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ABSTRACT
Tailoring written texts to a specific audience is of particular
importance in settings where the embedded information af-
fects decision-making. Existing methods for measuring text
complexity commonly rely on quantitative linguistic features
and ignore differences in the readers’ backgrounds. In this
paper, we evaluate several machine learning models that de-
termine the complexity of texts as perceived by teenagers in
high school prior to deciding on their postsecondary path-
ways. The models are trained on data collected at German
schools where a total of 3262 German sentences were anno-
tated by 157 students with different demographic character-
istics, school grades, and language abilities. In contrast to
existing methods of determining text complexity, we build
a model that is specialized to behave like the target au-
dience, thereby accounting for the diverse backgrounds of
the readers. We show that text complexity models benefit
from including person-related features and that K-Nearest-
Neighbors and ensemble models perform well in predicting
the subjectively perceived text complexity. Furthermore,
SHapley Additive exPlanation (SHAP) values reveal that
these perceptions not only differ by the text’s linguistic fea-
tures but also by the students’ math and language skills and
by gender.
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1. INTRODUCTION
Text complexity, i.e., the level of difficulty of intricacy, af-
fects a reader’s overall perception of the content and how
the embedded information is processed [20]. If a text is not
adjusted to the intended audience, transmitting the relevant
information can become largely ineffective [8] and knowledge
gaps within the audience may occur [14].

Early research on text complexity introduced readability

scores based on countable lexical or syntactic elements such
as the Flesch-Reading-Ease (FRE) [10]. More recent stud-
ies on text complexity mostly relate to text simplification for
non-native speakers and train machine learning models with
annotated texts to incorporate additional features such as a
foreign language learner’s skills [16]. Yet, due to the multi-
dimensional nature of text complexity [20] and the specific
needs of the audience, existing models to predict the per-
ceived text complexity are scarce. In this paper, we thus
build a model to predict text complexity as perceived by
teenagers prior to major educational choices. To train the
model, we self-collected data from 157 high school students
in Germany who completed a short survey and then anno-
tated 20 to 100 sentences from official study guides with
regard to text complexity. The dataset is described in more
detail in section 3 and will be published along with this
work1.

In order to incorporate person-related features such as gen-
der, age, language and cognitive abilities, mother tongue,
and occupational interests into the predictions, we evaluate
the performance of different feature-based machine learning
models. The results show that K-Nearest-Neighbors (KNN)
and ensemble models based on KNN and XGBoost achieve
good results in predicting the perceived text complexity. Im-
portantly, our models outperform baseline models that do
not include person-related features. Furthermore, we per-
form a SHapley Additive exPlanation (SHAP) [15] analysis
on the best performing model to get a better understanding
of the model’s predictions. The model learned that students
with stronger math and language skills as well as male stu-
dents tend to perceive a text as less complex.

The study contributes to different areas of text complex-
ity. First, we show that person-related features enhance the
model’s predictions and outperform baseline models. Sec-
ond, we show that adjusting text complexity to the reader’s
needs goes beyond text simplification. The results reveal
severe differences based on the students demographic back-
grounds and language and cognitive skills so that using text
simplification tools is unlikely to serve the students’ needs
in our context. Third, we provide a novel dataset based
on a large number of annotators who differ in their individ-
ual characteristics. Related datasets usually lack individual
characteristics of the annotators [18]. Overall, this paper’s
insights are important because adjusting informational texts

1https://github.com/Boshl/StudentAnnotations
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to the needs of the target audience comes at low cost but
may help attracting underrepresented groups in specific oc-
cupations.

2. RELATED WORK
This paper improves upon existing models on determining
a written text’s complexity or readability. Early research
on text complexity dates to the late eighteenth century [23]
and developed various formulas for determining readability.
Typically, these formulas calculate readability scores based
on quantitative linguistic features such as syllables per word,
sentence length, and vocabulary difficulty. A popular and
still widely used measure is the Flesch-Reading-Ease (FRE),
developed for the English language by Flesch [10] and ad-
justed to the German language by Amstad [1]. The FRE
score maps the years of schooling a reader must have com-
pleted to understand the text (see Appendix A). It ranges
from 0 to 100 where higher scores refer to less complex texts.
Similar measures are the Gunning-Fog index [12] and the
LIX readability score [2].

