
Mining Epistemic Actions of
Programming Problem Solving with Chat-GPT

Rwitajit Majumdar
Kumamoto University, Japan

majumdar@kumamoto-u.edu.jp

Prajish Prasad
FLAME University, India

prajish.prasad@flame.edu.in

Aamod Sane
FLAME University, India

aamod.sane@flame.edu.in

ABSTRACT
In programming problem-solving, learners engage in creating solu-
tions to specific given task problems by writing an executable code.
Prior research has shown that self-regulated learning (SRL) strate-
gies help improve novice performance in solving programming
problems. With the advent of Large Language Model (LLM) tools
like ChatGPT, novices can generate reasonably accurate code by
providing the problem prompt. They, hence, may forego applying
essential self-regulation strategies such as planning and reflection
to solve the problem. This research investigates if the above is the
case. We designed a programming problem-solving task in an
available online environment, LAreflecT. A set of self-regulation
prompts was provided while learners could use ChatGPT to build
their solutions. Learners’ interactions with the elements in the
LAreflecT and their generated artifacts are logged. We analyzed 42
undergraduate students' data and highlighted problem-solving ap-
proaches of groups with correct and incorrect end-point solutions
through process mining and artifact analysis. The findings indicate
when learners use LLM as support their epistemic actions involve
refining their problem understanding and solution evaluation when
supported with metacognitive prompts within the system. We dis-
cuss the reflections of the learners who had more than two
conversations with ChatGPT and draw implications of designing
SRL support while learning with generative AI.

Keywords
Programing Education, ChatGPT, LAreflecT, Process mining

1. INTRODUCTION
As students and instructors learned about Large Language Model
(LLM) tools, many possible uses of such tools and worries about
their use in Computer Science (CS) education surfaced in the com-
munity. In an early study, Lau and Guo [1] collected a snapshot of
tool capabilities and instructor responses and proposed research op-
portunities for Computer Science Education Research (CSER),
such as improved scaffolding, building educator-tailored tools,
scalable assessments, feedback, and personalized instruction. An-
other early study [2] identified the possibilities of generating
exercises, solution variants, and refactoring problems. These ideas
for future work are being addressed in papers on exercise genera-
tion, code explanations, improvements of error messages [3, 4, 5],
and so on. Such investigations of the possible uses of LLMs have
emerged organically, driven by community perceptions of possibil-
ities and worries.

Loksa and Ko’s proposed a framework of programming problem-
solving and aspects of self-regulation [5]. Loksa and Ko proposed
six distinct activities during problem solving - (1) Reinterpreting
the problem prompt (2) Searching for analogous problems (3)
Searching for solutions (4) Evaluating a potential solution (5) Im-
plementing a solution, and (6) Evaluating an implemented solution.
They also proposed five types of self-regulation that support prob-
lem-solving: (1) Planning, (2) Process monitoring, (3)
Comprehension monitoring, (4) Reflection on cognition and (5)
Self-explanation. The effects of LLM technologies use and how it
fundamentally impacts programming problem-solving are still less
investigated. In their extant form, they are likely to influence stu-
dents' ability to regulate their programming problem-solving
process. Why? – students will directly use LLM tools to generate
code without sufficiently thinking about the problem. Need to be
careful to understand the problem and evaluate the solution gener-
ated by LLM tools. Therefore, educators should ensure that
educational interventions use these technologies in ways that foster
self-regulated learning. Prasad and Sane [6], took Loksa and Ko’s
framework to develop SRL strategies while learners engage in pro-
gramming activities with generative AI systems as support. Since
LLMs automatically generate code, they provide the affordance to
clearly separate the specification of the problem from the actual im-
plementation during problem-solving. Hence, there is more
emphasis on steps of coding problem understanding and solution
evaluation. They provided examples of internalized thinking the
students might have during the above two phases. Further, the types
of self-regulation include not only managing concepts but also
planning, monitoring, comprehending, and reflecting on the arti-
facts created for interaction (prompts) or generated by the LLM
(responses).

