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ABSTRACT
Recent advancements in large language models (LLMs) have
facilitated the development of chatbots with sophisticated
conversational capabilities. However, LLMs exhibit frequent
inaccurate responses to queries, hindering applications in
educational settings. In this paper, we investigate the ef-
fectiveness of integrating a knowledge base (KB) with LLM
intelligent tutoring systems (ITSs) to increase response re-
liability. To achieve this, we design a scaleable KB that af-
fords educational supervisors seamless integration of lesson
curricula, which is automatically processed by the ITS. We
then detail a preliminary study, where student participants
were presented with questions about the artificial intelli-
gence curriculum to respond to. GPT-4 ITSs with varying
hierarchies of KB access and human domain experts then
assessed these responses. Lastly, students cross-examined
the ITSs’ responses to the domain experts’ and ranked their
various pedagogical abilities. Results suggest that, although
these ITSs still demonstrate a lower accuracy compared to
domain experts, the accuracy of the ITSs increases when
access to a KB is granted. We also observe that the ITSs
with KB access exhibit better pedagogical abilities to speak
like a teacher and understand students than those of domain
experts, while their ability to help students remains lagging
behind domain experts.
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1. INTRODUCTION
Asynchronous education has become increasingly more preva-
lent over the twenty-first century and is now crucial as a
means to assist general education. The surge in online learn-
ing, however, has resulted in less student-to-student and
student-to-teacher interaction, which has deterred academic
engagement [1, 11].

The rise of artificial intelligence (AI) and, in particular,
large language models (LLMs), have enabled the construc-
tion of intelligent tutoring system (ITS) chatbots, which
hold promise in mitigating the latter issue by supplementing
pedagogical interactions [6, 16]. GPT-3 [3] and GPT-4 [13]
are some of the largest and most versatile LLMs trained to
date, with impressive domain knowledge recall and natural
language processing (NLP) abilities. This grants students
the ability to pose queries for numerous subjects and re-
ceive tailored responses. The potential pedagogical impact
on distance learners, therefore, is formidable, with some ed-
ucational institutions and organizations already announcing
the integration of GPT models in various programs [19, 22].

LLMs have several shortcomings, however, that discourage
their use in educational settings. Primarily, with GPT mod-
els, a lack of domain knowledge or analytical reasoning fre-
quently causes fictitious responses to be generated in their
overzealous pursuit of a reply [16, 25]. As such, this po-
tentially yields large misunderstandings in educational set-
tings. As a result, LLM ITSs are controversial for present-
day classroom application as they have not yet exhibited
pedagogical abilities equal to or exceeding that of human
teachers [7, 23]. To develop optimal LLM ITSs, it is crucial
to keep LLM responses in alignment with educators’ lesson
goals and to prevent them from presenting artificial infor-
mation to students.

This study is the first to examine the efficacy of integrat-
ing a knowledge base (KB) with LLM ITSs to achieve these
goals. The direct installment of a KB with educators’ sub-
ject matter may bring GPT to reconsider previously disre-
garded knowledge, mitigating these issues. Consequently,
we aim to explore how integrating KBs may enhance the
response accuracy of LLM ITSs, as well as how their peda-
gogical abilities may improve through such integration.

In this paper, we aim to address these open questions by
creating GPT-4 ITSs with various KB access levels for ac-
curacy and pedagogical ability comparison. A practice mode
was developed for these ITSs in which they assess students’
answers to questions about related lesson subject material.
The tutors were granted the ability to use any information
provided by the supervisor through their KB in the practice
mode, given the various information constraints each ITS
was assigned. Information constraints were abstracted into
a hierarchy of three levels: the lesson’s subject (no KB ac-
cess), a topic description (partial KB access), and the overall
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lecture material (full KB access).

To evaluate and quantify the effectiveness of each informa-
tion level in the KB, we populated the LLM ITS with the AI
curriculum and designed a three-stage evaluation pipeline to
observe the effect of KB integration. First, we designated
student participants with AI proficiency to respond to var-
ious AI questions with diverse accuracy. Next, human do-
main expert participants and ITSs assessed the students’
responses and addressed each. Lastly, the students were
allowed to observe the assessments and rated the pedagog-
ical quality of each response. This allows us to observe the
practicality of each knowledge hierarchy level in GPT-4 ITS
implementations in contrast to human domain experts. Our
code and data are open-sourced below for further research.1.

