and inter-
connections inherent in comprehension questions. By utiliz-
ing language models of different types and sizes, we aim to
bridge the gap between machine and human understanding
of question difficulty while providing a more objective and
nuanced perspective.

The study’s main contributions are as follows:

• We introduce novel metrics that characterize question
difficulty using LLMs, which go beyond traditional
methods and effectively leverage the intrinsic connec-
tions between the question and underlying context.
We provide empirical evidence on the effectiveness of
different metrics in discriminating question difficulty,
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contributing to the development of more accurate and
efficient educational assessment tools. Moreover, we
release our code as open-source1.

• We argue for the viability of smaller language models
in evaluating question difficulty, challenging the notion
that larger models are always superior. This finding is
relevant as it suggests the potential for efficient use of
consumer-level hardware in educational settings.

2. RELATED WORK
An early attempt at predicting and defining question diffi-
culty is presented by Ullrich et al. [11]. The approach builds
upon Bloom’s taxonomy of questions [2] and maps the scale
to be used as a prediction label. The authors start by manu-
ally defining keywords for each cell of Bloom’s matrix. Those
keywords describe the main focus of a question, such as the
task that the student would need to do to answer the query.
The SQuAD [8] training dataset is used, and the questions
are labeled by matching the keywords with the question con-
tent. However, this method proves unreliable since only a
small percentage of the dataset can be labeled in this man-
ner, and the complexity distribution is highly unbalanced
due to keywords with low frequency. As such, the authors
address the task as a binary classification, with factual-recall
questions as representatives of easy queries, while categoriz-
ing cognitive-evaluation questions as challenging, requiring
multi-step reasoning. This adjustment leads to a more bal-
anced dataset through automated labeling, increasing the
volume of annotated examples. The questions’ tokens are
tagged with their corresponding parts of speech to predict
complexity. Subsequently, a multi-layered perceptron net-
work is trained on the automatically annotated dataset to
predict complexity based on the question’s part-of-speech
structure.

A study by Srivastava et al. [9] on adaptive education sys-
tems defines the difficulty of a question as the student’s abil-
ity to solve it based on previous behavior. Although the
questions are presented in the form of translation exercises
and not reading-comprehension inquiries per se, the study
is relevant for proposing a novel complexity approach. The
dataset is extracted from Duolingo and consists of examples
of translation tasks and students’ activities on those tasks.
The question is represented as a list of tokens. A student
state is modeled as a temporally-evolving sequence of pairs:
the question and whether the student responded correctly. A
language model-based knowledge tracing [5] (LM-TK) sys-
tem is used to predict the probability of a student answering
a question correctly. A GPT-2 model [7] is fine-tuned for this
task, given as training examples a pool of students and their
sequence of question-answering activities. The negative log-
likelihood is used as a loss function to predict the difficulty,
which is defined as dQS = Pr(correct | Q,S), where Q is the
asked question and S is the sequence of question-answering
activities.

3. METHOD
We aim to build upon the current related work and use the
zero-shot capabilities of LLMs to act as a proxy for human

1https://github.com/readerbench/
EDM-Question-Difficulty

perception and, instead of relying on scarce student data to
calculate the probability that a student answers the question
accurately, like Srivastava et al. [9], we look at the problem
from the perspective of an LLM and use the probability of
the model to return the correct answer.

3.1 Dataset
The FairytaleQA dataset [13] is a comprehensive collection
of questions and answers derived from a corpus of children’s
stories from Project Gutenberg. This dataset is curated by
educational experts and is designed to effectively assess and
train the narrative comprehension skills of kindergarten to
eighth-grade students. Unlike conventional reading com-
prehension assessments, which typically focus on isolated
sentences or paragraphs, FairytaleQA explores the nuances
of story structure, character development, plot progression,
and thematic elements. This approach serves a dual pur-
pose: a) to effectively assess the narrative comprehension
skills of students and b) to help train and evaluate language
models on reading proficiency.

Each question is framed within a fairytale context, requiring
models to comprehend and reason about narrative content
for accurate answers. This diverse set of questions serves
as a robust benchmark for evaluating the performance of
question-answering models.

