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ABSTRACT
This study investigates the dynamics of group interactions
within an immersive collaborative astronomy learning envi-
ronment, focusing on the role of individual contributions
and their impact on group dynamics. Through a multi-
level analytical framework, we examined the distribution
of constellation annotation behaviors among group mem-
bers, the influence of individual annotations on peers’ navi-
gational choices and heading trajectories, and the emergence
of leader-follower patterns through coordinated navigation.
Utilizing the Gini coefficient to quantify the equity of par-
ticipation on annotations, our findings revealed that high-
performing groups exhibited higher Gini coefficients, indi-
cating less equitable distribution of contributions. Further
dynamic time wrapping clustering analysis investigated the
impacts of individual annotations on peer navigation, un-
covering two distinct response patterns to peer annotations
that characterize pairwise interactions: immediate response
and individual exploration. Examining the temporal evolu-
tion of these response patterns throughout the session, we
found that high-achieving groups engaged in more individual
exploration patterns during the middle of the task. Collec-
tively, the study’s findings suggest that an uneven distribu-
tion of annotation contributions and individual exploration,
rather than hindering, may underpin effective collaborative
learning within groups. This comprehensive analysis high-
lights the complex interplay between individual contribu-
tions, group coordination, and emergent leader roles, en-
riching an understanding of the mechanisms that drive pro-
ductive collaboration.
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1. INTRODUCTION

Collaborative learning environments, where students work
together in small groups to complete tasks, have become
increasingly prevalent in both formal and informal learn-
ing settings [8]. A growing body of research has demon-
strated the benefits of collaborative learning for developing
critical thinking skills, metacognition, and domain-specific
knowledge [4, 19]. However, simply putting students to-
gether does not guarantee successful collaboration or learn-
ing [22, 27]. The quality of the group interactions and dy-
namics significantly shape the effectiveness of collaboration
[8]. While prior work has provided insights, there remains
a gap in understanding the complex interplay between in-
dividual and group learning processes. As collaboration in-
volves constructing shared meaning through reciprocal en-
gagement [2,12], it is critical to analyze how individual con-
tributions impact other group members’ actions and con-
stitute collaborative interactions. Collaboration analytics
must incorporate analysis at both the individual and group
levels [23], focusing on the nuanced interactions between
them.

This study seeks to bridge this gap through a fine-grained
analysis of how individual behavior influences other group
members within an immersive astronomy simulation plat-
form. We focus on reciprocal interactions through the lens
of annotation behaviors and their impact on navigation. Ex-
tending our prior work exploring annotation and re-annotation
behaviors [35], the current study investigates how one stu-
dent’s annotation impacts other members’ navigational choices
and heading trajectories within the simulation. By exam-
ining peer responses to individual annotations and emerg-
ing interaction patterns, we aim to uncover the dynam-
ics of group interactions that underpin effective collabora-
tive learning. This work examines annotation coordination
behaviors at multiple levels of analysis, including annota-
tion distribution within groups, pairwise interactions, and
the identification of collaboration behaviors through coordi-
nated navigation. This study addresses the following ques-
tions: (1) How does individual annotation distribution, mea-
sured by Gini coefficients, vary across groups and relate to
learning outcomes? (2) How do annotations influence the
navigational choices and heading trajectories of their group
members? (3) Can we identify distinct patterns and dy-
namics by analyzing coordinated navigation trajectories in
response to peer annotations?

Integrating these research questions provides a nuanced un-
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derstanding of the interrelations between individual contri-
butions to group tasks, the influence of these contributions
on group dynamics, and the resulting patterns of collabora-
tion.

2. RELEVANT WORK
2.1 Collaboration in Immersive Learning En-

vironments
Immersive learning environments, like Augmented Reality
(AR), have emerged as an engaging platform for learning
[11]. These environments enhance authentic learning expe-
riences by facilitating a sense of immersion [32], and have
shown to benefit face-to-face collaboration [21, 32]. These
environments, however, also present challenges. Immersive
platforms like AR headsets [14] and virtual environments
where individuals often work on separate devices or inter-
faces [6] might hinder awareness of peer’s gaze and focus,
potentially creating a disconnection between social interac-
tion and problem spaces. This adds complexity to linking
virtual objects to discussions and building shared under-
standing, raising questions how students interact and estab-
lish mutual awareness within these environments. Previous
research has used monitoring tools (e.g., eye trackers and
motion trackers) to capture student engagement [3], yet the
finer details of how students navigate and interact within
these virtual environments remain largely unexplored. This
study bridges this gap by examining the reciprocal relation-
ship between navigation decisions and annotations within
an astronomy simulation.