2. RELATED WORK
2.1 Chatbot Tutor Pedagogical Abilities
Chatbot tutoring has been applied for the past two decades
[12, 24] and recent research has investigated potential LLM
frameworks. Demszky et al. (2021) [4] observed that an
ITS based on BERT [5], trained on 2246 student-teacher ex-
changes, had remarkable conversational uptake to student
queries. Tack and Piech (2022) [23] built upon Demszky
et al. (2021) [4] by discovering that although LLMs such
as Blender [18] and GPT-3 have considerable conversational
uptake, core pedagogical abilities of these LLMs severely lag
behind that of human teachers. They discovered these LLMs
demonstrate insufficient capability in their pedagogical abil-
ities to speak like a teacher, understand students, and help
students. We aim to investigate if the substandard peda-
gogy measurements Tack and Piech (2022) [23] have found
can be improved upon by expanding the knowledge these
LLMs have to work within.

2.2 Chatbot Tutor Knowledge Base Incorpo-
ration

Using KBs for chatbot tutors to retrieve information is not
a novel topic. An instance of such is AsasaraBot [10], an ed-
ucational AI chatbot designed to teach high school students
cultural content in foreign languages, which searches its own
KB (or externally on the Web) for the most appropriate re-
sponse and processes it within its dialogue manager.

BookBuddy [21], a virtual reading companion designed to
teach English as a second language, uses a scaleable knowl-
edge base of 20 books to choose from (depending on the
child’s interests). Trained on the Stanford Question Answer-
ing Dataset (SQuAD) [17], BookBuddy’s generative model
handles character and plot questions, while its rule-based
algorithms produce vocabulary and arithmetic questions.

QuizBot [20], a dialogue-based agent that helps students
learn factual knowledge, uses a system question pool popu-
lated by a supervisor’s question-answer pairs that pertain to
the lesson subject. It was designed to binary grade student
answers via cosine similarity thresholding and was observed
to rarely misclassify answers. In their studies, they evalu-
ated the ability of the agent to generalize over three different

1https://github.com/b-castleman/llm-tutor-knowledge-
base

subjects and data suggested QuizBot’s effectiveness to sur-
pass that of flashcard techniques.

In this paper, we seek to quantify the efficacy of a GPT ITS
implemented in conjunction with a knowledge base. Fur-
thermore, we aim to observe the variations in our tutor’s
response quality from differing quantities of inputted super-
visor information presented by the knowledge base through
our access hierarchy framework. To our knowledge, there are
currently no published chatbot tutors that have researched
the effectiveness of teaching artificial intelligence course cur-
ricula or that have quantified the effect of disparate KB hi-
erarchy levels on response quality.

3. FRAMEWORK
3.1 Prompting Structure
We use GPT-4 to create three separate LLM ITS instances.
It is prompted to respond “as a teacher”, being both ac-
curate and enthusiastic. The tutor operates in a practice
mode, where students are quizzed by the tutor about the
material to reinforce and consolidate their understanding of
what they have learned. After receiving a student’s answer
to a particular question, the tutor must respond appropri-
ately depending on the student’s answer choice(s) and rea-
soning. After the student responds to the question, GPT-4
ranks the responses on an integer scale from 1-5 and stores
this value internally. Then, it is asked to qualitatively as-
sess and address the student’s answer given the previous rat-
ing, describing what is understood well by their answer and
what may use improvement. This internal rating technique
is inspired by Park et al. (2023) [14], who used situational
GPT-4 ratings to simulate autonomous agent behavior.

3.2 Knowledge Base
The KB is designed for an educator to efficiently input their
lesson material into JSON files for information processing
at disparate knowledge hierarchies. We will now describe
how each hierarchy level of information provided interacts
separately with the system. Figure 1 illustrates the following
described architecture to help understand the information
processing pathways implemented.

3.2.1 No KB Access: Lesson Subject
The base-level hierarchy, hereon referred to as having no KB
access, is told only what the lesson subject is (i.e. introduc-
tion to artificial intelligence, basic derivatives, prokaryotic
cells). As a result, any ITS that uses only this KB level
is only using GPT-4 training with minimal supervisor in-
fluence to generate responses. The lesson subject is given
to the tutor when defining the initial system prompt and is
repeated when internally rating any answer.