The questions are manually annotated on two dimensions
that we use to measure their difficulty:

• Explicit versus Implicit - Explicit questions directly
extract information from the text. Implicit questions,
on the other hand, rely on a deeper understanding, re-
quiring students to make inferences, draw connections,
and interpret subtle nuances within the narrative.

• Local versus Summary - Local annotations indicate
that a specific sentence or span can be used to answer
the question. In contrast, summary question annota-
tions indicate that a question asks about the text’s
overall meaning or main points. These questions are
typically more open-ended and require the student to
consider the entire text to answer them.

3.2 Assessing Question Difficulty using the Re-
quired Context

We assess the difficulty of a question by the performance
of a model that is prompted to answer. LLMs can fol-
low complex human instructions in a zero-shot setting [3]
and answer a question by spanning attention over a context,
which is not entirely different from the cognitive process of
a student. We use these models to assess question difficulty
by observing how accurately they would answer. Because
LLMs often tend to formulate the answer differently, de-
pending on the generation strategy and their previous train-
ing, we assess the likelihood of them providing the anno-
tated answer. More formally, we calculate the cross-entropy
loss (QA Loss) for the annotated correct answer, given the
prompt for answering a question based on the context. We
hypothesize that a higher QA Loss signifies a greater uncer-
tainty in generating the correct response, thus reflecting a
more challenging question for the model.



By assuming that complex questions require combining, bridg-
ing, and summarizing information from multiple sentences,
we propose a method that measures the amount of context
that a model needs to answer correctly. In this approach,
the context is sequentially augmented while we observe the
evolution of question-answering (QA) cross-entropy losses
computed by a language model. The resulting sequence of
losses provides a nuanced perspective on how the difficulty
of questions evolves as additional context is introduced.

The algorithm starts with an empty context. At each step,
all remaining sentences are tested by individually adding
them to the current context. The sentence with the low-
est QA Loss is chosen and permanently added to the con-
text. The order of sentences is preserved during the iterative
expansion process, ensuring coherence and maintaining the
inherent structure of the text.

The QA Loss is computed at each iteration based on the
evolving context. The loss reflects the model’s performance
in answering questions with the given context level. The
sequence of QA Loss values, denoted as L = [L1, ..., LN ],
is observed and recorded for each incremental addition of
context. This sequence is a dynamic indicator of question
difficulty, denoting how the model’s performance improves
or plateaus as more contextual information becomes avail-
able.

Require: A list of sentences S = [S1, . . . , SN ]
Initialize an empty context C
Initialize an empty list L to store QA Loss values
while S ̸= ∅ do

min loss← inf
selected sentence← None
for Si ∈ S do

temp C ← C ∪ Si

loss← QA Loss(temp C)
if loss < min loss then

min loss← loss
selected sentence← Si

end if
end for
C ← C ∪ {selected sentence}
S ← S \ {selected sentence}
L.append(min loss)

end while
return L

These QA Loss values (Li) should capture the evolution of
the capability of a language model to answer a fixed item,
given a subset of context. A sample of 10 questions and
their corresponding sequences of QA Losses are plotted in
Figure 1).

The majority of examples exhibit the same behavior: at
first, using minimal context, the QA Loss is higher. It then
iteratively lowers until a global minimum point is reached
by adding only the necessary sentences to answer the query.
After that, the loss continuously rises, as more unnecessary
context is uninformative and hinders the model’s perfor-
mance.

For each item (context, question, correct answer) and its

Figure 1: QA Loss evolution along context size for a sample
of 10 questions

corresponding sequence of QA Loss values (Li), we calcu-
late different metrics and experiment with different ways of
estimating difficulty. The following scores are computed for
each question:

• Minimum QA Loss index (MinLossIdx): The index of
the minimumQA Loss from the sequence. This metric
assesses how large the context must be for a model to
answer the question optimally.

MinLossIdx = argmin(L)

• LossRange: The difference between the maximum and
the minimum losses. This metric assesses how much
the additional sentences help the model answer the
question correctly.

LossRange = max(L)−min(L)

• Full context loss (FullLoss): The QA Loss calculated
with the whole given context. This is the last element
in the sequence (LN ) and assesses the model’s capa-
bility to answer when the entire context is provided.