While there exists a theoretical position of including LLM for spe-
cific programming problem-solving activities in the learning
context, there was no empirical evidence of learners’ interactions
in such a learning context. We initiated this research from the per-
spective of learning analytics to investigate the learner behaviors
given an online task environment that instantiated the above CS-ed
theoretical framework. This work is guided by the following re-
search questions:

What problem-solving strategies do students follow while attempt-
ing the programming task using an LLM tool like ChatGPT?

2. RESEARCH FOUNDATION
2.1 Using LLM tools in CS education
Since LLM tools work very effectively with languages, they make
possible new kinds of educational interventions [7]. Sarsa et al.
generate exercises using LLMs [8], finding that generated exercises
are sensible and novel, and the problem statements are properly
contextualized. They show that LLMs also generate suitable test
cases. LLMs can generate code explanations [9] that are easy to
understand [10] and helpful [11]. Other uses include improvements
of error messages [12] that are sometimes better than the originals.

R. Majumdar, P. Prasad, and A. Sane. Mining epistemic actions of
programming problem solving with chat-gpt. In B. Paaßen and C. D.
Epp, editors, Proceedings of the 17th International Conference on
Educational Data Mining, pages 628–633, Atlanta, Georgia, USA,
July 2024. International Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729902

mailto:majumdar@kumamoto-u.edu.jp
mailto:prajish.prasad@flame.edu.in
mailto:aamod.sane@flame.edu.in
https://doi.org/10.5281/zenodo.12729902

Perhaps the most interesting new aspect of LLM-based tools is that
they allow conversation, enabling new variants of think-aloud
problem-solving [10], and an unusual mechanized form of pair pro-
gramming [11]. The idea of ‘prompt engineering’, the redesign of
conversations is a LLM specific skill, is explored in the design of
constraining tools like Promptly [12]. That overreliance on LLM-
based tools is likely to affect SRL is discussed in [16].

2.2 Programing Problem-solving Framework
Loksa and Ko’s proposed problem-solving activities into 3 broad
phases - Problem Understanding, Use of Generative AI Models,
and Solution Evaluation. In addition to Loksa and Ko’s five types
of self-regulation, Prasad and Sane’s model also includes regula-
tion strategies related to motivation and affect (bottom portion of
Figure 1). The theoretical framework of Prasad and Sane [6] is
taken as a foundation to create the learning task and analyze the
interaction data collected during this study.

According to Prasad and Sane, Problem understanding is a key
phase in the problem-solving process. A clear understanding of the
problem is essential to build an adequate model of the task. An in-
correct understanding can hinder all subsequent steps in arriving at
a solution [5]. Several theories of metacognition and self-regulation
highlight the importance of analysing the task, as well as under-
standing the surrounding context of the problem to be solved [15].
According to Flavell, the problem task can be perceived differently
by a variety of learners, based on several parameters such familiar-
ity/unfamiliarity, organization (well or poorly organized),
redundancy and ambiguity in the task. Zimmerman highlighted the
importance of setting appropriate goals and strategic planning as
part of the task analysis phase in the self-regulation process [15]. In
addition, Pintrich stressed the importance of prior content
knowledge and metacognitive knowledge activation during the in-
itial phases of problem solving. What are learners expected during
the problem understanding phase? They plan and reflect on the
problem context and the specification, and iteratively design
prompts for the problem. These form the sub-categories of the prob-
lem understanding phase. It constitutes the sub-categories in the left
part of Figure 1.

Evaluation and reflection on the final as well as intermediate solu-
tions is an important aspect of problem solving. Zimmerman notes
the role of self-evaluation in calibrating one’s effort on a task with
a standard or goal [16]. In the context of programming, this refers
to evaluating whether the program meets the expected specifica-
tions of the Problem. The solution generated by generative AI
models need not be ideal or appropriate in the first attempt. This
makes evaluating the generated solutions an important activity in
the problem-solving process. Learners are required to monitor and
reflect on the solution and strategize subsequent problem-solving
actions. The constituent elements of the solution evaluation phases
involve effectively performing program comprehension and debug-
ging, and also deciding when solutions generated by LLMs are
hindering their progress.