2.2 Social Annotation
Social annotation (SA) tools enable users to create and share
annotations such as comments, notes, explanations, or other
types of external remarks on online resources [18, 36]. The
collaborative nature of SA tools encourages annotation shar-
ing with peers or group members, catalyzing discussions
and enhancing knowledge sharing [33]. SA tools thus serves
as social platforms that enable meaningful interactions and
knowledge co-construction. Empirical studies in computer-
supported collaborative learning contexts demonstrate SA’s
potential benefits, including promoting knowledge sharing,
inquiry learning, cognitive engagement, and idea argumen-
tation [5, 15, 20, 33]. However, most research primarily fo-
cuses on analyzing the quantity and quality of annotations
produced by initiators (i.e., annotators), with limited stud-
ies delving into how annotations are received and interacted
with by peers. To the best of our knowledge, only few stud-
ies have analyzed annotation replies [5, 33, 35], suggesting
that both annotations and replies were positive indicators
of interactions. This gap warrants further investigation into
the reciprocal nature of annotation interactions — how in-
dividual annotations influence peers’ attention of focus and
shape collaboration processes. Such investigations can con-
tribute to a better understanding of the potential of SA tools
in supporting collective knowledge construction.

3. METHODS
3.1 Participants
The participants included 77 undergraduates enrolled in an
introductory astronomy course at a Midwestern United States
university. The course included a main lecture and seven

smaller discussion sections. Participants were randomly se-
lected from three discussion sections to ensure diverse rep-
resentation. Students participated in over three weekly 50-
minute lab sessions: two introductory sessions and one sim-
ulation session. This cross-device simulation is networked
between tablet and AR users within each group, allowing
all members to annotate the constellations of interest, share
location information, and transition to a peer’s locations
and perspectives. Annotations trigger an information box
displaying the star’s name, position, and constellation mem-
bership, with the constellation highlighted and visible to the
whole group (see Appendix A). To foster accountability and
recognition within the group, each group member was as-
signed a unique color to track their annotations. In the
final session, students engaged in the ”Lost at Sea” problem-
solving task, determining the latitude and longitude of a
space capsule’s unknown location using the simulation. The
4-part task involved identifying constellations to determine
hemisphere and cardinal directions, then calculating latitude
and longitude. Groups of 3-4 students was given one AR
headset and two touch-based tablets, resulting in 25 groups.
Participants had the option to work at a table where no data
was collected; 16 groups remained for further analyses.

3.2 Data Sources
Log and assessment data were collected during the simula-
tion session. Interaction logs recorded rows of events, where
event = Username, Groupname, Device, Activity, Event,
UTC time, Heading vectors, Simulation time, Crashsite, Lo-
cation, Scene, Selected object, Selected star. A new event
was logged each time students changed their heading, se-
lected a star, switched scenes, or manipulated the simula-
tion time. Heading vectors (x,y,z) captured the direction
students faced (for AR) or moved their screen to look at (for
Tablet) within the simulation. This study considers only x
and y components, capturing horizontal and vertical move-
ment. Analyzing sequences of these heading vectors enables
tracing how students navigated the simulation space.

Pre-/post-assessments measured conceptual knowledge based
on an open-ended question about latitude and longitude cal-
culation. Individual responses were scored from 0 to 2 based
on completeness and accuracy: 0 for incorrect, 1 for partially
correct, and 2 for full understanding. Normalized learning
gains were calculated as: (post-pre) / (post max-pre) [13].
Groups were thus categorized as low-achieving (n=7, range:
[-0.2222, 0.1667]) or high-achieving (n=9, range: [0.3125,
0.6875]) based the distribution of average gains and diver-
gence in knowledge acquisition.

3.3 Analysis
Our analysis unfolds in three steps. First, we examine the
equity of annotation behaviors by leveraging the Gini co-
efficient to quantify the distribution of annotation contri-
butions. This analysis examines whether specific students
dominate the annotation, or if contributions are more bal-
anced. Second, we explore how individual annotations in-
fluence the heading trajectories of their peers. By tracking
changes in heading direction after an annotation was made
and comparing it to the annotator’s heading, we can assess
the extent to which individual actions can redirect the focus
of their peers. Finally, we employ Dynamic Time Warping
to uncover responsive patterns to annotations. Analyzing



the frequency of each identified pattern reveals how these
patterns evolve over time and differ across learning perfor-
mance levels.