• MinLossAUC: The area under the curve until the mini-
mumQA Loss is achieved. The loss curve is translated
so that the minimum loss has a value of 0 to remove
the bias. This metric assesses the slope of theQA Loss
graph, showcasing the model uncertainty drop as more
context is added.

MinLossAUC =

argmin(L)∑
i=1

(Li −min(L))

• ExpertiseGap: The difference between the FullLoss of
the current model (Amateur) and the FullLoss of a
larger model of the same type (Expert). This met-
ric assumes that complex inferences, mostly needed
in difficult questions, are handled differently by larger
models.



Figure 2: Pearson Correlation Matrix

ExpertiseGap = FullLossAmateur − FullLossExpert

After computing these scores, we performed a Pearson’s test
to observe their correlation and assess the extent to which
the studied features measure the same underlying construct
(see Figure 2). The majority of the difficulty-computation
methods are weakly correlated, with two pairs being mod-
erately correlated; as such, our scores capture different di-
mensions regarding the question difficulty.

3.3 Experimental Setup
Our models and the dataset are downloaded from the Hug-
gingface platform and used with the Transformers library [12].
We experiment with different LLMs, Flan-T5 and Qwen 1.5,
with varying sizes.

Flan-T5 [4] (encoder-decoder architecture) is an improved
version of the T5 language model, fine-tuned on various
tasks for better performance. This enhanced performance
stems from its adaptability to diverse instructions. It is par-
ticularly performant on tasks like question answering. For
our experiments, we used the models flan-t5-large (0.8B pa-
rameters), flan-t5-xl (3B parameters), and flan-t5-xxl (11B
parameters). The prompt used as input to the model had the
following format: ”Answer the following question based on
the context. Context: <context>. Question: <question>”.

Qwen 1.5 [1] (decoder-only architecture) is one of the lat-
est developed, open-source LLMs that achieves competi-
tive performance on benchmark datasets. It outperforms
the popular Llama2 [10] in a variety of tasks. Moreover,
even smaller versions (under 7B parameters) compete ef-
fectively with leading small-scale models. For our experi-
ments, we used the following models: Qwen1.5-0.5B-Chat,
Qwen1.5-1.8B-Chat, Qwen1.5-4B-Chat, Qwen1.5-7B-Chat,
and Qwen1.5-14B-Chat. The prompt was in the chat for-
mat, with the instruction: ”Answer the following question
based on the context. Keep the answer short, maximum
1 sentence, without any additional explanations. Context:
<context>. Question: <question>”. This prompt is tuned
to make the model answer shortly and not overly explain.

4. RESULTS
We calculated the previously stated metrics for the offi-
cial test partition of the FairytaleQA dataset. In order to

measure how the selected features can discriminate between
questions, we computed the Kruskal-Wallis non-parametric
tests between our scores and the labels annotated by hu-
mans on the two dimensions (Explicit-Implicit and Local-
Summary). More specifically, we split the scores into two
populations: the ones corresponding to Explicit questions
and those corresponding to Implicit questions; we had an
analogous approach for Local-Summary. We performed the
Kruskal-Wallis test [6] on these two populations and pre-
sented the results in Tables 1 and 2, including the test statis-
tic and p-value significance. The following notations were
used for highlighting statistical significance: no mark for a
p-value higher than 0.05, one mark (*) for a p-value between
0.05 and 0.001, and two marks (**) for a p-value lower than
0.001. Key outcomes and high-effectiveness results are high-
lighted in bold for ease of reference.

5. DISCUSSION
5.1 Analysis
Based on the results, for the Explicit/Implicit approach to
question difficulty, the LossRange and FullLoss features are
the most discriminative, as they assess to what extent ad-
ditional context helps in accurately answering the question
and the model’s capability to answer when the entire context
is provided, respectively. For the Local/Summary dimen-
sion, again, the LossRange approach and now the LossAUC
are the most appropriate, as the latter measures the slope of
the loss curve toward reaching the most appropriate context
setup for answering correctly.

