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ABSTRACT

This work aims to develop a fairness-aware model while
maintaining competitive predictive accuracy in online learn-
ing environment. We retrieved a large dataset that included
3,145,728 video watch log entries and 893,189 assessment re-
sults from 14,252 students on an online learning platform.
Six classic machine learning (ML) models were built to pre-
dict changes in student summative performance. Our find-
ings indicate that prediction bias exists for groups with vary-
ing demographics when using models that lack fairness aware-
ness. To enhance fairness, we optimized the existing treat-
ment equality metric, which was previously limited to as-
sessing a single sensitive attribute, to evaluate the overall
fairness on multiple attributes of the prediction model. Ad-
ditionally, we introduced a treatment equality loss function
penalty term to constrain the models’ training. The results
demonstrate that our method can achieve comparable pre-
dictive performance while ensuring treatment equality across
different groups.
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1. INTRODUCTION AND PRIOR WORK

Online learning has gained popularity due to its flexibil-
ity and accessibility [8, 25]. To assess the quality of online
learning or provide timely interventions for students’ learn-
ing needs, accurately measuring students’ academic perfor-
mance is particularly essential [3]. In the era of genera-
tive artificial intelligence (AI), predicting students’ academic
performance in online learning environments through ad-
vanced data analytics and machine learning (ML) techniques
has become a common practice [22].
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Existing research on predicting academic performance in on-
line learning environments has primarily focused on feature
or model selection to enhance the predictive performance
(e.g., accuracy and F1 score) of ML models [28, 25, 4]. For
instance, some studies have explored how to convert educa-
tional log data into features suitable for building predictive
models of student academic performance [6, 21], while oth-
ers have compared the prediction accuracy of various models
across different dataset features [1]. Previous studies also
indicate that students’ behavioral data can significantly en-
hance predictions of their performance [28, 33, 32, 10, 31].
Learning behaviors, such as total login times, video con-
sumption habits, engagement with test questions, and in-
teractions with learning materials, are crucial for predicting
students’ academic performance [12].

Using ML models to predict future performance can help
teachers proactively assist students in achieving better aca-
demic outcomes and prevent dropouts [1]. However, employ-
ing ML models for prediction in educational settings raises
significant concerns about fairness and bias. For instance,
a lack of diversity in the training data can lead to inaccu-
rate performance predictions for students from various socio-
economic backgrounds, resulting in bias that disadvantages
certain groups. This in turn affects the equitable distri-
bution of educational resources and individual educational
opportunities [17]. In a study, African American students
were found to be almost twice as likely to be incorrectly
predicted to be at risk of academic failure as their White
counterparts due to historical biases in data [2]. Algorith-
mic bias in ML models can perpetuate existing inequalities
and lead to discriminatory outcomes, particularly affecting
students’ academic success [13]. Addressing fairness con-
cerns in Al models is crucial to ensure equitable treatment
and opportunities for all students in online learning environ-
ments [17].

This study focuses on ensuring fairness in performance pre-
dictive models used in online learning environments. By col-
lecting a large dataset from an online learning platform and
building six classic ML models, we provide further evidence
that ML models lacking fairness-awareness exhibit predic-
tion bias across different demographic groups. To combat
this, we improved the original treatment equality metric,
which was limited to comparing only two groups, to eval-
uate the model’s overall fairness. We also proposed a new
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treatment equality loss function penalty term for the model’s
training to ensure better fairness. Furthermore, we incorpo-
rated this treatment equality loss function penalty into the
LR model. Our findings demonstrate that our method can
achieve comparable predictive performance while ensuring
treatment equality across different groups. Based on the
context of the prediction task, our main contributions in-
clude: (1) adapting the existing treatment equality fairness
metric to assess overall fairness across multiple sensitive at-
tributes, and (2) developing a novel approach that integrates
fairness constraints into ML models while considering mul-
tiple sensitive attributes.

2. METHOD

2.1 Data Source Description

We collected data from Math Nation®, an extensive on-
line learning platform serving over a million K-12 students
and teachers across the United States. The platform of-
fers students learning videos for each unit and enables them
to assess their understanding through quizzes. The initial
dataset included 3,145,728 learning log entries and 893,189
in-platform assessment results from 14,252 students?. This
research and its data collection procedures received approval
from the Institutional Review Board of the University of
Florida (document number: IRB202201770).