3.2.2 Partial KB Access: Topic Description
The topic description is a short definition of what the given
topic is about, consisting of no more than a few sentences.
Any tutor using KB levels up to this extent is referred to as
having partial KB access as it can observe high-level infor-
mation on the lesson subject without being presented with
any intricacies. The topic description is used when defin-
ing the initial system prompt and is given to the response
ranker.
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Figure 1: Schematic of the ITS architecture implemented.

3.2.3 Full KB Access: Lecture Material Inclusion
The lecture material is defined as the text copy of a lecture’s
transcript. Any tutor using KB levels up to this extent is
referred to as having full KB access as the full extent of
the supervisor’s lecture material is readily available to the
tutor. The lecture material is incorporated into the ITS’s
implementation as follows:

1. Subtopic Separation

Due to the number of tokens that lecture transcripts
often contain, we divide lecture content into subtopics.
In the implemented design, the supervisor manually
performs this and can create as many subtopics as they
deem fit, given they restrict the number of tokens in
individual subtopics to prevent prompting overflow.

2. Keyword Generation

To make the subtopics more searchable, we automat-
ically generate lists of keywords that pertain to each
subtopic. We performed this operation using GPT-
4, querying it to create a set of keywords that best
represents the subtopic and data included. We then
concatenate it to the subtopic for processing.

3. Haystack Question-Answering We utilize Haystack by
Deepset [15], an open-source NLP framework that of-
fers the ability to yield complex question-answering
capabilities using transformer models and LLMs. This
framework allows us to utilize RoBERTa [8], a state-of-
the-art BERT LLM trained on the SQuAD dataset, to
automatically find the corresponding subtopics within
the lecture material that is relevant to the student’s re-
sponse. Each subtopic at this stage is now composed

of the associated lecture material, chosen by the super-
visor, and the keywords, generated by GPT-4. Hav-
ing both pieces of data included in the search assists
in making the relevant subtopics readily discoverable.
We use the Haystack approach in parsing the KB in
order for the ITS to be a) scaleable (unlikely to near
GPT-4’s token limit) and b) low-cost (computation-
ally and monetarily). After finding the appropriate
subtopic(s), they are concatenated onto the original
lecture material for the internal ranking of the stu-
dent’s answer and for the qualitative assessment of the
student’s answer.

4. STUDY DESIGN
4.1 Artificial Intelligence Course Content
To evaluate the effectiveness of each information level in the
KB, we populated the LLM ITS with the boot camp cur-
riculum from Aiphabet: a secondary-school informal learn-
ing platform for teaching artificial intelligence [9]. It was
founded on the course content for Columbia University’s un-
dergraduate artificial intelligence course and the curriculum
is curated by many of the university’s professors and grad-
uate students. Specifically, we chose to use their video lec-
ture titled “The History of AI” as our lesson subject as it
was deemed to be the least subjective of the current prere-
lease materials. The transcript was then divided into four
subtopics according to the lecture’s described central eras of
AI’s history.

4.2 Model Instantiations
To obtain the necessary GPT-4 ITSs, we generated three
identical tutors, varying only by the KB permissions they
are allocated. The first model was only granted access to
the lesson subject (no KB access), the second model was
granted access to the lesson subject and the topic description
(partial KB access), and the third model was granted access
to the lesson subject, topic description, and lecture material
(full KB access). This allowed the LLM response qualities to
be observed with respect to the addition of each knowledge
level.

4.3 Evaluation Pipeline
We designed a three-stage pipeline to accomplish the eval-
uation of the three ITSs. Note that all data was collected
asynchronously, being delivered and received over writable
documents. Appendix Figure 2 portrays a sample of a par-
ticipant’s final ratings of two assessor responses with the
entire evaluation pipeline’s stages intertwined. We will now
discuss how each stage was conducted:

4.3.1 Stage #1: Student Question-Answering
For the first stage, we recruited four university students who
had completed a college-level AI course for the evaluation.
Participants’ AI knowledge varied from undergraduate com-
puter science students casually interested in AI to Ph.D.
candidates who specialized in it, all of whom volunteered
and agreed to the anonymized release of their collected data.

