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ABSTRACT
Intelligent Tutoring Systems (ITSs) often contain an au-
tomated feedback component, which provides a predefined
feedback message to students when they detect a predefined
error. To such a feedback component, we often resort to
template-based approaches. These approaches require sig-
nificant effort from human experts to detect a limited num-
ber of possible student errors and provide corresponding
feedback. This limitation is exemplified in open-ended math
questions, where there can be a large number of different
incorrect errors. In our work, we examine the capabilities
of large language models (LLMs) to generate feedback for
open-ended math questions, similar to that of an established
ITS that uses a template-based approach. We fine-tune both
open-source and proprietary LLMs on real student responses
and corresponding ITS-provided feedback. We measure the
quality of the generated feedback using text similarity met-
rics. We find that open-source and proprietary models both
show promise in replicating the feedback they see during
training, but do not generalize well to previously unseen stu-
dent errors. These results suggest that despite being able to
learn the formatting of feedback, LLMs are not able to fully
understand mathematical errors made by students.1
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1. INTRODUCTION
High-quality math education is increasingly important in
today’s world since it is highly relevant in many science,
technology, engineering, and mathematics (STEM) subjects.
One effective way to scale high-quality math instruction to
a large number of students is through intelligent tutoring
systems (ITSs) and online learning platforms, which pro-
vide learning opportunities to students both in-class and on

1Source code is available at https://github.com/
umass-ml4ed/its_feedback_edm

Figure 1: An open-ended math question with an ITS’s built-
in, template-based feedback for an incorrect student response.

demand. One of the major advantages of ITSs is that they
can provide immediate feedback to students when they re-
spond to assignment questions incorrectly [25], which has
been shown to improve learning outcomes [11, 24].

Historically, the majority of feedback components in ITSs
rely on a rule-based approach [3, 13]. In this approach, math
education experts partner with ITS developers to 1) antici-
pate common student errors, either from past experience or
actual student data, 2) connect them to resulting incorrect
responses to questions, and 3) develop corresponding feed-
back, often in the form of textual feedback messages, which
are automatically deployed to students whose response cor-
responds to one of the anticipated errors. Doing so is espe-
cially challenging for open-ended math problems compared
to true/false or multiple-choice ones, since there can be a
large number of possible ways for students to make errors,
which may all lead to different incorrect responses [6].

While such feedback approaches are reliable and commonly
used in large-scale ITSs, they are limited by their hand-
coded nature. First, these messages can only be shown if the
student makes an anticipated error, and cannot account for
errors not predicted by the content developers before deploy-
ment. Second, when developing feedback for a new question
that does not correspond to any of the existing templates,
content developers have to manually craft these feedback
messages, which is labor-intensive and limits the scalability
of ITSs. Therefore, in order to scale an ITS system to a
larger amount of content, questions in particular, we need
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to explore methods for automated feedback generation. Re-
cent, state-of-the-art large language Models (LLMs) show
impressive capabilities in generating fluent text under tex-
tual instructions and even mathematical reasoning abilities,
which raises the question: can we use LLMs to automati-
cally generate feedback to incorrect student responses, or to
take a step back and be more restrictive, at least replicate
existing ITS feedback mechanisms?

1.1 Contributions
In this work, we explore the capabilities of LLMs to repli-
cate the built-in feedback mechanisms of ITSs, by auto-
matically generating feedback messages to students’ incor-
rect responses to open-ended math questions. We limit the
scope of our work to rule-based feedback mechanisms in-
volving hand-crafted templates; replicating human-authored,
free-form feedback [7, 19] in ITSs is left for future work, due
to the significant variability in styles and content in those
feedback messages [2], even for the same question-response
pair. First, we formulate the automated feedback gener-
ation problem and adopt several well-studied methods for
this task. Second, we perform extensive experimentation on
a training dataset that consists of real student responses and
feedback messages from a large-scale math ITS system. We
investigate both open-source LLMs and proprietary LLMs
across multiple experimental settings. Our results show that
LLMs can replicate highly structured feedback given appro-
priate training data, but cannot generalize to previously un-
seen errors. These results suggest that LLMs are more ca-
pable of capturing the structure of text than understanding
how math errors occur among students.

2. RELATED WORKS
The last several years have seen increasing interest in how
LLMs can be used to generate feedback, through prompting-
based approaches [1, 18, 20, 26] or with fine-tuning [9, 12].
However, none of these works have explored using (relatively
large) open-source LLMs, such as Mistral-7B [10], derived
from Meta’s recently released open-source Llama 2 model
[27] which we study extensively in this paper.