2.2 Data Pre-processing and Feature Selection
Based on previous work, we processed all variables from
the log data and categorized them into three levels: de-
mographic, historical performance, and learning behavior.
We used Pearson correlation coefficients and Variance In-
flation Factor (VIF) [15] to filter out variables with a high
degree of correlation (greater than 0.8) or a large VIF value
(VIF > 10). Finally, we included all independent variables
shown in Table 1, totaling 20 variables. The demographic
data, which include Gender, Fri_Status, Race_Indicator, and
His_Indicator, are used to identify groups and compare fair-
ness during the fairness evaluation. In addition to demo-
graphic data, we incorporated three variables related to stu-
dents’ learning performance and 13 variables concerning on-
line learning behavior under the learning behavior category.

To predict changes in students’ summative performance, we
collected their high school entrance exam FSA3 Math scores
(listed as F'sa_Level in Table 1) and their state end-of-course
(EOC) exam results. We then computed the dependent vari-
able “risk™, which represents the change in students’ per-
formance. After removing students with missing log data,
we compiled a dataset consisting of 4,834 students. We ex-
cluded all students with missing log data to prevent intro-
ducing bias through imputation methods [24].

2.3 Model training and Evaluation

"https://www.mathnation.com/
2Data  can be requested at:
lab.github.io/AICE /datasets.html
3The FSA are statewide tests that assess student achieve-
ment in reading, writing, math, and science based on Florida
Standards.

41f a student’s EOC grade level is less than or equal to their
FSA Math score level, the value of “risk” is 1; otherwise, it
is 0.

https://uf-aice-

We selected six models to predict students’ performance
change and evaluate their fairness, including Logistic Re-
gression (LR), Support Vector Machines (SVM), Decision
Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN),
and Neural Network (NN). Before training, categorical vari-
ables were encoded using one-hot encoding, while numerical
variables were standardized to facilitate convergence in mod-
els sensitive to feature scaling, such as LR and SVM. Each
model was trained using a 10-fold cross-validation approach
to ensure that the training and validation sets were repre-
sentative of the overall dataset.

The prediction performance of each model was assessed us-
ing metrics appropriate for imbalanced datasets, as aca-
demic performance often displays class imbalance [19, 36].
The evaluation metrics included accuracy, F1-score, preci-
sion, recall, and AUC-ROC. The AUC-ROC is particularly
effective in evaluating the classification effectiveness in un-
balanced datasets [23].

2.4 Fairness Evaluation Metrics

Equity in education means that all schools and education
systems provide equal learning opportunities to all students
[18]. In this study, we conceptualize fairness as treatment
equality (TE), which emphasizes equitable error rates [7].
TE is assessed by examining the ratio of False Negative Pre-
dictions (FNR) to False Positive Predictions (FPR), defined
as follows:
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where y is the actual value and ¢ is the predicted value. g;
and g; are identifier for groups based on sensative feature.
P is the predicted score of an obsevation.

This metric ensures uniformity in the impact of mispredic-
tions, which is crucial for ensuring that educational inter-
ventions are fair, allowing all students equitable access to
support regardless of their demographic backgrounds. How-
ever, the original definition in equation 1 only considers a
single sensitive feature. Consequently, we defined an ad-
justed TE to measure the model’s fairness across multiple
groups involving more than one sensitive feature. Initially,
we calculated the TE for two groups:
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In this case, we aim for the value of T'Ey, 4, to be as close
to 1 as possible, indicating that treatment equality has been
similarly achieved across these two groups. To extend this
approach and measure the overall fairness of a model across
multiple sensitive features, we calculate the average of all
TEy,,q; values for each pair of sensitive features. If we have
n sensitive features, the overall fairness metric of the model
can be defined as:



Table 1: Variables Used for Performance Change Prediction

Category Variable Description Value/Type
Demographic Gender Whether the student is male or female No: 05 Yes: 1
Frl_Status Whether the student has free lunch or not No: 0; Yes: 1
Race_Indicatoar Whether the student is minority or not No: 0; Yes: 1
His_Indicator Whether the student is hispanic or not No: 05 Yes: 1
Historical performance Fsa_Level The math achievement level of the student 1-5
Retaker Whether the student retake the exam No: 05 Yes: 1
Total_Absences Total class absence times 0-77
Learning Behavior Sum_Session Total login times 2-2348
Video_Watched Total number of videos the student watched 1-236
Total Video_Time Total time the student spent on video 0-185h
Video_Cpl Number of video the student completed 0-589
Video_Pause Number of pause actions 0-42251
Video_Play Number of play actions 0-42175
Video_Seek Number of video progress adjustment actions 0-64900
Correct_Answer_Rate  Average correct rate of answered questions 0-1
Tys_Finish Number of test questions finished 0-274
Tys_Previous Number of review old test questions 0-1185

Tys_Review_Incorrect Number of review explanations for wrong questions 0-1991

Tys_Review_Solution = Number of review solution videos 0-424
Wall_Load Times the student open the discuss forum 0-834
that controls the trade-off between predictive performance
1 and fairness. Higher values of A will instruct the model to
TE,, = - ZTEg,-k,gjk (3) prioritize fairness loss during the training process. In this
k=1 study, we incorporate the TE constraint into a LR model®

Where TEyg,, q4,, is the TE measurement between two sub-

groups gix and g, within the k" sensitive feature,n is the
total number of sensitive features.

We also assessed the models for potential biases using the
Subgroup-AUC [9]. A high Subgroup-AUC value indicates
that the model predicts well within this group.

2.5 Fairness Constrain

To ensure our model integrates fairness considerations, we
propose a treatment equality constraint for the training pro-
cedure. For binary classification problems, we define the loss
function with an added fairness loss component as:

L= Lpred + Ak Lfair (4)

Lorea = = > luslog(9) + (1= yo)log(1 — )] (5)

i=1

Lfair = Zv(gi,gj) |TE(gi»gj) - 1‘ (6)

Where Lyrcq represents the predictive loss of the model,
which could be any suitable loss function based on the type
of ML model used (e.g., cross-entropy loss for classification
tasks). Lyqir is the fairness loss, designed to assess and pe-
nalize any unfairness in the model’s predictions across dif-
ferent demographic groups. A is a regularization parameter

using the Adam optimizer. Note that the fairness constraint
can also be incorporated into other ML models.

3. RESULTS

3.1 Descriptive Analysis

Table 2 displays the risk distribution across different de-
mographic groups, revealing evident disparities in the total
number of individuals at academic risk.

Table 2: Risk Distribution by Demographic Groups.

. . Group 0 Group0 Groupl Group 1
Demographic Attribute g0 " Rik1  Risk0  Risk 1
Gender 934 1678 806 1415
FRL_Status 550 1354 1190 1739
Race_Indicator 411 898 1329 2195
His_Indicator 1171 2023 569 1070

Notes: ‘Group 0’ and ‘Group 1’ denote binary classes within demographic at-
tributes. Risk levels 0’ and ’1’ indicate no risk and higher risk. For example,
’Gender: Group 0, Risk 0’ corresponds to females with no risk, while "Group 1,
Risk 1’ indicates males with higher risk.

3.2 Performance Prediction

Table 3 displays the results from six ML models built on
various sets of prediction data. It shows that all data cat-
egories contribute to improving the models’ accuracy. The
F1 score for LR is 0.7598 when only student learning behav-
ior data (L) is used to predict academic risk, suggesting that
online learning behavior is a significant predictor of future
changes in students’ summative academic performance. Ad-
ditionally, incorporating historical performance variables (H

5An example can be found at
https://github.com/ZifengLiu98 /logistic-regression-with-
treatment-equality-constrain.git



+ L) further enhances the prediction of risk for summative
achievement. Using all three data categories (D + H + L)
increases LR’s prediction accuracy by 6.34% compared to
models that exclude demographic data (H + L).

Table 3: Model Performance Metrics in Different Categories.

