
Strategic Interface Design Can Improve Learning
Efficiency in an Intelligent Tutoring System

Sutapa Dey Tithi
∗

North Carolina State
University

stithi@ncsu.edu

Behrooz Mostafavi
North Carolina State

University
bzmostaf@ncsu.edu

Arun Kumar Ramesh
North Carolina State

University
arames25@ncsu.edu

Tiffany Barnes
North Carolina State

University
tmbarnes@ncsu.edu

ABSTRACT
Educational data mining can help us discover patterns in
data that can be used to help improve learning environ-
ments and assess those improvements. Here, we discovered
that students were spending a significant amount of time in
a tutoring system typing in newly derived problem-solving
statements (about 12% of students’ total time in the tu-
tor). We designed a new problem-solving interface to al-
low students to select from among auto-generated multiple-
choice statements and performed a between-groups study to
compare students’ problem-solving time and learning with
and without access to auto-generated multiple-choice state-
ments, between two different semesters. Our results showed
significant time savings, with students in the control group
taking 4.3 hours in total and the intervention taking 2.07
hours. These substantial time savings did not significantly
impact the efficiency of student solutions (both groups had
similar solution lengths) and only marginally reduced rule
application accuracy on the posttest. This led to a signifi-
cant difference in learning efficiency between conditions since
students learned a similar amount in both groups but saved
substantial time in the intervention.

Keywords
Intelligent Tutoring System, Learning Efficiency, Cognitive
Load, Human-Computer Interaction

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) can be a scalable alter-
native to human tutoring and offer user-adaptive instruction
and feedback with minimal human teacher intervention [2,

∗First Author (led and carried out most of the work)

9]. An effective ITS can help reduce the time for learning
tasks, making the learning process more efficient.

In this study, we redesigned a section of Deep Thought (DT),
an intelligent logic tutor, and explored the impact of inter-
face design changes as a strategic intervention to reduce the
training time for students. The updated interface offered
students the option to choose from auto-generated multiple-
choice statements1, providing an alternative to typing solu-
tions exclusively. We evaluated the efficacy the new interface
design by answering the following research questions:

• RQ1 (Total training time): Do the students who
were given multiple-choice options (MCs) to derive
new statements complete the tutor in less time than
students without MCs?

• RQ2 (Learning gain): Do students using the MCs
have similar or better learning gains than students with-
out MCs?

2. RELATED WORKS
Interface design in ITSs is an important element that in-
fluences students’ effective learning experience as they act
as a medium of communication between the learners and
the learning materials [1]. An easy-to-use, engaging, and
realistic interface motivates learners, whereas a poorly de-
signed interface does not motivate students to make use of
the product or learn with it [3]. Sweller et al. [8] suggest
that instructional design should consider managing cogni-
tive load to optimize learning outcomes. They discussed
three primary types of cognitive load. The first, intrinsic
load, pertains to the inherent difficulty of the material and
may vary based on a student’s prior knowledge. The second,
extraneous load, concerns how information is presented and
the ease with which a student comprehends it. The third,
germane load, involves how we integrate and process new in-
formation into long-term memory. Since intrinsic load can-
not be easily altered, it is important to design instructions
to reduce the extraneous load and shift learners’ attention

1Note that the new interface provides the option to choose
between the multiple-choice and typing for each step deriva-
tion. The purpose of multiple choice was not to remove all
typing; rather, it meant to demonstrate contextual answers
to the prompt so students would understand how to answer.

S. D. Tithi, B. Mostafavi, A. K. Ramesh, and T. Barnes. Strate-
gic interface design can improve learning efficiency in an intelligent
tutoring system. In B. Paaßen and C. D. Epp, editors, Proceedings
of the 17th International Conference on Educational Data Mining,
pages 722–726, Atlanta, Georgia, USA, July 2024. International Ed-
ucational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729928

https://doi.org/10.5281/zenodo.12729928

to cognitive processes directly relevant to learning. Worked
examples (WE) reduce learners’ extraneous load [6]. Some
tutoring systems, including ours, offer WE problems along
with PS (problem-solving) problems. Research studies have
shown that worked examples can save students time without
reducing their learning [5].