The approach of using an LLM to generate feedback is ap-
pealing due to the convenience and ease of prompting them
in comparison to more manual, rule based-approaches, but
there remains a question about the quality of this feedback.
In the math domain, existing work has shown that there still
appears to be a considerable gap in quality between teacher-
authored feedback and LLM-authored feedback [23].

3. APPROACH
We now define the task of feedback generation and our ap-
proach to using LLMs for this task.

3.1 Feedback Generation Task
Consider the example open-ended math question on linear
equations and a student response shown in Figure 1. In this
example, the student correctly defines a variable and linear
equation but submits an incorrect response by switching the
slope with the intercept. The feedback message provided by
an ITS provides a hint to the student and reminds them
of the key intuition behind linear equations. At the same

Figure 2: Example prompt provided to an LLM for feedback
generation. The shaded information is an in-context example
to guide the model to produce output with similar structure.

time, the message avoids directly revealing the correct re-
sponse and intends to guide the student towards working it
out themselves. Our goal is to automatically generate such
a feedback message using an LLM. Formally, we define feed-
back generation as the task of generating such a feedback
m, given a question body q, the correct response c, and an
erroneous student response a.

We treat each aforementioned component in the problem as
a series of tokens, e.g., the feedback message is defined as
m = {x1, x2 . . . xM}, where M is the total number of tokens
in the message. Large-scale decoder-only LLMs are trained
to predict the next token probability distribution given an
existing sequence of tokens. Therefore, we frame the feed-
back generation task in terms of sampling an output m from
an LLM token-by-token, given the input sequence q, c, and
a, and possibly some textual statements that provide addi-
tional instructions on how to generate feedback. We refer to
this input as the prompt. This process is summarized as

(q, c, a, x1, . . . xi−1)
LLM−−−→ xi,

where i indexes tokens in the feedback message.

3.2 Fine-Tuning and In-Context Learning
To test whether LLMs can replicate the built-in feedback
mechanisms in ITSs, we can use a training set that consists
of (q, c, a,m) tuples to align the LLM’s output with built-in
feedback messages. A simple way to do so is fine-tuning,
which directly updates the LLM’s parameters (in practice,
usually a subset of them) using this training data. To do
this, we minimize the negative log likelihood that the given
“ground truth” feedback message m is generated given the
input q, c, a, by summing over all tokens in the feedback
message, i.e.,

1

N

N∑
i=1

1

Mi

Mi∑
j=1

− log p(xi
j |qi, ci, ai, xi

1, . . . , x
i
j−1),

where N is the number of training tuples/data points,
qi, ci, ai denote the question body, correct response, and in-
correct student response in the ith training sample, and xi

j is

the jth token in the corresponding feedback message (with
a total of Mi such tokens). This way, we modify the LLM’s



parameters so that its output token distribution is closer
aligned with existing feedback messages.

Fine-tuning involves modifying the LLM’s parameters,
which can be computationally expensive and can be hard
to do for models that have billions of parameters. Alter-
natively, another approach to replicate built-in feedback is
called In-Context Learning (ICL) [15]. ICL is performed
by including examples of the desired prompt-message to-
ken sequence directly in the LLM’s input prompt, as shown
in Figure 2. The inclusion of such “in-context” examples,
which provide LLM with a highly specific demonstration
of the task structure, also modify its token distribution to
align it with existing feedback messages. This approach has
been shown to be highly effective for the largest LLMs and
achieves state-of-the-art performance on many natural lan-
guage generation tasks [4]. We can also combine ICL with
fine-tuning by providing the fine-tuned LLM with in-context
examples, further improving generation performance.

4. EXPERIMENTS
We now detail the experiments we conducted to test whether
LLMs can replicate ITS feedback. We first detail the dataset
used, the experimental settings, the metric we use for eval-
uation, and finally all results and corresponding takeaways.

4.1 Dataset
We utilize a dataset of common erroneous student responses
to middle school math questions and corresponding feedback
messages in a large-scale ITS. In total, the dataset contains
26,845 unique responses across 100 questions, which are all
incorrect responses to open-ended math questions. All ques-
tions are word problems that ask students to define an equa-
tion for a linear relationship, similar to the one in Figure 1.
Moreover, the dataset also includes the question statement
and the feedback messages built into the ITS for each erro-
neous response. The feedback messages are template-based
and correspond to student errors that math educators can
anticipate, which are deployed when a student enters an an-
ticipated erroneous response for just-in-time feedback. Fur-
thermore, the dataset contains a label for each common er-
roneous response that defines the error the student made. In
total, there are 11 unique error labels, yielding 1100 unique
feedback messages. For example, the error in Figure 1 has
the label swapped slope and intercept.