Category Model Acc F1 Precision Recall
L LR 0.6487 0.7598 0.6755 0.8680
SVM  0.6447 0.7635 0.6651 0.8959
KNN  0.6166 0.7097 0.6884 0.7323
DT 0.5253 0.6164 0.6384 0.5959
RF 0.6027 0.7102 0.6660 0.7608
NN 0.6276 0.7114 0.7056 0.7174
H+L LR 0.6743 0.7730 0.6976 0.8668
SVM  0.6720 0.777  0.6878 0.8927
KNN 0.6679 0.751  0.722 0.7824
DT 0.5994 0.6772 0.6991 0.6566
RF 0.6667 0.7565 0.7104 0.8089
NN 0.6896 0.7583 0.7559 0.7608
D+H+L LR 0.7377 0.8046 0.7692 0.8429
SVM  0.7261 0.8041 0.7413 0.8784
KNN 0.6679 0.7510 0.7219 0.7824
DT 0.6091 0.6748 0.7068 0.6651
RF 0.6706 0.7600 0.7112 0.8099
NN 0.6983 0.7663 0.7584 0.7468

Notes: ‘Acc’ represents accuracy; ‘L’ represents learning behavior; ‘H’ repre-
sents historical performance; ‘D’ represents demographics.

The ROC curves for various models, which incorporate data
from all three categories, are illustrated in Figure 1. The re-
sults indicate that LR and SVM models achieve the highest
performance, with ROC-AUC values of 0.789 and 0.775.
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Figure 1: ROC curves of different models

3.3 Fairness Evaluation

We evaluated model fairness using the TE defined in equa-
tion 2 and Subgroup-AUC. As indicated in Table 4, discrep-
ancies in TE performance across various models, observed
in individual sensitive attribute columns, may be attributed
to factors such as imbalanced data distribution, differing
learning capabilities, and model complexity. Although LR
achieves higher predictive performance than other models
(as shown in Table 3), it fails to ensure treatment equality
between different groups. This failure may stem from LR’s

relatively simple architecture, which, while achieving bet-
ter generalization across the dataset, leads to higher predic-
tive accuracy but does not necessarily address fairness across
groups. In contrast, more complex models like NN can cap-
ture intricate patterns in the data, potentially resulting in
better fairness for certain sensitive attributes. According to
the TE,,, NN has the highest score of 0.9511, indicating the
most balanced TE across all considered sensitive attributes.

Table 4: TE Value of Different Models.
Model Gender FRL_Status Race_Indicator His_Indicator TE_m

LR 0.9469  0.5114 0.5001 0.6469 0.6513
SVM  0.9029 0.6522 0.7817 0.7500 0.7717
KNN  0.9780 0.6534 0.7940 0.9549 0.8451
DT 0.8711  0.9541 0.8022 0.9522 0.8949
RF 0.8809  0.6425 0.8095 0.9578 0.8227
NN 0.9960  0.8962 0.9227 0.9895 0.9511

Notes: ‘T'Ejy,’ represents the models’ overall TE fairness on all attributes, cal-
culated by Equation 3. A higher value indicates better fairness outcomes.

Table 5 displays the Subgroup-AUC values of the LR model
across various demographic groups. It is observed that the
disparity in the model’s Subgroup-AUC across different groups
can reach a maximum of 28% (as indicated by the bold
texts). This significant variation indicates the necessity of
addressing the model’s bias in predictions.

Table 5: Subgroup-AUC Scores for the LR Model.
Gender FRL_Status Race_Indicator His_Indicator AUC

0 0.83
0.88
0.80
0.85
0.83
0.91
0.63
0.71
0.81
0.71
0.77
0.78

Notes: ‘AUC’ represents the Subgroup-AUC value. ‘0’ and ‘l’ represent the
values of attributes for each column; for example, the second column (0,0,0,0)
indicates a group without free lunch status, who are female, not minorities, and
not Hispanic. The table includes only 12 groups because four groups does not
exist in the data.