While early research concentrated on the development of
static formulas, enhancements in machine learning and nat-
ural language processing allowed to develop predictive mod-
els to determine text complexity. These predictions can be
made for single words [19] or for entire sentences [18, 17]. For
instance, on the level of sentences, the Text Complexity DE
Challenge 2022 (TCDE) [18] aimed for building regression
models that could predict text complexity solely on linguis-
tic features. The sentences were extracted from Wikipedia
articles and then rated by non-native German speakers. The
results show that ensemble models consisting of transform-
ers and linear regression models could achieve good results
in predicting the average text complexity scores [17].

Existing research on text complexity as perceived by the in-
tended audience is scarce and mostly related to language
learners or experts. The few studies show heterogeneity in
these subjective assessments and also surprising results such
as that experts perceive domain-specific texts as more com-
plex than non-experts [22]. Understanding how readers per-
ceive a text is of particular importance to transmit the em-
bedded information efficiently, extending beyond mere text
simplification: Psychological research suggests that a low
level of text complexity may lead to inattention during read-
ing because mind wandering can increase [11]. While a large
number of models exist that solely use linguistic features to
predict a text’s readability, there is a considerable gap in
understanding how the intended audience actually perceives
a text’s complexity.

3. DATA
Data on teenagers’ perceived text complexity was collected
in four different classroom settings after a short presentation
on generative AI in education. The presentation excluded
any association with text complexity to avoid any bias aris-
ing from anchoring effects [24]. Afterwards, all teenagers
accessed a randomly assigned annotation set by connecting
to an online tool with their cell phones (see Appendix B.1).

3.1 Compilation of text corpus
The text corpus comprises sentences evaluated during the
Text Complexity DE Challenge 2022 (TCDE), sentences from

student guides on study and career choices, and two edge
sentences representing the extreme ends of the FRE distri-
bution.

The sentences from the TCDE challenge cover a total of
1000 different sentences from Wikipedia articles and have
already been evaluated for readability by non-native Ger-
man speakers during the challenge. This allows us to train
a model with annotations made by a different target group.
The sentences from student guides are based on the annually
updated books ”Study and Career Choice” published by the
German Federal Employment Agency. These are provided
to high school students to assist them during the transition
from high school to college or to the labor market [5, 13]. We
digitized all guides from 1971 to 2021 and extracted texts
on fields of study and occupations using PDFAct [4]. After-
wards, we automatically checked for punctuation and gram-
mar using language tool python2. The resulting text corpus
had 1336 unique sentences, each assigned a FRE score for
German language using the Python library textstat3. Fi-
nally, all sentences were categorized into five groups based
on their FRE scores, ranging from least (FRE: 100 to 80)
to highly complex (FRE: 0 to 20). The edge sentences in-
clude one least complex (FRE score: 91.3) and one highly
complex (FRE score: 9.75) sentence related to higher edu-
cation. The exact wording of these sentences is provided in
Appendix B.2.

3.2 Data Collection
We collected students’ perceptions of the complexity of dif-
ferent sentences via a simple online survey tool (see Ap-
pendix B.3). The first question asked for consent to use
the students’ data for research purposes. Afterwards, the
survey started with eight questions on their demographic
characteristics (age, gender), information on their language
skills (language spoken at home, self-stated German skills),
their plans after high school (type of education, field), and
their school grades in German language and Maths. Table
4 in Appendix B.3 provides a complete list of variables and
values of the survey. Finally, the students were asked to rate
the complexity of twenty sentences on a 5-point-Likert scale,
one sentence at a time.

To ensure a high linguistic diversity in the rated sentences
and facilitate comparison among students with varied back-
grounds, we randomly selected sentences to be rated from
different subsamples of the text corpus, as illustrated in Ap-
pendix B.4. In the first setting, each student received a
unique set of sentences to maximize linguistic diversity. In
the second setting, all students received the two edge sen-
tences, while the remaining sentences varied uniquely for
each student, again to maximize the diversity. In the third
and fourth setting, we subsequently increased the number of
overlapping sentences to account for the heterogeneity across
students.