Figure 1. Self-regulation framework for programming problem
solving using generative AI [6]

Table 1 highlights the suggested learning design and salient fea-
tures of possible intervention. In this study, we aim to trace the
learners' problem-solving process with reference to the above
framework. Hence, we have instantiated the activity in an online
learning environment that enables us to extract the trace data and
analyze and interpret the process. The considerations in this spe-
cific study are reported in the last column of table 1.

Table 1. Educational Intervention Features according to [6] and how it is instantiated in this study.

Problem-solving skill Salient features of possible intervention [6] Instantiation in this study

Problem Specification Provide specifications in modalities other than text Provide a picture of one input and output scenario. Tracked the number
of interactions the learner had, indicating they referred back to the prob-
lem specification.

Problem Context Provide on-demand knowledge about program-
ming concepts, constructs, and course topics

Provide this as an input element where learners reflect on what concepts
they think are necessary to understand and solve the given problem spec-
ification

Problem Decomposition Provide problems with multiple functions, classes,
or concepts or with multiple sub-goals where
learner develop the ability to combine and adapt
multiple pieces.

A simpler problem was selected due to the time constraint of completing
the task within the class hour. It was still at an appropriate level of com-
plexity where different learners approached differently with variation in
the correctness of the answers.

Prompt engineering Provides a knowledge base of essential prompt cat-
egories.

This was an input element where learners shared their initial prompt and
the link to their ChatGPT conversation. The conversation is analyzed as
an artifact.

Program Comprehension
and Evaluation

Provides an explanation for code The learner could use ChatGPT to comprehend the generated code.

Self-regulation Externalization of Metacognition and SRL strate-
gies

The instructor could create an input element that prompted learners to ex-
ternalize their metacognition, and they also write reflectively about their
interaction with ChatGPT.

3. RESEARCH METHODS
3.1 Learning Context and Learning System
This particular pilot study is conducted in an undergraduate com-
puter programming course offered to the students of a liberal arts
college in a private university in India. The class was scheduled for
1 hour 55 minutes. The class included students in the age group of
19 to 20 years who were enrolled in their second year of study at
the university. At the time of the research, this course was their sec-
ond programming course after being introduced to Python in their
first year.

Learning Analytics' enhanced Reflective Task (LAreflecT) plat-
form was used to conduct this study. It has two main components:
an authoring tool where the teacher can create any microlearning
activity and a viewer where the learner can attempt it. The platform
can be linked to any learning management system (LMS) with a
standardized learning tool interoperability (LTI) protocol. The user
with a teacher role in the LMS has access to the authoring tool in
the platform. Once they create an activity, they have to publish it to
make it available in the activity viewer. The viewer has an activity
attempt interface. It also logs the data of the users' interactions and
then can visualize the data in the dashboard and also provides ac-
cess for the teacher to download the dataset for further processing.
This tool had appropriate affordances required for both instantiat-
ing the learning activity and providing access to the logged data
required for this study.

The programming assignment was authored in the LAreflecT plat-
form by the instructor. Learners were given a test case that
contained an input and the corresponding required output. Learners
were required to write code for that test case in LAreflecT. They
could use ChatGPT for the activity, and the instructor created met-
acognitive prompts in the LAreflecT platform to reflect on their
problem-solving process as defined in Table 1. Figure 2 presents
the Problem statement and examples of input elements.

3.2 Data Collection and Analysis Method
An overall phenomenographic research approach [14] guided the
research questions to focus on a single activity undertaken by the
students enrolled in the course, the in-class programming assign-
ment. The team of researchers, including the course instructor, then
interpreted the different approaches that emerged from the interac-
tion logs during that episode of the programming problem-solving.