[en)
[en)
[en)

—FROoOO0OORR~RRFROO
=== -0 0000
— = O = O O
HOOHR OO, OO O

—_
—_

After implementing fairness training on the LR model using
the TE constraint, the resulting TE values across different
demographic attributes are presented in Table 6. We se-
lected the LR model for this fairness constraint method due
to its superior predictive performance, as shown in Table
3. The results demonstrate that the fairness constraint sig-
nificantly enhances the fairness outcomes for the LR model
across three sensitive attributes: FRL_Status, Race_Indicator,
and His_Indicator. Varying values of \ provide more equi-
table solutions for different sensitive features, likely because
the fairness loss concentrates on the overall TE metrics of
the model across the four groups. Introducing a fairness loss
improved the overall TE fairness of the LR model to a T E.,
value of 0.6925 when A is set at 0.1, an improvement of 4%
compared to the original model. Additionally, after integrat-
ing the fairness constraint (A = 0.1), the model’s AUC value
remains at 0.758, indicating that the model with the fairness
constraint also maintains its predictive performance.



Table 6: Comparison TE Value with Different Fairness Con-
straints for LR Model.
Gender FRL_Status Race_Indicator His Indicator TE m

LR 0.9469  0.5114 0.5001 0.6469 0.6513
LRx—o0.1 0.5001  0.6152 0.6914 0.9632 0.6925
LRx=0.05 0.6961  0.6246 0.6148 0.7112 0.6617
LRx=001  0.6690  0.5941 0.8647 0.6886 0.7041
LRx—0.001 0.6678  0.3330 0.7778 0.6673 0.6115

Notes: A higher TE value means better fairness outcomes.

4. DISCUSSION

Previous studies have shown that predictive analytics based
on Al and ML algorithms are beneficial for online teaching
and learning. For example, existing research on predicting
academic performance in online learning environments pri-
marily focuses on feature or model selection to enhance the
predictive performance (e.g., accuracy and F1 score) of ML
models [28, 25, 4]. However, these studies often overlook
critical aspects of AI fairness and bias, leading to dispari-
ties in educational outcomes across different demographics
[29, 34]. For instance, an algorithm might perform more ef-
fectively with certain types of data, or the structure of cer-
tain decision trees or neural networks may inherently favor
specific outputs [20, 27]. Such bias can profoundly impact
the fairness of online learning, leading to misaligned educa-
tional interventions, reduced confidence among affected stu-
dent groups, and perpetuation of educational inequalities
[37, 17]. This work aims to bridge this gap by developing a
model that is both fair and accurate. As equity in education
implies that all schools and education systems provide equal
learning opportunities to all students [18], we conceptualize
fairness as treatment equality, emphasizing equitable error
rates for different groups [7]. The original TE measure based
on Equation 2 only assesses two groups under one sensitive
metric. We have optimized the original measure and pro-
posed a method that assesses the model’s treatment equal-
ity (TE) across multiple sensitive attributes. This approach
aligns more closely with the realities of educational needs.
Results in Table 4 show that this optimized method for as-
sessing TE can serve as a supplementary measure of fairness
and may also be applied to other metrics, such as equalizing
disincentives [16] and conditional equal opportunity [5].

Unlike previous studies that focused on evaluating fairness
issues [30, 11], this work not only provides a method to bet-
ter measure TE fairness but also incorporates it into real
model training to ensure both the accuracy and fairness of
models. While limited research has explored ways to mit-
igate unfairness issues in predictions [19, 36], these studies
have shown that different methods yield varying effective-
ness in promoting fairness across different models. [19] re-
ported optimal results with LR, and [36] reported optimal
results with KNN. We selected the best-performing predic-
tive model, LR (shown in Table 3), and combined it with
our TE loss function method. Unlike previous approaches
that used data segmentation to enhance model fairness, our
method, consistent with similar research outcomes, slightly
reduces model accuracy while improving fairness. Overall,
we were able to maintain a balance between accuracy and
fairness. This finding extends and contributes to existing
work on evaluating AI models’ fairness [26, 14, 35] to mit-
igate bias and enhance fairness in the predictive modeling

process across different demographic groups. Furthermore,
the proposed method can be generalized to other data con-
cerning students’ backgrounds and individual differences.
To this end, our study suggests that equity assessments be
included in all model predictions, especially in areas such as
education where the realization of equity is critical.

Future research will focus on three main aspects. First, we
will deepen the integration of fairness constraints into var-
ious ML models to improve educational outcomes’ fairness.
Additionally, we will apply and validate our approaches on
diverse online learning datasets to broaden the applicability
and robustness of our findings. Furthermore, we will com-
bine our current in-processing methods with other fairness
mitigation methods like pre-processing techniques.
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