We combined all individual characteristics and annotations
into one dataset. To comply with data protection regula-
tions, we excluded responses from students below the age of
16 and those who did not consent to the use of their data

2https://pypi.org/project/language-tool-python/
3https://pypi.org/project/textstat/



Table 1: Overview annotations
Setting Number of Number of IAA

students sentences
1 29 473 -
2 67 1296 0.17
3 56 1073 0.22
4 5 420 0.20

Total 157 3262

0 20 40 60 80 100
FRE

0

200

400

600

800

Fr
eq

ue
nc

y

Distribution of FRE Values
All Texts
Study and Career Choice
Wikipedia

Figure 1: Distribution of FRE scores

for research purposes.

3.3 Resulting Dataset and Evaluation
The final dataset comprises 3262 sentences for which stu-
dents indicated how they perceive the sentences’ complex-
ity. In total, 157 different students evaluated 1336 unique
sentences, meaning that every sentence was annotated on av-
erage 2.44 times (see Table 1). We calculate Krippendorff’s
α for ordinal data using the Python library krippendorff 4 to
measure the inter annotator agreement (IAA) between the
students. Table 1 reveals that the students achieve rather
low IAA scores between 0.17 and 0.22. Figure 1 illustrates
the distribution of the sentences’ complexity based on their
FRE scores. It shows that the majority of sentences are
more complex (indicated by lower FRE score) than what
would be suitable for high school students (FRE score of 60
to 80). However, the students rated 49.2% of the sentences
as very easy, 25.4% as easy, 17% as medium, 6.3% as hard
and 2.1% as very hard. The distribution of perceived text
complexity is thus heavily skewed towards the easier end of
the spectrum (see Appendix B.5).

4. METHODOLOGY
Based on person-related and linguistic features, we train
machine learning models to perform text complexity pre-
dictions. We furthermore use a SHAP analysis to explain
how each feature contributes to the best performing model’s
predictions. The feature selection, regression models, and
SHAP analysis are explained in the following.

4https://pypi.org/project/krippendorff/

4.1 Person-related and Linguistic Features
We include eight person-related features based on the short
survey that students completed before annotating the sen-
tences (see Section 3). These features are age, gender, lan-
guage spoken at home, self-stated German skills, type of
training after high school, field or occupation, German grade
and Maths grade. We removed the annotations of seven stu-
dents who stated non-binary or skipped this question in the
survey due to them being underrepresented in the dataset.
For further details on the encoding, see Appendix B.6

To also account for linguistic features, we train two BERT
models to label the complexity of each sentence. These are
trained on the TCDE dataset and on our self-collected stu-
dent dataset, respectively. Both models were trained sep-
arately due to differences in annotation settings, groups of
annotators, and overall sentence compilation. We later use
the predictions of both models as features for our perceived
text complexity model. Training two distinct models is fur-
thermore advantageous as regression models can weigh the
importance of the corresponding features separately.

For the predictions based on TCDE dataset, we fine-tune
DistilBERT [21] for the regression task. Following [3], we
use the pre-trained distilbert-base-german-cased model and
set its hyperparameters as follows: learning_rate=2e-5,
batch_size=10 and epochs=5. After training, we use this
model to predict average values on our student dataset.

For the predictions based on student dataset, we calculate
the arithmetic mean of the students’ complexity ratings for
each sentence. We fine-tune variations of pre-trained BERT
[9] models to predict the average text complexity scores for
each of these sentences. We perform an exhaustive search
with a 5-fold cross-validation to find the best hyperparame-
ters for the model based on the range of values as suggested
in [9]. We find the best hyperparameters to be as follows:
learning_rate=2e-5, batch_size=32 and epochs=2. For
the implementation we use the Huggingface5 library and ad-
just the model to perform a linear regression. We compare
the results of German and multilingual BERT models and
use the resulting predictions as an input feature for the per-
ceived text complexity models.

The predictions of the BERT models are the only linguistic
features that we include in the regression model. All remain-
ing features are the aforementioned person-related features.