4.2 Experimental Settings
We now detail the settings we used for both fine-tuning and
in-context learning in our feedback generation experiments.

4.2.1 Fine-Tuning Setup
We fine-tune open-source LLMs by training a Low Rank
Adaptation (LoRA) instead of directly modifying the
weights [8]. This approach trains a low-rank adaptor for each
weight matrix in the LLM architecture instead of directly ad-
justing the weights. This approach allows us to train larger
models on more accessible hardware configurations. We use
the AdamW optimizer [17] with a learning rate of 10−5 and
LoRA hyperparameters of r = 16 and α = 16. For open-
source LLMs, we utilize the Mistral-7B-v0.1 model sourced
from the HuggingFace library. We select Mistral-7B due to
its reported superior performance over other LLMs on math

reasoning tasks [10]. For proprietary models, we select Chat-
GPT [21], specifically gpt-3.5-turbo-1106 which is the most
powerful model available from OpenAI with fine-tuning en-
abled. For fine-tuning, via OpenAI’s API, we use the default
training hyperparameters.

We utilize only a small percentage of the available dataset
in order to fine-tune our models. Specifically, we constrain
our training sets to be 100 feedback examples, which is the
recommended best practice provided by OpenAI in their
fine-tuning documentation. In our experiments, we found
that this suggestion applies to proprietary LLMs as well:
when directly fine-tuning Mistral-7B with the entire 1100
examples in the dataset, the model quickly over-fits on the
training data within 20% of the first epoch, showing no signs
of generalizability, while using a small, subsampled training
set works well.

4.3 Evaluation Metrics
To quantitatively assess how similar the LLM-generated
feedback is to the ground-truth, template-based feedback
in the ITS, we utilize two reference-based similiarity met-
rics. First, we compute the bilingual evaluation understudy
(BLEU) score [22], which measures the precision of n-gram
overlap between the LLM-generated feedback and the ITS’s
feedback. Second, we compute Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) score [14], which measures
the n-gram recall between the feedbacks. Specifically, we
compute BLEU on 4-gram sequences and ROUGE-L, which
measures the recall on the longest common sub-sequence.
We report the average BLEU/ROUGE score for all feedback
messages in the test set; since we have different experimen-
tal settings with different train-test splits, we detail their
construction in Section 4.5.

4.4 Methods Compared
We compare the following variants of fine-tuning and ICL
methods for feedback generation, using both the base version
and fine-tuned Mistral-7B and GPT-3.5 models:

• Zero: We use zero-shot prompting and directly in-
structs the LLM to generate feedback.

• ICL (in-context learning): We provide the LLM a sin-
gle, fixed in-context example and then ask it to gener-
ate feedback according to this style.

• ICL-SE (ICL with same error): We provide an in-
context example that has the same error label as the
student response for which we generate feedback.

4.5 Experimental Results and Discussion
In this section, we detail the results of three experiments
where we perform a train-test split across three different
dimension of the dataset: response, question, and error.

4.5.1 Experiment 1: Response-Level Split
In this experiment, we perform five-fold cross-validation
across the unique erroneous student responses in the dataset.
Specifically, we randomly sample 100 responses from the
dataset to use for the train set and randomly sample 500
responses for the test set. We then use the training set both
as examples to fine-tune the model and as a pool for in-



Split Model Variant
Base Fine-Tune

BLEU (± STD) ROUGE (± STD) BLEU (± STD) ROUGE (± STD)

Response

Mistral-7B
Zero 0.001± 0.0004 0.076± 0.0030 0.164± 0.0158 0.325± 0.0223
ICL 0.077± 0.0062 0.254± 0.0086 0.240± 0.0087 0.448± 0.0084
ICL-SE 0.159± 0.0193 0.307± 0.0244 0.342± 0.0496 0.464± 0.0470

GPT-3.5
Zero 0.013± 0.0019 0.173± 0.0041 0.285± 0.0298 0.485± 0.0271
ICL 0.044± 0.0037 0.253± 0.0053 0.215± 0.0323 0.449± 0.0265
ICL-SE 0.081± 0.0814 0.311± 0.0074 0.509± 0.0278 0.700± 0.0196

Question
Mistral-7B

Zero 0.002± 0.0007 0.080± 0.0037 0.128± 0.0274 0.296± 0.0376
ICL 0.080± 0.0063 0.259± 0.0170 0.111± 0.0281 0.349± 0.0465
ICL-SE 0.169± 0.0252 0.333± 0.0295 0.337± 0.0472 0.497± 0.0449