Since the Explicit/Implicit annotation is related to the an-
swer’s occurrence in the text, it was expected that the Ful-
lLoss would be a significant metric, as it is easier for a
model to generate an answer that is part of the original text.
In contrast, the Local/Summary annotation checks whether
the question requires information from multiple sentences,
therefore the metrics rooted in context coverage perform
best.

Based on the results, small language models (particularly
Qwen 0.5B and 1.8B for Explicit/Implicit) are very effective
in evaluating question difficulty and often surpass the per-
formance of larger models. It appears that a larger size or
a more recent model is not necessarily on par with the hu-
man concept of question difficulty. This is especially helpful
since language models of reduced size can be efficiently run
on consumer hardware and do not require expensive setups.

Analyses of the distributions of scores computed with the
most discriminative metrics and model, categorized by the
human-annotated difficulty dimensions, can be found in the
Appendix A.

As the QA Loss is the main contributor to all of our score
computations, we plotted in Figure 3 the distribution of
these values by model type and size.

An increase in the QA Loss range of values can be seen
for the Qwen models, as their decoder-only architecture and
chat-assistant training made their responses highly verbose
and long, even with a prompt that restricts the length. In
contrast, encoder-decoder Flan-T5 models exhibit more brief
responses and lower loss values. This behavior is not partic-



Table 1: Kruskal-Wallis Test Results - Explicit/Implicit Dimension

Flan-T5 Qwen 1.5
0.8B 3B 11B 0.5B 1.8B 4B 7B 14B

MinLossIdx 3.3 2.4 13.1 ** 1.6 7.9 * 6.3 * 3.1 3.4
LossRange 157.8 ** 178.5 ** 184.7 ** 172.1 ** 201.1 ** 163.7 ** 174.6 ** 121.9 **
FullLoss 215.6 ** 168.5 ** 163.7 ** 341.7 ** 345.6 ** 235.2 ** 230.9 ** 209.1 **

MinLossAUC 19.4 ** 37.8 ** 66.0 ** 37.1 ** 26.8 ** 22.0 ** 1.3 0.3
ExpertiseGap 17.6 ** 10.3 * 10.3 * 74.8 ** 22.4 ** 50.6 ** 0.7 0.7

Table 2: Kruskal-Wallis Test Results - Local/Summary Dimension

Flan-T5 Qwen 1.5
0.8B 3B 11B 0.5B 1.8B 4B 7B 14B

MinLossIdx 48.6 ** 42.6 ** 56.7 ** 35.4 ** 39.7 ** 60.2 ** 32.7 ** 39.2 **
LossRange 73.5 ** 75.1 ** 81.3 ** 38.5 ** 39.6 ** 35.8 ** 56.8 ** 58.6 **
FullLoss 25.3 ** 23.1 ** 21.0 ** 26.9 ** 22.9 ** 17.6 ** 14.7 ** 13.6 **

MinLossAUC 54.8 ** 55.3 ** 57.0 ** 28.8 ** 42.2 ** 53.0 ** 36.0 ** 35.4 **
ExpertiseGap 0.2 4.3 * 4.3 * 1.2 1.8 4.5 * 0.0 0.0

Figure 3: QA Loss Values Comparison

ularly detrimental to their effectiveness; however, it is im-
portant to consider.

A detailed example illustrating the response characteristics
of different models to a specific question is provided in Ap-
pendix B.

5.2 Limitation
This study acknowledges a significant limitation: the eval-
uation relies solely on the FairytaleQA dataset. While the
method effectively leverages prompt-adaptable LLMs in a
zero-shot setting, future research should explore a wider
range of datasets for increased generalizability. However,
there is a scarcity of datasets annotated on their test parti-
tion with some form of difficulty labeling, hindering broader
experiments. Furthermore, a comprehensive assessment of
student perception of difficulty would strengthen the find-
ings. Although the FairytaleQA dataset benefits from cura-
tion by educational experts, independent verification is cru-
cial to ensure alignment between the proposed metrics and
student performance. This necessitates collecting student
data and analyzing the correlation between the proposed
metrics and students’ perceived difficulty.

6. CONCLUSIONS AND FUTURE WORK
In conclusion, this paper experiments with novel approaches
for assessing question difficulty using LLMs, particularly fo-
cusing on their zero-shot capability. This research argues for
the potential of these models to mimic human perception
and comprehension in answering questions based on contex-
tual understanding.