3. METHOD
3.1 Context: DT, the Intelligent Logic Tutor
DT is an intelligent logic tutor that teaches propositional
logic proofs by applying valid inference rules. The inter-
face of our tutor (DT) is shown in Figure 1a. In the tu-
tor, students practice solving logic problems divided into
four sections: introduction, pretest, training, and posttest.
The introduction presents two worked examples to famil-
iarize students with the tutor interface. Next, there is a
pretest section, which is used to determine students’ incom-
ing competence. The pretest section is followed by the train-
ing section, which consists of five training levels with gradu-
ally increasing difficulty. Each training level consists of four
problems, and the tutor has an expert-designed pedagogi-
cal policy that chooses whether students should solve the
problem (PS) or see it as a worked example (WE). The last
problem in each training level, is a level-end test problem
(PS) with no access to help. Finally, students take a more
difficult posttest (level 7) with 6 problems.

3.2 Experiment Design
We implemented two training conditions for our experiment:
S22 and F23. In condition S22, after clicking the source
nodes and a rule button, the tutor asks the student to type
the resultant or derived statement in a black pop-up textbox
as shown in Figure 1b. The tutor then verifies the step,
and the new statement appears if the step is correct. In
condition F23, students select the source node(s), and the
tutor highlights the potentially applicable rules (only in the
training phase). Next, students select a rule to apply to the
source node(s). Based on the selected source node(s) and
a rule, the tutor presents auto-generated potential resultant
statements in the form of multiple-choice options as shown
in Figure 1c, and the student chooses a solution from the
provided options.

In Spring 2022 (S22) and Fall 2023 (F23), we deployed Deep
Thought with 50 students each semester in an undergradu-
ate discrete mathematics course at a large public university
in the United States. This course required students to en-
gage with Deep Thought as part of a lab assignment. While
we do not have course-specific demographics, it’s notewor-
thy that all CS majors are required to undertake discrete
math. Therefore, we report the demographics of the 2020-
21 graduating class of CS majors for an approximation,
and this includes 21% women, 56% white, 17% Asian, 10%
Non-resident Alien, 3% Black/African American, 5% His-
panic/Latinx, 9% other races. Participant consent was taken,
and only the IRB-authorized researchers can access the data
collected from the participants.

4. RESULTS
In F23, students had the option to either type their solu-
tion or utilize the multiple-choice window. Among the total

(a) Full Interface of Deep Thought

(b) S22 Typing interface (c) F23 Chooser interface

Figure 1: The full interface of DT with the comparison of the
interfaces used for students to type in or choose the newly
derived statement.

number of interactions to choose or type the new state-
ment, F23 students opted for the multiple-choice window
91.8% of the times, implying that students overwhelmingly
opted for the multiple-choice window. A Mann-Whitney U
test was performed on the interaction log’s data to evaluate
whether their pretest performance differed by two condi-
tions. There was no significant difference in the pretest per-
formance (U = 1271.50, p = 0.88) between condition S22
(Mean = 0.69, SD = 0.23) and condition F23 (Mean =
0.71, SD = 0.25). We focus on students’ performance in
the problems where no tutor help was given: training level-
end test problems and posttest problems in level 7.

4.1 RQ1: Total Training Time
Each student in F23 spent 21.6 minutes on average to select
or type new expressions, whereas each student in S22 spent
32.8 minutes on average to type new expressions in the tu-
tor. On average, each student in F23 spent 11 minutes less
to derive new statements than that in S22. Overall, the stu-
dents in F23 completed the tutor in significantly less time
than those in S22 (U = 949359.00, p < 0.001). The aver-
age time to complete the tutor was reduced from 4 hours 18
minutes (F23) to 2 hours 4 minutes (S22). This substantial
reduction is a huge achievement in improving the tutor and
the student’s learning experience.

In Deep Thought, a “step” refers to deriving a new node in
the proof, and a step may involve multiple actions (granular
interactions with the system, such as selecting or deselect-
ing a node or a rule). We found no significant difference in
average step completion time in the pretest between condi-
tions F23 and S22 (U = 1139.00, p = 0.44). In the level-
end test problems and final posttest problems, the students
from F23 had significantly lower average step completion time
(U = 31295.00, p < 0.001) than the students from S22.

Figure 2: Trends in Average Problem-Solving Time in
Pretest, Training Level Tests, and Posttest (7.1-7.6) PS
Problems across the Two Training Groups

As shown in Figure 2 the average problem-solving time in
F23 is also lower than in S22. For the level-end test and the
post-test problems, the students from F23 took significantly
less time (U = 949359.00, p < 0.001) than those from S22.
Figure 3 shows the training time in F23 is significantly lower
than the training time in S22 (U = 258301.00, p < 0.001).

Figure 3: Total Time Spent to Complete Each Training Lev-
els across Two Conditions

4.2 RQ2: Learning Gain
To answer our second research question on whether students
in F23 have a similar or better learning gain than students
in S22, we investigate their problem scores, rule application
accuracy, solution length, and learning gain in the following
sections.