4.2 Perceived Text Complexity Prediction
To incorporate the linguistic and person-related features for
the text complexity predictions, we train several machine
learning models to perform a regression task. We use the
student-annotated dataset containing 3146 annotated sen-
tences. We split the data into 80% training data and 20%
test data. All models are optimized using a 5-fold cross-
validation and a parameter grid for hyperparameter tun-
ing. We use the following regression models: Linear Re-
gression (LR), Support Vector Regression (SVR), XGBoost
(XGB), K-Nearest-Neighbors (KNN) and Multilayer Percep-
tron (MLP). For further information on the model’s best hy-
perparameters, see Appendix B.7. We evaluate all possible

5https://huggingface.co/



Table 2: Perceived Text Complexity Model Evaluation

Model RMSE R2

Baseline (Mean) 1.016 0.000

Avg. Text Complexity (BERT) 1.011 0.047

Support Vector Regression (SVR) 0.966 0.071

Linear Regression (LR) 0.948 0.106

XGBoost (XGB) 0.926 0.146

Multilayer Perceptron (MLP) 0.911 0.174

K-Nearest-Neighbors (KNN) 0.883 0.224

SVR + LR 0.933 0.133

LR + MLP 0.921 0.156

SVR + MLP 0.919 0.159

LR + XGB 0.916 0.166

KNN + SVR 0.898 0.197

XGB + MLP 0.898 0.198

SVR + XGB 0.891 0.217

KNN + LR 0.889 0.215

KNN + MLP 0.876 0.237

KNN + XGB 0.875 0.238

combinations of the base regressors listed above and adjust
the weight of the voting regressor to get the best possible
results. We decide to implement a voting regressor due to
the fact that ensemble models can improve the robustness
and reduce overfitting.

4.3 SHAP Analysis
SHapley Additive exPlanations (SHAP) [15] is a method
to explain how each feature in a dataset contributes to a
model’s prediction. To calculate the SHAP value ϕi for fea-
ture i, the model needs to be retrained on all possible feature
subsets S ⊆ F , where F is the set of all features. A model
fS∪{i} that was trained including feature i is then com-
pared to a model fS that is trained excluding feature i. The
model’s predictions are subtracted fS∪{i}(xS∪{i})− fS(xS)
on the current input xS in the set S with and without
the presence of feature i. SHAP values are described as
a weighted average of all possible differences [15]:

ϕi =
∑

S⊆F\{i}
|S|!(|F |−|S|−1)!

|F |!

[
fS∪{i}(xS∪{i})− fS(xS)

]
.

We use SHAP values to interpret the feature importance of
our selected features. Moreover, we analyze how different
values of our features affect the predictions of our model.
Due to the additive property of SHAP values, it is possible
to perform the analysis for specific instances.

5. RESULTS
In this section, we evaluate average and perceived text com-
plexity predictions of several models. Our main evaluation
metric is the root mean squared error (RMSE) because it
penalizes larger errors more severely. A SHAP analysis then
reveals how the features affect the best performing model’s
predictions.

Figure 2: SHAP Feature Importance

5.1 Model Evaluation
First, we measure the quality of the results for the average
text complexity score predictions for the different large lan-
guage models that were trained using our student dataset.
The lowest RMSE of 0.889 is achieved by fine-tuning a bert-
base-german-cased model (see Appendix B.8). Thus, we use
the predictions of this German BERT model as an input
feature for training the perceived text complexity models.

As shown in Table 2, all regression models that are trained
on person-related features outperform the baseline models
when predicting the text complexity as perceived by stu-
dents. K-nearest-Neighbors is the best single regressor and
achieves an RMSE of 0.883 and an R2-Score of 0.224. Most
of the ensemble models that include KNN outperform the
other models. The best results are achieved by combin-
ing KNN and XGB into a weighted voting regressor (KNN:
80%, XGB: 20%). This model had an RMSE of 0.875 and
R2-Score of 0.238. We assume that KNN achieves supe-
rior results compared to other models because it maps all
instances in a multidimensional space, thereby making pre-
dictions based on a conjunction of similar characteristics,
and considering annotations from students with similar pro-
files when making predictions.

5.2 Model Explanation
We perform a SHAP analysis to analyze how the different
features influence the predictions of our best performing
model, i.e., the voting regressor consisting of KNN (80%)
and XGB (20%). We illustrate the results using the feature
importance (see Figure 2) and the feature influence (see Fig-
ure 3). The feature importance is measured by the mean
absolute SHAP values aggregated over all instances. In Fig-
ure 2, the x-axis depicts the mean absolute SHAP values of
the features with a higher value reflecting a stronger impact
on the predictions of the model. The feature impacts are
shown in Figure 3 where the position of a dot on the x-axis
represents the SHAP value of the feature for that specific
instance. A positive SHAP value indicates an increase in
the predicted value, meaning that the model assesses the
text as more complex. In turn, a negative SHAP value indi-
cates the opposite, i.e., a lower value for the predicted text
complexity. The color gradient represents the features’ char-
acteristics (from blue to red) and depends on the intensity



Figure 3: SHAP Feature Influence

of the feature values.