3.3.1 Gini Coefficient
Gini coefficient quantifies the distribution of annotation be-
haviors within the group. This metric assess inequality in
distribution, ranging from 0 (perfect equality) to 1 (maxi-
mum inequality; all contributions are made by a single stu-
dent). The Gini coefficient for unordered data was calcu-
lated using the following formula: [7, 10]:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2µ

(1)

where n represents the total number of students within the
group, xi and xj respresent the counts of annotations made
by the ith and jth students respectively, and µ is the average
count of annotations per group.

3.3.2 Heading Distance Trajectories
Fig. 1 illustrates how heading distances are represented and
quantified. The heading distance measures the degree of
overlap in their fields of view, calculated as:

dEuclidean =
√

(x1 − x2)2 + (y1 − y2)2 (2)

Here, x1 and y1 represent the annotator’s heading vector
at the moment of annotations, while x2 and y2 denote the
heading vector of another device. These heading vectors act
as digital “gazes”, indicating where students were looking
within the simulation. A smaller distance suggests potential
alignment in their attention and focus, as their “gazes” were
closer together. This metric was computer for each device-
pair (i.e., AR-Tablet1, AR-Tablet2, and Tablet1-Tablet2).

Figure 1: Heading Distance and Field of View Overlap in
Simulation

Since our goal is to understand how a student’s focus changes
in response to peer annotations, we tracked their heading
distances for 80 seconds following each annotation event, re-
sulting in heading distance trajectories. This timeframe is
chosen as we observed a significant drop in the frequency of
responsive behaviors after 80 seconds, suggesting that most
meaningful responses to annotations occur within this time
window. We standardized the time sequence at 5-second in-
crements (0, 5, 10, 15, 20... up to 80 seconds), where 0 repre-
sents the moment of annotation. At each time point, head-
ing distances were assigned based on the closest available
data, ensuring the continuity and comparability of heading
trajectories. By tracking changes in heading direction rela-
tive to the annotator’s initial focus, we could quantify the
impact of annotations.

3.3.3 DTW Clustering
Dynamic Time Wrapping (DTW) is an algorithm that cal-
culates the optimal alignment between two time series se-
quences [1,17]. It allows for flexible matching between data
by wrapping the time axis iteratively and the resulting DTW
distances can be used as input for cluster analysis. The op-
timal number of clusters was determined by the Silhouette
method [24]. We used tslearn package in Python [28] to per-
form DTW clustering on the heading distance trajectories
to analyze attention change following peer annotation and
categorize these trajectories into broader behavioral clus-
ters. This categorization captures the degrees of similarity
in how students adjusted their heading (i.e., digital ”gazes”)
in response to peer annotations.

4. RESULT
4.1 RQ 1: Participation Equity
In addressing our first research question, we evaluated the
equity of participation via annotation within the simula-
tion. The Gini coefficient was employed to examine three
dimensions: total annotations initiated throughout the ses-
sion, unique constellation annotations, and frequency of be-
ing the first to annotate a constellation. Each metric reflects
a distinct aspect of participation: total annotations measure
overall engagement, unique annotations reflect the breadth
of participation in navigating the problem space through ex-
ploring diverse constellations, and first annotations evaluate
initiatives in exploring new celestial objects.

Table 1 presents a comparative analysis of the Gini coef-
ficient for these metrics across groups with varying perfor-
mance levels. Significant differences were observed between
low- and high-achieving groups. Notably, the Gini coef-
ficients were significantly higher in high-achieving groups,
suggesting that these groups exhibited a more unequal dis-
tribution of total annotations. This pattern was consistent
across the analysis of unique annotated constellations and
first annotations, indicating greater inequality in these met-
rics within high-achieving groups.