4.2.1 Problem Score
The problem score equally weights high rule accuracy, lower
time, and lower solution size to reflect learning of rules (ac-
curacy) and efficient proof strategies (lower solution size)

Figure 4: Problem Score (mean) in Training-level Test and
Posttest Problems across Groups

in shorter times (reflecting developed expertise). We also
analyze each metric separately to provide a detailed under-
standing of student’s performance and learning.

Problem Score =
1

3
∗Accuracy +

1

3
∗ Size + 1

3
∗ Time (1)

Problem scores across the groups in the pretest were similar,
and our statistical tests found no significant differences in
this phase. In the posttest problems, the problem scores for
the students in F23 (Mean = 0.75, SD = 0.22) were signif-
icantly higher (U = 50518.00, p = 0.009) than the problem
scores for the students in S22 (Mean = 0.70, SD = 0.22)
(Figure 4).

Upon analyzing the rule application accuracy, which de-
pended on students’ knowledge of domain rules, we found no
significant differences between the two training conditions in
training level-end problems. In the posttest problems, the
students in S22 had a marginally higher rule accuracy than
the students in F23 (U = 41025.50, p = 0.06).

Logic proofs within DT are open-ended and may have mul-
tiple solutions with different lengths. In F23, the multiple-
choice window presents the solution options that are all log-
ically correct but may not lead to the most optimal solution.
A significantly lengthier solution may indicate that the stu-
dents may use the multiple-choice window to derive random
new statements or all possible new statements and complete
the solution. A Mann-Whitney U test indicates that the
solution lengths for the posttest problems between the two
conditions are not significantly different (U = 41275.50, p =
0.07), dismissing the possibility that students in F23 ran-
domly selected solutions from the multiple-choice window.

We categorized students with pretest scores below the 25th
percentile as low scorers, students with pretest scores be-
tween the 25th and 75th percentile as medium scorers, and
students above the 75th percentile as high scorers. As shown
in Table 1, using the multiple-choice window saved time for
all three pretest score groups. The low score group from

Table 1: Moderation Analysis with Posttest Performance across Two Training Conditions Categorized on Pretest Scores.
[Note: Blue* indicates a significant difference, and bold indicates marginally significant difference.]

Learning Group Training Group
Posttest Score

Mean (SD)

Rule Accuracy

Mean (SD)

Problem Time

Mean (SD)

Solution Length

Mean (SD)

Low Scorers

(<25th percentile) (N=26)

F23 0.712 (0.247)* 0.65 (0.25) 278.766 (374.901)* 8.346 (3.099)*

S22 0.601 (0.224) 0.742 (0.161)* 758.017 (1212.188) 10.192 (5.348)

Medium Scorers

(25th-75th percentile) (N=46)

F23 0.74 (0.223) 0.693 (0.245) 265.087 (384.897)* 8.37 (3.443)

S22 0.699 (0.227) 0.742 (0.179) 488.956 (728.04) 8.891 (3.6)

High Scorers

(>75th percentile) (N=28)

F23 .801 (0.186) 0.779 (0.224) 267.485 (439.143) 7.869 (2.936)

S22 0.808 (0.189) 0.789 (0.17) 407.095 (725.333) 7.464 (2.709)

F23 got the most benefits with much better posttest scores,
shorter proofs, and much less problem completion time (al-
though with a slightly lower rule accuracy) compared to the
low score group in S22.

4.2.2 NLG and Learning Efficiency
Normalized learning gain is calculated using the average
problem scores on the pre- and posttest problems with the
equation [7]:

NLG =
(posttest score− pretest score)√

(1− pretest score)
(2)

where, NLG is scaled between 0 and 1. We define Learning
Efficiency (LE) by the following equation:

LE =
NLG

Tutor completion time
(3)

The 12 students who had perfect pretest scores were dis-
carded from our study as a perfect pretest score implies a
strong understanding of concepts already; therefore, learn-
ing gain may not be relevant to them. We found no signif-
icant difference in the average NLG between students from
F23 and S22 (U = 1141.0, p = 0.14). As shown in Table
2, students from F23 had significantly higher LE than those
from S22 (U = 1791.00, p < 0.001). In Figure 5, we ob-
served that the mean LE for F23 exceeds that of S22 and
that the LEs for F23 exhibit a shift towards higher positive
values compared to S22.

Table 2: Normalized Learning Gain (NLG) across the Two

Training Groups [Note: Blue* indicates a significant differ-
ence.]