First, each participant was asked to watch the aforemen-
tioned video lecture with relevant course material. They
were then given a total of nine questions (creation detailed in
Appendix A) with an approximately uniform amount from



each subtopic being randomly and uniquely picked for each
student. Every participant was then asked to respond to
each question presented to them with varying levels of ac-
curacy. This was realized by asking participants to answer
a third of their questions with full accuracy, a third of their
questions with partial accuracy or partial inaccuracy, and a
third of their questions very inaccurately. We prompted par-
ticipants for a variety of accuracy levels in order to ensure a
similar corpus of response qualities was achieved, which was
necessary to properly assess whether or not the KB could
react proficiently to students’ answer slips and guesses. No
other restrictions were imposed on answers. No time limit
was imposed for participants’ answers.

4.3.2 Stage #2: Domain Expert and Intelligent Tutor
Addressal

In stage two, we recruited two professional AI curriculum
domain expert volunteers who agreed to the anonymized
release of their collected data. Both domain experts were
professionals in AI education with multi-year experience in
curating and teaching AI course curricula for secondary and
post-secondary students. Additionally, both domain experts
agreed they had the necessary expertise to properly assess
and address potential student responses to the lesson ma-
terial and provided questions. Before beginning the eval-
uation, we secured explicit confirmation from the domain
experts on their agreement to the correctness of the video
lectures that would be provided to students. This valida-
tion process ensured a robust foundation for the subsequent
phases of our research, reinforcing the reliability of data col-
lected. We utilized these two domain experts as well as the
three ITSs (all five henceforth collectively denoted as “asses-
sors”) to assess and respond to students’ answers. Specifics
on assessors’ instructions can be found in Appendix B.

4.3.3 Stage #3: Ranking of Assessor’s Responses
For the third stage, the student participants from Stage
#1 evaluated which assessor’s response (after processing as
per Appendix E) was of the best quality for each question-
answer pair provided. The assessments were anonymized to
prevent biases, and the corresponding question-answer pairs
were presented with each assessment as contextual back-
ground. Due to an overwhelming amount of data to present
to students, we uniformly and randomly selected only one
domain expert’s answer to present to the students for com-
parison against the ITSs’ responses (Appendix D).

The triples (question-answer-assessments) given to each par-
ticipant consisted of those containing the answers they pro-
vided to questions in Stage #1 along with the triples to
an additional, random participant’s question-answer pairs.
This allowed for each assessor’s response to have two inde-
pendent evaluator’s rankings and mitigated personal biases.

As every question-answer pair had four separate replies (three
ITSs and one randomized domain expert) to rank, we for-
matted this evaluation as a pairwise comparison between
each ITS versus the domain expert. This allowed us to ob-
serve how students’ assessor preferences changed with KB
differences. We utilized the same criteria implemented in
past literature and asked participants which response is more
likely to be said like a teacher, understanding of a student,

and helpful to a student [23], which builds on key pedagogi-
cal requirements set forth for AI models being applied as AI
teachers [2]. For each pedagogical ability criterion, we asked
participants to indicate whether either assessment was of
better quality or if they were too similar to differentiate.

Furthermore, a considerable amount of assessments suggested
inaccurate answers as truthful information. To ensure par-
ticipants’ familiarity with which choices were valid and ra-
tional, a “Factual Information” section was included for each
question. This section gave a brief delineation, based on rig-
orous research, for the answer choices that most accurately
addressed the given question. The assessors’ replies were
never directly mentioned in this section to reduce biases.

5. RESULTS
5.1 Stage #2 Results: Agreement and Accu-

racy
We cross-compare the domain experts’ assessments against
one another to find an agreement level of 63% for what
each domain expert believed the correct answer choices were
whereas the ITSs only agreed 43% of the time on what they
believed the correct answer choices were. Some of the answer
choices were ambiguous depending on the specific context
that each assessor interpreted (e.g. the potential impact of
a technology to have indirectly influenced events), meaning
assessor groups would not always be in agreement in their
responses. In calculating these agreement level percentages,
we choose for agreements to be strict and for any assessor
response deviance to not count as agreement.