Our iterative methodology employed in this study, which
gradually augments context and observes the evolution of
question-answering cross-entropy losses, offers valuable in-
sights into the dynamics of question difficulty. Our approach
clarifies how adding context initially reduces the loss, reach-
ing an optimal point where further context may even hinder
the model’s performance. This nuanced understanding of
question difficulty provides a framework for developing more
effective educational assessments.

Furthermore, the experimentation with different metrics and
model sizes highlights the effectiveness of smaller language
models in accurately assessing question difficulty. Contrary
to expectations, larger models or recent advancements do
not necessarily outperform smaller counterparts in this con-
text. This finding underscores the practicality of utilizing
smaller models, which can be efficiently run on consumer
hardware without requiring expensive setups. Overall, the
results suggest promising avenues for enhancing question dif-
ficulty computation and educational assessment methodolo-
gies through integrating advanced language models.

In terms of future work, this study can be extended to more
types of questions. While this research focuses solely on
short-answer, open-ended questions, future iterations could
incorporate multiple-choice questions, requiring an assess-
ment of both the question and the difficulty level of the
provided answer choices. Furthermore, delving into long-
answer quiz items, such as those requiring comparisons or
in-depth analysis, holds significant potential. Such explo-
rations could necessitate the model engaging in more in-
tricate reasoning and generating responses with a broader
range of possibilities, potentially leading to a paradigm shift



in the capabilities of traditional language models.

A novel future direction stemming from these experimental
findings is the utilization of the proposed metrics as indi-
cators for the automated generation of questions with ele-
vated difficulty levels. In conjunction with the advancements
in steerable language models and proximal policy optimiza-
tion, reinforcement learning algorithms now offer the capa-
bility for language models to generate improved text based
on a scoring system. Our metrics have the potential to func-
tion as a reward system guiding the language model toward
generating more complex questions.
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APPENDIX
A. SCORES DISTRIBUTIONS
Figures 4, 5, and 6 depict how our computed scores perform
in differentiating question difficulty, also assessed through
human annotations. These violin plots depict the distri-
bution of scores computed by the Qwen with 1.8B parame-
ters model for questions categorized into two difficulty levels
based on human judgment. They reveal distinct distribu-
tions for the two difficulty categories, suggesting a clear sep-
aration between the model’s scores for easy versus difficult
questions. This visual separation underscores the model’s
capacity to capture the inherent difficulty of the questions,
as evidenced by the alignment between the model’s score
distribution and the human-assigned difficulty levels.

Figure 4: Population Separation with LossRange (Qwen 1.8B)

Figure 5: Population Separation with FullLoss (Qwen 1.8B)

B. MODEL RESPONSES
Table 3 showcases a specific example to effectively observe
how these models would respond to a question instead of
the annotated answer. It can be observed that Qwen models
tend to chat and be very verbose in answering, as opposed to
Flan-T5 models. However, they both answer appropriately
in a greedy-decoding setup, while the generated text varies
by model size.

Figure 6: Population Separation with MinLossAUC (Qwen
1.8B)

Table 3: Human-annotated and Language Model Generated
Answers
Context ...when the wee bannock came trundling

across the floor, all three tailors got such a
fright that they jumped down from the table
and hid behind the master tailor’s wife...

Question How did the three tailors feel after they saw
the bannock?

Answer frightened
Flan-T5
0.8B

they were scared

Flan-T5
3B

They were scared

Flan-T5
1B

scared

Qwen
0.5B

The three tailors jumped down from the table
and hid behind the master tailor’s wife after
seeing the bannock.

Qwen
1.8B

The three tailors felt scared and surprised
upon seeing the bannock, as they had never
seen anything like it before and thought it was
a threat. They quickly hid behind the master
tailor’s wife and asked for a drink of milk.

Qwen
4B

The three tailors felt scared after they saw the
bannock.

Qwen
7B

The three tailors were frightened and hid be-
hind the tailor’s wife after seeing the bannock.

Qwen
14B

The three tailors felt frightened after seeing
the bannock.