GPT-3.5 ICL-SE 0.086± 0.0121 0.318± 0.0107 0.502± 0.0367 0.695± 0.0231

Error
Mistral-7B

Zero 0.002± 0.0006 0.082± 0.0102 0.061± 0.0401 0.211± 0.0615
ICL 0.055± 0.0183 0.235± 0.0408 0.114± 0.0290 0.353± 0.0470

GPT-3.5 ICL 0.041± 0.0163 0.252± 0.0429 0.121± 0.0126 0.365± 0.0451

Table 1: Feedback generation performance on all settings with different data splits. Values are averages over all folds.

context examples, if applicable. After fine-tuning, we then
prompt the model to generate feedback on the test-set.

We report the results of this experiment in the top block of
Table 1, which shows the mean and standard deviation of the
all metrics across all five splits. We see that the generated
feedback is most similar to the reference feedback when the
model is provided an in-context example from the same error
class. This conclusion is expected, since feedback messages
in this dataset are template-based, which means that ones
corresponding to the same error are very similar and only
vary in question-specific terminology. Therefore, the LLM
easily learns to copy the structure of the in-context example
and then simply replaces the terms specific to the in-context
example with those of the current question.

We also see that, in general, fine-tuning the LLM makes
the generated feedback more similar to the reference feed-
back compared to the base LLM. This result is not surprising
since the fine-tuning process aligns the LLM to the problem-
specific vocabulary after training on ground-truth feedback
messages. However, we see that performance improvement
is only minor after fine-tuning under the zero-shot setting.
This observation highlights the importance of ICL as an ef-
ficient way to inform the LLM on the style of feedback com-
pared to fine-tuning alone.

Moreover, we see that GPT-3.5 outperforms Mistral-7B in
all settings. This result is somewhat expected since GPT-
3.5 is orders of magnitude larger than Mistral-7B. GPT-3.5
works relatively well even without fine-tuning as long as it
has access to ICL examples via the prompt.

Furthermore, we see that ICL-SE significantly outperforms
ICL. This observation suggests that when the right ICL ex-
ample, i.e., one that contains feedback for the exact same
student error as the student response at hand, is provided,
LLMs can replicate the ITS’s built-in feedback much more
accurately compared to other ICL examples. Since feed-
back messages for the same error across different ques-
tions/responses share a common template, this result verifies
the demonstration-following capability of LLMs in replicat-

ing output according to input instructions.

4.5.2 Experiment 2: Question-Level Split
In this experiment, we perform five-fold cross validation
across the unique questions in the dataset. First, we ran-
domly perform an 80%-20% train-test split across the unique
questions in the dataset. Second, we randomly sample 100
train and 500 test responses from the train and test splits
respectively. We repeat this split-sampling process for each
fold. The remainder of the experiment setup is identical to
that in the previous experiment.

We report the results of this experiment in the middle block
of Table 1. We observe similar trends in this experiment
in comparison to the first experiment. The reason for this
result is very likely the strong association between questions
and feedback messages in the dataset, since these feedback
messages only vary by a small number of tokens across ques-
tions. However, while the resulting trends are similar, the
practical implication of this result is more compelling than
that of the first experiment: Given a small set of examples,
an LLM can generate reasonable feedback messages close
to that of a hand-crafted template system for previously
unseen questions. Therefore, ITS designers can potentially
scale up their built-in feedback mechanism to a large number
of unique questions with the help of LLMs.

4.5.3 Experiment 3: Error-Level Split
In this experiment, we perform five-fold cross validation
across the unique error classes in the dataset. First, we ran-
domly select 2 of the 11 unique error classes and split our
dataset into two groups. The split with the more distinct
errors forms the train split and the group with less distinct
errors other forms the test split. Second, we randomly sam-
ple 100 train and 500 test responses from the train and test
splits respectively. We repeat this split-sampling process for
each fold. The remainder of the experiment setup is then
identical to the prior two experiments.

We report the results of this experiment in the bottom block
of Table 1. We see a drastic decrease in performance across



Feedback

ITS
You’ve got the right numbers, but think about
what is constant and what changes as the number
of holes the golfer plays increases.

R. Split
You’ve got the right numbers, but think about
what is the constant and what changes as the
number of holes the golfer plays increases.