We followed a purposive sampling and selected the students en-
rolled in the course (n=77, 39% females) as participants. The data
extracted for this study included the LAreflecT logs during the pro-
gramming class period in the two sections on September 15 and
September 18, 2023. Of the total 77 students enrolled in this course,
16 students were either absent or dropped out of the course. 61 ac-
cessed the task on LAreflecT. 3 students didn’t consent to the data
sharing, so for this analysis, we considered 58 students’ 2442 action
logs as xAPI statements with three types of verbs. First clicked
when any element is accessed and the accordion is opened, second,
answered when a particular input element is answered by the user,
and the third time spent when an opened according to is closed. The
input by the students, as recorded in the logs, provided the artifacts
of their initial problem definition, their first prompt to ChatGPT,
their final solution, and their perceptions of ChatGPT. The instruc-
tor evaluated the final code for its correctness from 42 students
whose log had it. In that dataset, there were 22 cases of learners

whose final answer was correct (CA group) and 20 cases of learners
whose final answer was incorrect (IA group).

Figure 2. The LAreflecT viewer interface for the learning task.
The problem statement and example prompt for problem
understanding

To answer RQ, the prominent interaction process for each group
while they attempted the activity was extracted using the fuzzy
miner algorithm implemented in DISCO (Fluxicon, 2021). The pro-
cess map was created from event logs of answering the different
elements in the overall problem-solving episode for the two differ-
ent groups. While conducting process mining by using a fuzzy
miner algorithm implemented in DISCO, the criteria for selecting
an activity node (operations) of the process and the paths (linking
consecutive operations) need to be set. The analysis parameters
were selected following available references in the literature earlier
[16]. It aims to balance the details of the emerging process path,
which can be interpretable in the context and not abstract enough
just to present independent loops of operations. To understand the
overall attempt patterns, we filtered for only answered verbs which
included the learners’ actions on the input elements of the LAre-
flecT activity. All the 9 input elements were considered. The top
25% of prominent paths were visualized on the map.

4. FINDINGS
4.1 Task attempts of groups with correct and

incorrect answers
Figure 3 presents the process map of both CA group and IA group
regarding the frequency of cases and Figure 4 presents the time per-
formance of the answering process. The salient differences are
highlighted by number and discussed subsequently.

While the task was arranged in more of a linear flow in the
LAreflecT interface, the process mining highlights the sequence of
answering which involves updating different elements while prob-
lem-solving. In the Problem Understanding phase of the activity,
problem description was updated by 50% of CA-group learners
who got their final solution correct in contrast to 36% of IA-group
learners (see highlight 1 in fig 3.). 31.8% of CA-group learners up-
dated the problem description after reflecting on the concepts
required to solve the problem in contrast to 20% in the IA-group
(highlight 2 in fig 3). There were 22.7% of CA-group learners who
updated the problem description after writing the prompt for
ChatGPT. This was not a significant process path in the IA-group.

In the solution evaluation phase, 45.5% of the CA-group learn-
ers updated the prompts after evaluating the solution (highlight 3 in
Fig 4.), and 22.7% updated the evaluation also (highlight 5 in Fig
3.). However, such pathways were not significant for the IA-group.

Figure 3. Interaction pattern of the groups in terms of case fre-
quency. (left) Group with correct answer (CA group, n=22)
(right) Group with incorrect answer (IA group, n=20)

Considering the time spent during the process, it gives an indi-
cator of effort spent to input or reflect on before committing the
answer to a specific element. It is seen that 31.8% of the CA-group
learners spent an average 2.2 minutes before sharing the link of
their ChatGPT conversation (see highlight 6 in Fig.4) in compari-
son to 37.7 sec for the IA-group learners. On the other hand, the
IA-group learners’ interactions around the Prompt for ChatGPT
were longer than the CA-group (see highlight 7 in Fig 4.)