Table 1: Summary of Gini Coefficient Comparisons: High
vs. Low-achieving groups

Gini Coefficient T-statistic P-value Effect Size
Total Annotations -3.12 0.008 -1.65
Unique Annotations -3.03 0.009 -1.61
First Annotations -3.30 0.005 -1.73

4.2 RQ 2: Influence of Annotations
In response to our second research question, we computed
the heading distance as a measure of directional difference
between digital “gazes”, reflecting where students were look-
ing within the simulated night sky relative to the annotated
object. Shorter distances reflect more closely aligned“gazes”
and a greater overlap in fields of view. In our context, an
overlap in the fields of view means students looking at sim-
ilar areas of the simulated sky (see Appendix B), indicat-
ing a level of shared attention and focus directed towards
the annotated constellations. We can infer the degree of vi-
sual overlap from the heading distance between students (see
Fig. 1 for the relationship between heading distance and the
percentage overlap of students’ fields of view). For example,



a heading distance of around 80 indicates minimal overlap
in their fields of view, while a distance shorter than 50 cor-
responds to 35% overlap of their fields of view. Moreover,
we visualized the heading distance trajectories – sequences
of distances calculated at 5-second intervals for 80 seconds
following each annotation – to track students’ responsive
behaviors following peer contributions. There were 973 dif-
ferent trajectories generated in total.

Figure 2: Trajectory Examples in High-achieving groups

Figure 3: Trajectory Examples in Low-achieving groups

Fig. 2 and Fig. 3 showcase two distinct trajectories, encom-
passing both tablet-tablet and tablet-AR Headset interac-
tions, drawn from both high-achieving and low-achieving
groups. The x-axis represents the time elapsed since the
annotation was highlighted within the simulation, while the
y-axis documents the heading distance between a pair of stu-
dents. When the trajectory is trending downward, it indi-
cates that the student moved closer to the annotation. This
pattern suggests efforts or intention to align their simulation
view with the annotated constellation to establish joint at-
tention within the simulation. For example, trajectory 657
shows a rapid decrease in heading distance within 10 seconds
after the annotation, signifying an immediate focus shift to-
wards the annotated constellation. In contrast, an upward
trend or minimal change in heading distance, as illustrated
in trajectories 380 and 615, could indicate prioritization of
individual exploration without paying attention to peer con-
tributions. This might suggest students value independent
navigation and discovery, or perceive the annotation as less
relevant to their current exploration path.

4.3 RQ 3: Responsive Patterns
We employed DTW clustering to reveal distinct response
patterns to peer annotations. Analyzing silhouettes from
2 to 8 clusters yielded an optimal value of k=2. Figure
4 visualizes all the heading trajectories within each clus-
ter with their respective centroids highlighted in red. Two
distinct response patterns to peer annotations emerged: im-
mediate response (Cluster 0) and independent exploration
(Cluster 1). The immediate response pattern, characterized
by a rapid decrease in distances between students’ heading
vectors, likely indicates a prompt shift in attention towards
peer-annotated constellations. This suggests students ac-
tively engage with peer contributions by moving their screen
to the annotated constellations within the simulation. The
independent exploration pattern, on the other hand, does
not show a decreasing trend in the distance of heading vec-
tors within the defined time period. This pattern suggests
that students may prioritize individual exploration and fo-
cus on their own navigation paths without responding to
peer annotations.

Figure 4: Clustered Trajectories

Further analysis explored the temporal evolution of these
response patterns. Figure 5 displays the frequency of each
cluster over time for both performance groups. Both groups
initially exhibited minimal annotation activity, suggesting
prioritization of independent exploration at the beginning.
Interestingly, as the session progressed, differences emerged.
While the exhibition of Cluster 0 behavior remained com-
parable across groups, there was variation in the demon-
stration of Cluster 1 behavior between high-achieving and
low-achieving groups. Specifically, high-achieving groups
displayed a higher frequency of Cluster 1, indicative of in-
dependent exploration without immediate response to peer
annotations, particularly during the middle of the session.

5. DISCUSSION
Our findings shed light on the intricacies of collaborative
learning within the simulation environment, showcasing the
interplay between individual behaviors, group dynamics, and
learning outcomes.