With a mean absolute SHAP value of 0.14, the TCDE pre-
dictions are the most relevant feature for our predictions and
even have a higher importance than the student predictions
with a SHAP value of 0.06. This difference may stem from
the TCDE dataset sentences being annotated on average 9.5
times, while sentences in the student dataset are annotated
on average only 2.4 times. Annotating the sentences mul-
tiple times seemingly increases the reliability of the dataset
when it comes to the average text complexity values. The
feature influence in Figure 3 reveals, that the TCDE predic-
tions have a linear relationship with the model’s prediction.

Regarding the person-related features, the student’s maths
grade emerges as the most influential aspect for the model,
with a feature importance score of 0.09. The feature impact
reveals that students with higher math grades tend to rate
sentences as less complex. One explanation is that students
with high math grades often have high cognitive abilities
that can also enhance language abilities. However, contrary
to expectations, Figure 3 also shows that the model learned
that outliers exist, i.e., students with low math grades who
perceive the texts as less complex.

In addition, student’s German grade and the language they
speak at home also achieve high SHAP values of 0.07. Both
of these features are indicators for the students’ actual lan-
guage skills. The SHAP values in Figure 3 reveal that the
language the students speak at home – German (blue), Ger-
man and another language (purple) or no German (red) –
affect the predictions of the model. The model’s predictions
are adjusted downwards if the student speaks a foreign lan-
guage at home. This effect is even stronger when the stu-
dents state to not speak any German at home.

Finally, even though the students’ gender has a small effect
on the predictions, there is a recognisable separation be-
tween male (0) and female (1) students. The model learned

to rate sentences as slightly less complex when the person
is male and slightly more complex when the person is fe-
male student. This relationship may be attributed to male
teenagers’ overconfidence, leading them to rate sentences as
less complex compared to female students [7].

6. CONCLUSION
In this paper, we investigate whether incorporating person-
related features in machine learning models improve the pre-
diction of perceived text complexity. Utilizing data collected
from 157 German high school students who rated the com-
plexity of different sentences, we train multiple regression
models to predict the perceived text complexity based on dif-
ferent student profiles and few linguistic features. Our find-
ings show that K-Nearest-Neighbor (KNN) and ensemble
models perform well in predicting the perceived text com-
plexity. Most importantly, all regression models that incor-
porate person-related features outperform the baseline mod-
els that predict average text complexity values. A SHAP
analysis reveals that students’ grades and the language they
speak at home play a decisive role for the predictions of our
model.

Future research could leverage this method to enhance gen-
erative models tailored to specific target groups beyond lan-
guage learners or individuals with low literacy levels. Pro-
viding teenagers from various backgrounds with texts ad-
justed to their needs may help them processing the embed-
ded information. However, students’ perceptions may be
influenced by over- or underestimation of their abilities, war-
ranting investigation into measuring these effects in future
works. Similarly, our dataset could be extended to include
other subgroups of the population to allow adjusting texts
also to their needs.
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Table 3: Flesch-Reading-Ease (FRE)

FRE score Readibility Educational level
0 to 30 very difficult Academics
30 to 50 difficult
50 to 60 fairly difficult
60 to 70 standard secondary school
70 to 80 fairly easy
80 to 90 easy
90 to 100 very easy primary school

Table based on [10]

Figure 4: Screenshot of online annotation and survey tool

APPENDIX
A. INTRODUCTION
Table 3 shows how the Flesch-Reading-Ease is used to deter-
mine the educational level required to understand a certain
text.

B. DATA
B.1 Screenshots of the online tool
Figure 4 shows screenshots of the online tool that we used to
run the survey. The students scanned QR-codes using their
mobile phones and got redirected to their individual survey
page.