Figure 4. Interaction pattern of the groups in terms of time
performance. (left) Group with correct answer (n=22) (right)
Group with incorrect answer (n=20)

4.2 Interpretation along with qualitative data
Based on the end-point task accuracy of the learners, we explored
the answering patterns in LAreflecT tool. The answering action
given the prompts designed by the instructor, represented the learn-
ers’ metacognition while problem-solving. For instance, reflecting
on what are the concepts required while answering the Problem
Context element required them to activate prior knowledge during
the problem understanding phase. We found that the group that suc-
cessfully got to the solution had significant pathways of refining
their problem understanding (highlight 1,2,3). Before having mul-
tiple conversations with the ChatGPT tool, they spent considerable
time formulating the initial prompt. This confirms that engagement
in the problem-understanding phase is still necessary and is related
to the final success of finding the programming solution. For solu-
tion evaluation, the analysis indicates that a proportion of members
of the CA-group (highlight 4,5,6) followed that pathway where re-
visions were done by spending more average time than the IA-
group. These patterns highlight that even if the LLM tool provides
some response as a solution, it requires the learners to verify more
whether the answer provided is valid, without which nearly 48% of
the students didn’t find the correct solution even while aided by
ChatGPT.

Members of the IA-group who used LLM tools to have conver-
sations longer than two interactions also spent more time before
they submitted the evaluation of the solution. We looked at the re-
sponse to the evaluate solution element in LAreflecT and found that
utterances indicate that the students were aware the solution is in-
correct because their prompts were not clear or incorrect. [“No, I
didn't (evaluate the solution). Because I was ineffective in present-
ing it. Make it clearer.” - studentid_4931; “I am not sure if the
solution is correct by that is mainly because I am not sure my ques-
tion/ problem statement is correct.” studentid_5121]. While in two
other cases, the learners were not sure of the solution provided by
the LLM as it seems complex to them due to the use of

programming elements that they still didn't know of [“I think it is
correct, but it is more detailed than I assumed it would be. It solved
the problem differently than I the way I imagined it, making use of
array concepts.” studentid_5314;

“The solution seems correct. It looks like ChatGPT has understood
what needs to be done and has used the logic that will give us the
output. Since the code uses while loops, I cannot fully examine
whether it is correct or not simply because I myself don't know how
to execute them in C++. Maybe I can edit the prompt, asking it to
use functions and conditionals.” studentid_4981]. In the last case,
the learner was aware that the solution was not correct [“Not en-
tirely correct. yes there are incorrect parts. like it is not doing
average only with the picked 3 numbers but it is taking the combi-
nations of 3 numbers and doing average for it. so it is divided with
10 at the end.” studentid_3782]. Only studentid_4981 among them
had the problem description correct, while all others also formu-
lated the problem incorrectly to begin with. On the contrary, all the
CA-group people had the problem description correct, and while
evaluating the solution, they reflected that ChatGPT’s solution was
often initially not the desired one or too complex [“The first re-
sponse or the first code it gave me is wrong. The solution code is
correct, but it used too many complex functions and methods. I will
ask Chatgpt to improve the code and use the most basic concepts
of C++” studentid_4869].

Members of the CA-group who used ChatGPT multiple times
also reflected on the Perception of ChatGPT element in LAreflecT
for a relatively longer time and had the following responses. One
of them was critical about the LLM tool itself [“It got the code cor-
rect but it will be using styles much different that individuals use
themselves. It attempts to be more precise than the input tells it to
thus making the code bulky. It usually gets the code correct but
messes up simple calculations itself such as outputting 18/3 as 6.1.”
studentid_4874]. Two believed ChatGPT was useful but made
learning task simple [“useful, but makes everything too conven-
ient.” studentid_4814; “Chatgpt made my work very easy. The code
it gave me is correct as I checked it on replit. It made wrong when
I just gave it my requirement as it made many complex assumptions
but after I specified my actual method, it gave me the right solution.
ChatGPT can be very helpful in programming tasks as it makes our
task very simple” studentid_4869]. One of them was aware of the
solution themselves and wanted to use ChatGPT for more complex
problem [“If the question would have been more difficult and then
I would nicely be able to judge chatgpt, here as I knew the answer,
there was not a problem which I was asking chatgpt to solve” stu-
dentid_5300]. The last learner in the group had a detailed reflection
on their own confidence of the programming problem-solving task
as well as the role that was delegated to the LLM tool. Further, a
reflection of how to use the tool for future learning was also written.
[“ChatGPT helped me implement logic that I had already figured
out but in a programming language that I'm not too familiar with.
I knew the concepts I would need for this problem -- arrays and
sorting. However, I had little experience implementing those con-
cepts in C++. ChatGPT thus wrote the C++ code for arrays and
sorting for me. It got the logic right based on the prompts I gave.
I'm not sure if it got the syntax right--I'm trusting that it did, since
I'm not too familiar with C++ arrays and sorting. It also added
some functionality that I didn't ask for -- it wrote code that prints
out the sorted array before printing out the final answer. I can use