Group

(N)

Pretest

Score

Mean (SD)

Posttest

Score

Mean (SD)

NLG

Mean (SD)

LE

Mean (SD)

F23 (42) 0.66 (0.21) 0.74 (0.12)* -0.016 (0.60) 0.34 (0.25)*

S22 (46) 0.66 (0.25) 0.69 (0.14) -0.107 (0.46) 0.06 (0.08)

5. CONCLUSION
Overall, our analysis showed that students choosing a de-
rived statement from multiple choice options (F23) took less
than half the time to complete the tutor than those required
to type the derived expressions (S22). The reduced training
time and improved learning efficiency may suggest a reduced
extrinsic cognitive load for the students in F23 since they

Figure 5: Distribution of Learning Efficiency across Two
Conditions

could see the probable solutions as options in the multiple-
choice window and did not need to think about the syntax
or symbols expected by the tutor.

Students in F23 had a marginal decrease in rule application
accuracy. We investigated the scores for individual rules fur-
ther, and students in F23 had similar or higher scores for all
the other rules except MP, MT, and DS. Interestingly, these
rules have only a single solution and don’t require typing or
selecting any solution in either version of the tutor. Thus,
we could not relate the use of a multiple-choice window with
the decrease in scores in these rules. Additionally, we can
also introduce rule application practice early in the tutor
and fade it as rule accuracy improves.

One limitation in our study is that due to IRB restrictions,
we are unable to access any grades outside the tutor and
measure long-term learning impacts. However, prior re-
search suggests that tutor completion leads to good scores
on a delayed post-test [4]. A second limitation is there may
be uncontrolled differences between student groups from the
two semesters. However, there was no significant difference
in the pretest performance between groups. A third limi-
tation is the study explores design changes to reduce cog-
nitive load in only one tutor. However, this study suggests
ways that other systems could be analyzed using data min-
ing techniques to identify time and interactions that may be
sources of extraneous load.

6. ACKNOWLEDGMENTS
The work is supported by NSF grant 2013502.

7. REFERENCES
[1] N. Kamaruddin and S. Sulaiman. Understanding

interface design principles and elements guidelines: A
content analysis of established scholars. In Proceedings
of the Art and Design International Conference
(AnDIC 2016), pages 89–100. Springer, 2018.

[2] S. Kardan and C. Conati. Providing adaptive support
in an interactive simulation for learning: An
experimental evaluation. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems, pages 3671–3680, 2015.

[3] R. Lewis, S. Stoney, and M. Wild. Motivation and
interface design: maximising learning opportunities.
Journal of Computer Assisted Learning, 14(1):40–50,
1998.

[4] B. Mostafav and T. Barnes. Exploring the impact of
data-driven tutoring methods on students’
demonstrative knowledge in logic problem solving.
International Educational Data Mining Society, 2016.

[5] B. Mostafavi, G. Zhou, C. Lynch, M. Chi, and
T. Barnes. Data-driven worked examples improve
retention and completion in a logic tutor. In Artificial
Intelligence in Education: 17th International
Conference, AIED 2015, Madrid, Spain, June 22-26,
2015. Proceedings 17, pages 726–729. Springer, 2015.

[6] F. Paas, A. Renkl, and J. Sweller. Cognitive load
theory and instructional design: Recent developments.
Educational psychologist, 38(1):1–4, 2003.

[7] P. Shabrina, B. Mostafavi, S. D. Tithi, M. Chi, and
T. Barnes. Learning problem
decomposition-recomposition with data-driven chunky
parsons problems within an intelligent logic tutor. 2023.

[8] J. Sweller, J. J. Van Merrienboer, and F. G. Paas.
Cognitive architecture and instructional design.
Educational psychology review, 10:251–296, 1998.

[9] M. Ueno and Y. Miyazawa. Irt-based adaptive hints to
scaffold learning in programming. IEEE Transactions
on Learning Technologies, 11(4):415–428, 2017.

APPENDIX
A. INTERFACE FOR TWO PROBLEM TYPES
In the study, the tutor presents two different problem types:
Problem Solving (PS) andWorked Example (WE). In Figure
6, the PS interface shows how students iteratively derive
intermediate nodes to complete the solution. There is a
“Get Hint” button at the bottom.

In Figure 7, the WE interface is shown where, at the bottom
of the interface, students click the Next and Previous arrows
to proceed through the solution. The explanation for each
worked step is displayed below the solution workspace.

Figure 6: Problem Solving (PS) Interface

Figure 7: Worked Example (WE) Interface