As a result of this inflexible and conservative definition, we
also calculate the overall accuracy level for all assessors, tak-
ing into account these ambiguous situations. In this defini-
tion for accuracy, we declare that ambiguous situations are
acceptable so long as no evidence renders the response in-
correct or unreliable beyond a reasonable doubt. With this
definition, we found that domain experts demonstrated a
combined accuracy rate of approximately 87% while ITSs
exhibited a combined accuracy rate of only 70%. In partic-
ular, the no KB, partial KB access, and full KB access ITSs
had accuracy scores of 67%, 77%, and 74%, respectively.
Information on ITS token usage is available in Appendix F.

5.2 Stage #3 Results: Pedagogical Abilities
We examine the preliminary results by calculating the per-
centage of replies classified as a particular pedagogical abil-
ity for each ITS (Appendix G). Table 1 exhibits the results
of this computation and Appendix Figure 3 showcases a bar
graph of the rankings to illustrate the visual change in reply
selection quantity with KB additions.

We observe, for the ITS with no KB access, that the domain
experts attained a relative majority for all pedagogical abil-
ities, particularly in the dimension of being helpful to stu-
dents. This agrees with Tack and Piech (2022) [23], who
found similar trends in pedagogy for GPT-3 AI teachers re-
sponding to student dialogues. Though their LLM (GPT-3)
and our own (GPT-4) are disparate, as well as the domain of
education, the exhibition of their similar pedagogical qual-
ities underscores the consistency of these didactic models
across different iterations and applications.



Intelligent Tutor Pedagogical Ability GPT-4 Preference Domain Expert Preference No Clear Preference
Talking like a teacher 27.14% 50.00% 22.86%

No Knowledge Base Understanding the student 31.43% 38.57% 30.00%
Helpful to the student 25.71% 57.14% 17.14%
Talking like a teacher 44.29% 38.57% 17.14%

Partial Knowledge Base Understanding the student 41.43% 35.71% 22.86%
Helpful to the student 38.57% 51.43% 10.00%
Talking like a teacher 38.57% 31.43% 30.00%

Full Knowledge Base Understanding the student 41.43% 31.43% 27.14%
Helpful to the student 34.29% 45.71% 20.00%

Table 1: Preference rates for different tutors based on evaluations of four participant annotators for each pedagogical ability.

Upon integration with a KB, the ITSs’ pedagogical abili-
ties exhibited increases in preference for GPT-4 responses.
The partial KB ITS achieved 17.15%, 10.00%, and 12.86%
preference increases for talking like a teacher, understanding
the student, and being helpful to the student respectively.
Meanwhile, the full KB ITS achieved 11.43%, 10.00%, and
8.58% preference increases, respectively. This suggests that
having both partial KB access and full KB access increases
the ITSs’ pedagogical dimensions.

Notably, the reply percentage distributions for talking like a
teacher and understanding the student realigned in favor of
both ITSs with KB access. No ITS’s ability to be helpful to
the student overcame the domain experts’, despite the other
two abilities accomplishing this task.

The partial KB ITS was particularly preferred for talking
like a teacher and tied with the full KB ITS for understand-
ing the student. However, the domain expert reply prefer-
ences were consistently lower for the full KB ITS as opposed
to the partial KB ITS for all three pedagogical abilities.

6. DISCUSSION AND FUTURE WORK
Our study faced a core limitation in the evaluation due to
a shortage of AI curriculum experts with adequate knowl-
edge and time allocations. Consequently, we had to reduce
the number of student participants and prompt students for
a variety of response accuracy to ensure we received asses-
sor responses on incorrect answers. This approach purpose-
fully ensured a generation of sufficient inaccurate student
answers for assessors to evaluate. However, trying to mimic
naturally inaccurate student answers (i.e. slips and guesses)
with artificial inaccuracies could have potentially introduced
experimental bias. Ideally, in the scenario of more personnel
resources becoming available, future studies of KB integra-
tion should have more AI curriculum domain experts and
student participants to resolve the aforementioned issues.

We also chose to include participants who have completed
courses in AI instead of participants engaged in an AI course
for the first time. This afforded participants a preferable ca-
pability to contrast the pedagogical abilities presented in
Stage #3, where seemingly correct arguments from assessor
responses could mislead students who lack prior, formal ed-
ucation in AI. Moreover, this decision raised the likelihood
that the inaccurate student answers provided in Stage #1
were plausible and well-articulated.