Q. Split
Be careful with the starting amount and the way
the number of balls changes as the amount of time
increases.

E. Split
Does the number of balls go up or go down as the
number of holes the golfer plays increases?

Table 2: Feedback messages generated from different data
splits (response: R, question Q, and error: E) for the same
question-response pair in the test set, where we see feedback
quality varying over each split.

all settings, compared to the previous experiments, for both
LLMs. This poor result is perhaps surprising since LLMs,
especially GPT-3.5, have previously reported good math-
ematical reasoning ability, performing very well on math
question answering tasks [5]. This observation suggests that
while these LLMs may be able to answer questions, they do
not seem to have be capable of understanding flawed rea-
soning exhibited by real students that leads to erroneous
answers. This result draws into question whether LLMs
are well-equipped to understand diverse reasoning strategies,
which are required for feedback generation. It is likely that
their performance in the feedback generation task mainly
comes from demonstrations on the exact formatting of feed-
back, rather than truly understanding student errors.

Table 2 shows the feedback messages generated for the same
question-response pair in the test set, from different data
splits. We see that when split by response, the generated
feedback message is exactly the same, since the LLM has
seen very similar examples during training. When split by
questions, the LLM still generates good feedback although
not using the exact terminology in the current question.
When split by errors, the LLM generates a misleading feed-
back message suggesting it does not understand what feed-
back should look like for previously unseen student errors.

4.5.4 Experiment 4: Error-Information Ablation
Following our observations in Experiment 3, we perform an
additional experiment where we add the error label informa-
tion included in the dataset. We take the best performing
method from experiment 1, ICL-SE, and compare perfor-
mance with or without error label information included in
the prompt. We report the results in Table 3. We see that
the inclusion of the error label significantly improves the
performance of feedback generation for GPT-3.5, but de-
creases performance for Mistral-7B. This result is surprising
since intuitively, providing error labels to the LLM gives it
specific information on the error in a student response, and
should result in better feedback. This observation can likely
be explained by the difference in scale and, perhaps by exten-
sion, intrinsic mathematical reasoning capabilities between
these two models. Smaller models like Mistral-7B may get
confused by the word overlap between error labels (e.g., “for-

Model Variant BLEU(±STD) ROUGE(±STD)

Mistral-7B
ICL-SE 0.342± 0.0496 0.464± 0.0470
ICL-SE+EC 0.254± 0.0462 0.359± 0.0487

GPT-3.5
ICL-SE 0.509± 0.0278 0.700± 0.0196
ICL-SE+EC 0.583± 0.0169 0.782± 0.0131

Table 3: Ablation study with error label information in the
response-wise split setting. +EC indicates error class in-
cluded in the prompt.

got intercept” and “negated intercept”), while larger models
like GPT-3.5 can at least parse the purpose of the labels
and use them to guide feedback generation. Given these
observations, we conclude that it is perhaps best to rely on
LLMs for their text generation capabilities only, while find-
ing other ways, such as template-based error detection and
ICL demonstration, to inform them of student errors and
feedback formatting.

5. CONCLUSION AND FUTURE WORK
In this work, we conducted an examination on the capabil-
ities of LLMs on generating feedback for open-ended math
questions, using data from a real-world ITS. We experi-
mented with a variety of common strategies for adapting
LLMs to the task of feedback generation, using both open-
source and proprietary LLMs. In addition, we introduced
a novel metric to evaluate the performance of these models
by prompting GPT-4 and validated this metric via human
evaluation. Our results indicate that LLMs show promise
in replicating feedback messages which are similar to those
shown during training, but struggle to generalize to pre-
viously unseen student errors. Our observations show that
proprietary models such as GPT-3.5 outperform open-source
models, such as Mistral-7B. We also find that the inclusion
of explicit error label information can decrease performance
of some models, which suggests that LLMs’ ability to gener-
ate feedback comes fundamentally from instruction following
rather than understanding student errors.

There are many avenues for future work. First, compar-
ing the performance between open-source and proprietary
LLMs is not entirely fair due to their vast difference in scale.
Therefore, experiments with larger open-source models, such
as Llama-2 70b, remain to be performed, although setting
them up can be challenging. Second, our findings suggest
that error label text is not always an effective representa-
tion of student errors, which suggests that better represen-
tations, perhaps a latent one [16], is worth further investiga-
tion. Third, one of the fundamental limitations of this study
is the similarity between questions in the dataset since they
are all under one single topic. Therefore, we may repeat our
experiments on a set of more diverse open-ended math ques-
tions, both in terms of topics and question formats. This ex-
periment may help us understand further the mathematical
reasoning capabilities and limitations of LLMs.
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