ChatGPT for help with programming tasks that I'm stuck on. In the
academic realm, ChatGPT can help me figure out the logic for a
problem, write the code, and debug code i may already have writ-
ten. Outside academics, ChatGPT helps me implement a lot of
Python code for data analytics work on a variety of projects. I often
give it elaborate problem statements and ask for implementations
in Pandas and Numpy. I know enough of pandas and numpy to com-
pletely understand its solutions too. If i'm invested in learning a
concept because I need it for a test, I wouldn't directly ask ChatGPT
for the solution. Instead, i ask it to teach me/talk me through the
logic. I prefer to write the code myself if I'm learning a concept for
a test. Meanwhile, i often just need to get things done on data ana-
lytics freelance projects, so I spend more time tweaking the finished
code that ChatGPT gives me. In both cases, i make sure i under-
stand the code.” studentid_3313].

5. CONCLUSION AND FUTURE WORK
This study is one of the first exploratory ones that investigated pro-
gramming problem-solving interactions to mine and interpret
epistemic action sequences while working with ChatGPT. We
adopted a prior framework from CS education [6] which proposed
interventions to include LLM tools like ChatGPT that might influ-
ence learners’ self-regulation skills. The empirical evidence
through exploratory data analysis highlights those learners whose
endpoint solution was correct emphasized refinement during the
problem-understanding phase, while the group whose endpoint so-
lution was incorrect often fixated on the use of the tool to iterate
and find the solution but did not succeed in that specific episode.
However, the responses from the IG group highlight that even when
the end-point solution was incorrect, as a learning activity including
interactions with ChatGPT helped them to reflect on their process
and evaluate the solution provided by the LLM tool. The findings
encourage using the self-regulated learning framework in compu-
ting education [6] by which activity and the designed prompts
provide enough reflection opportunities for learners’ self-regula-
tion even when using LLM tools like ChatGPT. With authoring
platforms like LAreflecT there is the scope to include such self-
regulation prompts or navigation constraints to elicit learner reflec-
tion while learning programming problem-solving. We plan to
explore the effect of using the dashboard in LAreflecT that can
show the learners' attempt pattern and their self-reflections on the
problem-solving task.

There are various limitations at this stage of the exploratory
study. The given problem statement might not be complex enough
as expected in the framework, but still, there was variation in the
learner’s end-point performance as well as their process behaviors
that were interesting to report. Also, the overall process of attempt-
ing the answer is captured through log data, which does not capture
the prior conceptual understanding of the students, their motivation,
or any of their prior dispositions [17]. These might affect how the
student engaged in the task and their behaviors. Further studies are
required to investigate differences in student’s programming prob-
lem-solving behavior in groups formed based on other relevant
learner attributes, such as their self-regulated learning attributes.
Finally, the participants in the context were liberal arts majors who
participated in the programming course. The answering behaviors
and interaction process might vary for participants from different
specialization groups, academic levels, or activity contexts (MOOC

courses, adult education scenarios, hackathons, etc), which requires
further investigation.

6. ACKNOWLEDGMENTS
This work was partially supported by JSPS KAKENHI Grant-in-
Aid for Scientific Research (B) JP22H03902.

7. REFERENCES
[1] Lau, S. and Guo, P., 2023, August. From" Ban it till we un-

derstand it" to" Resistance is futile": How university
programming instructors plan to adapt as more students use
AI code generation and explanation tools such as ChatGPT
and GitHub Copilot. In Proceedings of the 2023 ACM Con-
ference on International Computing Education Research-
Volume 1 (pp. 106-121).