Using “check all that apply” questions were used to make
assessors required to evaluate multiple components of every
question in Stage #2. As a result, it should be noted that
other question types may produce different results. Dissim-
ilar curricula may also produce different results as question
complexity and response variation depend on them.

Lastly, though KBs external to LLMs possess multifaceted
benefits (e.g. ease of updates, direct prompting) fine-tuning
these models on educational subject matter may prove in-
credibly resourceful for accuracy and pedagogical ability gains.
We hope to investigate this possibility in future research.

7. CONCLUSION
Our study is the first to delve into the extent to which an
integrated KB can enhance the pedagogical abilities of LLM
chatbot tutors. This technique seeks to mitigate inaccura-
cies and irrelevant responses from LLMs, thereby potentially
increasing pedagogical abilities. We gather preliminary data
on such systems by exploring, at varying KB hierarchies,
how effective and accurate the ITSs are compared to domain
experts. An evaluation was conducted on AI curriculum uti-
lizing both ITSs (with varying KB access constraints) and
domain experts to assess student answers to various “check
all that apply” question types for a given curriculum.

The assessor responses retrieved from our evaluation pipeline
indicated that all ITSs had lower agreement and accuracy
rates than domain experts. Both ITSs with KB access, how-
ever, had notably higher accuracy rates as compared to the
ITS without KB access. After quantifying the ITSs’ peda-
gogical abilities, we observe, for the aforementioned curricu-
lum and question types, that the KB integration increases
the preference for ITS responses and decreases the prefer-
ence for domain expert responses. Furthermore, our data
suggested that the abilities of ITSs to speak like a teacher
and understand students surpassed that of domain experts
when KB capabilities were used. The ability to be helpful
to students, though increasing with KB inclusion, still failed
to exceed that of domain experts.

This comprehensive evaluation highlights the practicality
of implementing KBs with chatbot ITS frameworks using
LLMs. Though LLM ITSs still have necessary development
for application, this methodology spotlights a scaleable tech-
nique for instructors to include their course information with
chatbot ITSs that results in accuracy and pedagogical abil-
ity gains.
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APPENDIX
A. STAGE #1: QUESTION CREATION
To create impartial yet relevant questions, we used GPT-
4 to generate a set of 36 “check all that apply” questions.
This question type was chosen as it yields an exponential
amount of answer possibilities, increasing the likelihood that
any of the assessors may evaluate an answer inaccurately.
With the expansive question bank, the influence of outliers
is minimized and correlations in assessor agreements can be
observed.

As this information alone may not have been sufficient for
understanding a student’s weaknesses from incorrect responses,
we prompted participants to explain their answers for every
answer given. The question relevancy was equally divided
amongst the four subtopics, and GPT-4 was given full KB
access to the particular AI subtopic as well as the topic
description for generating each question. This best mim-
icked question creation by various educators, who often have
abundant resources (i.e. textbooks, internet) for creating in-
tricate questions.

Before proceeding, we went through all generated questions
to ensure they were valid for different levels of difficulty, ped-
agogically sound, and relevant to the video lecture’s mate-
rial. Five questions were chosen to be regenerated for being
either repeats of other questions or for lacking relevance to
the given lecture material.

B. STAGE #2: ASSESSORS’ PROMPT AND
INSTRUCTIONS

We utilized the two domain experts as well as the three
ITSs to assess and respond to students’ answers. The five
assessors were given the same prompt and were asked to do
the following:

• Respond to the student’s answer given the current
question

• Explain what about their answer is accurate or inac-
curate

• Suggest what about the answer can use improvement

• Help clear any misconceptions

Assessors were limited to a 75-word constraint and had no
time limit. The only difference in the prompting for the
ITSs opposite to the domain experts was the ITS’s access to
an internal ranking of the answer.



C. EVALUATION PIPELINE STAGES

Question Generation

Question: What does a neuron output if the sum of
its inputs does not exceed the threshold value?

a) 0 b) 1 c) -1 d) The threshold value

Stage #1

Student Answer: a - the mcculloch pitts artificial neu-
ron only fires if its input sum exceeds the threshold
value, otherwise it remains a zero

Stage #2

Reply A: That’s correct! Your understanding of the
McCulloch-Pitts artificial neuron is accurate. The
neuron outputs a 0 if the input sum does not exceed
the threshold value.