B.2 Edge sentences
Two edge sentences were added to the dataset to capture
a least complex and a highly complex sentence. These sen-
tences are: ”The uni has a mensa.” (in German: ”Die Uni
hat eine Mensa.”) with a Flesh-Reading-Ease score (FRE
score) of 91.3 and ”You can find detailed information on
the requirements, course content and the course of a teacher
training course in the information sheets of the student advi-
sory services of the individual universities and federal states
or in the current version of the teacher training laws of the
federal states or the teacher examination regulations, which
you can find on the websites of the relevant federal state
ministries.” (in German: ”Detailinformationen zu den Vo-
raussetzungen, den Studieninhalten und dem Ablauf eines
Lehramtsstudiums finden Sie in den Merkblättern der Stu-
dienberatungsstellen der einzelnen Hochschulen und Länder
bzw. können Sie der jeweils gültigen Fassung der Lehrerbil-
dungsgesetze der Länder oder den Lehramtsprüfungsordnun-

Table 4: Variables describing individuals

Variable Values
Age 15 or younger; 16; 17; 18 or older

Gender male; female; non-binary

Language at home German; another language; Ger-
man & another language

German skills very good; good; medium; bad;

(self-stated) very bad

Type of training Vocational training; college; not
yet decided

Field/occupation STEM; Languages & Humani-
ties; Social Sciences; Teaching
& Education; other; not yet
decided

German grade very good; good; satisfactory;
sufficient; poor

Maths grade very good; good; satisfactory;
sufficient; poor

Note: Students could refuse to answer a question by
ticking an additional box that was stating ”Don’t want
to answer” or skipping the question.

gen entnehmen, die Sie auf den Internetseiten der zuständi-
gen Landesministerien aufrufen können.”) with a FRE score
of 9.75.

B.3 Details on survey
Further details about the answering options of the survey as
shown in Table 4.

B.4 Survey Settings
Figure 6 illustrates the composition of the survey within
each setting.

B.5 Distribution of Labels
Figure 5 visualizes students’ perceived text complexity of
the sentences compared to their FRE scores. Each point
is one annotation in the four different settings. The green
shaded area provides the overlapping regions, i.e., where the
perceived text complexity equals the FRE scores. The blue
shaded are on the bottom left part are those annotations
where students perceived the texts’ complexity as easier to
read than suggested by the FRE scores. Figure 5 shows that
the vast majority perceived the readability of a text as less
complex than suggested by the FRE scores.

B.6 Person-related Feature Encoding
Age: Ranges from 16 to 18 years old. We removed students
that were 15 or younger due to data protection regulations.

Gender: Binary encoding: Male (0), female (1). We removed
the annotations of seven students who stated non-binary or
who skipped this question in the survey.

Language at home: Ordinal encoding: German (1), German
and another language (2), another language (3)



Figure 5: FRE scores and students’ perceived text complexity

Figure 6: Structure of different settings

German skills (self-stated): Ranges from very good (1) to
very bad (5)

Type of training: Binary encoding: Does not know yet (0),
knows if study or vocational training (1)

Field / occupation: Binary encoding: Does not know field or
occupation yet (0), knows field or occupation (1)

German grade: Ranges from very good (1) to no answer
(6)

Maths grade: Ranges from very good (1) to no answer (6)

School type: Academic high school (1), mixed school types
(2), comprehensive school (3)

B.7 Model Hyperparameters
We use the following regression models and found these hy-
perparameters to achieve the best results:

Linear Regression (LR): -

Support Vector Regression (SVR):
kernel=rbf, degree=2, gamma=0.1, C=10, epsilon=1

Multilayer Perceptron (MLP):

Table 5: Average Text Complexity Predictions

model name RMSE
distilbert-base-multilingual-cased 0.895
distilbert-base-german-cased 0.890
bert-base-multilingual-cased 0.892
bert-base-german-cased 0.889

activation=relu, hidden_layer_sizes=(100, 50),
learning_rate=adaptive, alpha=0.01, solver=adam,
max_iter=5000

XGBoost (XGB) [6]:
gamma=0.5, learning_rate=0.1, n_estimators=100,
min_child_weight=1, subsample=0.6, max_depth=7,
colsample_bytree=0.8

K-Nearest-Neighbors (KNN):
k=15, weights=distance, metric=euclidian

B.8 BERT Model Comparison
Table 5 shows that all pre-trained models achieve compa-
rable RMSE values ranging from 0.889 to 0.895. BERT
models outperform DistilBERT models slightly, and Ger-
man models generally outperform multilingual models. Ta-
ble 2 compares these models. The hyperparameter values
for the best model, bert-base-german-cased, are set as fol-
lows: batch_size=32, epochs=2 and learning_rate=2e-5.