Notably, higher learning achievement was not associated



Figure 5: Average Frequency of Cluster Over Time

with equitable participation in annotation activities. High-
achieving groups exhibited a more unequal distribution of
annotation contributions compared to low-achieving groups.
This finding underscores the complex relationship between
participation equity and learning achievement, suggesting
that more equitable participation does not necessarily lead
to higher learning gains. Instead of solely viewing this dis-
tribution as a lack of equity, we propose an alternative inter-
pretation. This pattern may suggest the natural emergence
of leader-follower roles, where specific individuals lead the
annotation activity and guide the exploration process, while
others coordinate with annotators. This finding aligns with
Webb’s notion of group composition, where students often
adopt different roles during collaboration [31]. These roles
have been identified through various data sources under col-
laboration settings, including verbal and physical indicators
[26], focus of attention based on eye-tracking data [25], and
video-based facial emotions [9]. For instance, [26] identified
four distinct collaboration profiles, including turn takers,
driver-navigator, driver-passenger, and independent based
on verbal and physical indicators of collaboration. These
profiles inform us about the dynamic roles emergent within
the group, ranging from shared leadership to a more central-
ized pattern. Further exploration is needed to unpack these
various roles emerging in collaboration, such as leader and
follower, and how they may hinder or contribute to efficient
collaborative learning.

Furthermore, exploring the temporal evolution of these pat-
terns across the session yielded another interesting finding.
High-achieving groups displayed a higher frequency of the
independent exploration pattern during the middle of the
session. This could indicate a collaboration strategy with
a focus on individual understanding and exploration be-
fore building joint attention, aligning with research high-
lighting the benefits of temporary divergence within col-
laborative learning. Individual explorations could benefit
the entire group by gathering unique perspectives and in-
formation to enrich the knowledge pool and facilitate the
idea exchange when groups re-establish shared attention [16,
34]. Convergence is not necessarily the only marker of ef-

fective collaboration, especially in exploratory environments
[29]. According to Divergent Collaboration Learning Mecha-
nisms framework [30], participants can move between shared
and divergent goals during their investigation especially in
open-ended settings. In our astronomy simulation, individ-
ual exploration may indicate engaging in divergent inquiry
or testing personal hypotheses before converging to share
findings and build shared understanding. This divergence-
convergence cycle could also explain why high-achieving groups
did not exhibit high participation equity in annotation ac-
tivities.

In summary, our findings highlight the nuances beyond par-
ticipation equity and the generally accepted notion that con-
vergent conceptualization is the desired goal for collabora-
tive learning.

5.1 Implications and Future Studies
This study has several limitations that highlight areas for
further research. Firstly, we have a relatively small sam-
ple size containing only 16 groups. Future research should
apply this analysis to a larger size of dataset. Secondly, re-
lying on heading trajectories within the simulation provides
a limited perspective on collaborative interactions. Future
studies incorporating richer data sources like verbal commu-
nication could capture interactions within and beyond the
simulation, offering a more holistic understanding. Finally,
the specific task and exploratory nature of our astronomy
simulation might influence the role of divergent exploration
and the observed collaboration patterns. Investigating how
these patterns persist or differ across diverse contexts will
broaden our understanding of individual contributions and
their impact on group learning.

6. CONCLUSION
This study explored collaborative learning dynamics in an
astronomy simulation environment, shedding light on the in-
terplay between individual behaviors, group dynamics, and
learning outcomes. Our results yielded insights about par-
ticipation equity, the influence of annotations on student fo-
cus, and responsive patterns to peer interactions. In specific,
high-achieving groups had a less equal distribution of an-
notation contributions, potentially reflecting the emergence
of leader-follower roles. Utilizing the time series clustering
technique, we identified two distinct patterns in how indi-
viduals responded to peer annotations within the simula-
tion: one pattern focused on individual exploration, while
the other involved an immediate response to achieve vir-
tual alignment. Tracking the frequency of these two pat-
terns, we found a key difference between groups varying
in learning performance: high-achieving groups engaged in
more individual exploration during the middle of the ses-
sion. These results collectively underscore the complexity
of collaborative learning, recognizing the role of individual
exploration as a valuable component of collaborative learn-
ing. The results suggest that such exploration, particularly
within exploratory open-ended learning environments, can
contribute to group discussions and collective understand-
ing. Our study echoes existing research by highlighting the
benefits of temporary divergence in collaborative learning,
particularly in open-ended and exploratory learning envi-
ronments like our astronomy simulation.
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APPENDIX
A. APPENDIX A
The figure contains screencaptures from classroom and three
devices (A: classroom; B: AR screen; C: tablet screens). It
also illustrates the information box alongside each annota-
tion within the simulation.

Figure 6: Annotation Interfaces in AR and Tablets

B. APPENDIX B
This figure shows overlapping fields of views across three
devices in CEASAR simulation.

Figure 7: Example of Overlapping Field of Views