Reply B: Great job, that’s correct! In the context of
a neuron with a threshold, assuming the McCulloch
and Pitts model, both the inputs to the neuron and
the response from the neuron are all binary (0 or 1).
1 means the neuron fires (on) and 0 means the neuron
doesn’t fire (off).

Factual Information: A is the only correct answer as
artificial neurons (for McCulloch & Pitts) output a
zero for insufficient aggregate values.

Stage #3

Which of these replies is more likely said by a teacher?

I cannot tell

In which reply is the teacher understanding the stu-
dent more?

A

In which reply is the teacher helping the student
more?

B

Figure 2: A depiction of the evaluation pipeline stages along-
side a sample of a student participant’s rating for assessor
replies.

D. STAGE #3: OVERWHELMING DATA FOR
COMPARISON

For the third stage, we uniformly and randomly selected
only one domain expert’s answer to present to the students
for comparison against the ITSs’ responses. We roughly esti-
mated that each pairwise comparison would take one minute
to analyze and interpret for meaningful results, meaning
that our participant volunteers would likely spend closer to
two hours for the third stage evaluations in addition to their
earlier contributions in the first stage. Concerns grew that
an estimated time requirement exceeding an hour may per-
haps induce boredom in the participants and would yield
more haphazard data. Therefore, our effort to minimize
comparisons attempts to preserve our data’s integrity.

E. STAGE #3: ASSESSOR RESPONSE PRO-
CESSING

Before relaying the assessors’ replies to the participants, all
replies were processed as according to the following list:

• Fixed all spelling and grammar mistakes

• Removed all sentences of pure affirmation or motiva-
tion (i.e. “Keep up the good work!”)

• Removed all declarations affirming the student’s knowl-
edge level in AI as a whole (i.e. “Your understanding
aligns well with the biological basis of artificial neu-
rons.”)

• Removed impractical assessment scenarios (i.e. “How
would you change your explanation? [Pause and give
time to answer]”)

Though student participants were never informed that any
reply stemmed from GPT, we suspected they may intuitively
be able to recognize common GPT-generated sentence struc-
tures against human domain expert sentence structures. Thus,
these changes were targeted in order to further anonymize
the study and conceal which replies were from domain ex-
perts or from LLMs.

F. STAGE #2 RESULTS: TOKEN USAGE
We find the computational price for the described architec-
tures of the no KB, partial KB access, and full KB access
ITSs to call GPT-4 to be approximately 400, 600, and 2000
input tokens per student answer assessment, respectively.
Additionally, all ITSs output approximately 60 tokens per
student answer assessment. This corresponds to total mon-
etary prices of about $0.016, $0.022, and $0.064 per student
answer assessment, respectively, as present-day GPT-4 to-
ken costs being $0.03 per 1000 input tokens and $0.06 per
1000 output tokens.

G. STAGE #3 DATA PROCESSING
We examine pedagogical ability results by calculating the
percentage of replies classified as a particular pedagogical
ability for each ITS. This allows us to isolate the proba-
bility an ITSs’ responses will be preferred or unfavored by
a student. The calculation is performed by finding the per-
centage of times each reply option (GPT preference, domain



expert preference, no clear preference) was selected within
a pedagogical ability category (speaking like a teacher, un-
derstanding the student, helpful to the student) for a spe-
cific ITS (no KB access, partial KB access, full KB access).
Mathematically, this is derived by dividing the total count
of selections for a reply option for an ITS-pedagogical ability
pair by the total count of all rated replies for that particular
ITS. This number is then converted into a percentage for
the particular ITS-pedagogical ability so that it can be.

For example, for the ITS with no KB access in the talking
like a teacher pedagogical category, GPT-4 preference was
chosen 19 times, and a total of 70 ratings were given for
that ITS in that category. This yields a percentage of 19

70
×

100% = 27.14%
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Figure 3: Visualization of ITSs’ pedagogical ability improve-
ments as knowledge base access increases for a) speaking like
a teacher, b) understanding the student, and c) being help-
ful to the student.