[2] Finnie-Ansley, J., Denny, P., Becker, B.A., Luxton-Reilly,
A. and Prather, J., 2022, February. The robots are coming:
Exploring the implications of openai codex on introductory
programming. In Proceedings of the 24th Australasian Com-
puting Education Conference (pp. 10-19).

[3] Leinonen, J., Denny, P., MacNeil, S., Sarsa, S., Bernstein, S.,
Kim, J., Tran, A. and Hellas, A., 2023, June. Comparing
code explanations created by students and large language
models. In Proceedings of the 2023 Conference on Innova-
tion and Technology in Computer Science Education V.
1 (pp. 124-130).

[4] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen.
2022. Automatic generation of programming exercises and
code explanations using large language models. In Proceed-
ings of the 2022 ACM Conference on International
Computing Education Research-Volume 1. 27-43

[5] Dastyni Loksa and Amy J Ko. 2016. The role of self-regula-
tion in programming problem-solving process and success. In
Proceedings of the 2016 ACM conference on international
computing education research. 83-91.

[6] Prasad, P. and Sane, A., 2024, March. A Self-Regulated
Learning Framework using Generative AI and its Applica-
tion in CS Educational Intervention Design. In Proceedings
of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (pp. 1070-1076).

[7] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein,
Erin Ross, and Ziheng Huang. 2022. Generating diverse code
explanations using the gpt-3 large language model. In Pro-
ceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 2. 37-39

[8] MacNeil, S., Tran, A., Hellas, A., Kim, J., Sarsa, S., Denny,
P., Bernstein, S. and Leinonen, J., 2023, March. Experiences
from using code explanations generated by large language

models in a web software development e-book. In Proceed-
ings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (pp. 931-937).

[9] Leinonen, J., Hellas, A., Sarsa, S., Reeves, B., Denny, P.,
Prather, J. and Becker, B.A., 2023, March. Using large lan-
guage models to enhance programming error messages.
In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (pp. 563-569).

[10] Kelly YL Ku and Irene T Ho. 2010. Metacognitive strategies
that enhance critical thinking. Metacognition and learning 5
(2010), 251-267

[11] Brian Hanks, Sue Fitzgerald, Ren√©e McCauley, Laurie
Murphy, and Carol Zander. 2011. Pair programming in edu-
cation: A literature review. Computer Science Education 21,
2 (2011), 135-173

[12] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-
Reilly, Thezyrie Amarouche, Brett A Becker, and Brent N
Reeves. 2023. Promptly: Using Prompt Problems to Teach
Learners How to Effectively Utilize AI Code Generators.
arXiv preprint arXiv:2307.16364 (2023)

[13] Denny, P., Prather, J., Becker, B.A., Finnie-Ansley, J., Hel-
las, A., Leinonen, J., Luxton-Reilly, A., Reeves, B.N.,
Santos, E.A. and Sarsa, S., 2024. Computing education in the
era of generative AI. Communications of the ACM, 67(2),
pp.56-67.

[14] Jan Larsson, and Inger Holmström. "Phenomenographic or
phenomenological analysis: Does it matter? Examples from a
study on anaesthesiologists' work." International Journal of
Qualitative Studies on Health and wellbeing 2.1 (2007): 55-
64.

[15] Zimmerman, B.J., 2000. Attaining self-regulation: A social
cognitive perspective. In Handbook of self-regulation (pp.
13-39), Monique Boekaerts, Paul R. Pintrich, Moshe Zeid-
ner, Ed., Academic press, Cambridge, USA.

[16] Majumdar, R., Bakilapadavu, G., Li, J., Chen, M.R.A.,
Flanagan, B. And Ogata, H., 2021, November. Analytics of
Open-Book Exams with Interaction Traces in a Humanities
Course. In ICCE 2021: 29th International Conference on
Computers in Education Conference Proceedings Volume
I (pp. 352-361). Asia-Pacific Society for Computers in Edu-
cation (APSCE).

[17] Stupnisky, R.H., Renaud, R.D., Daniels, L.M., Haynes, T.L.
and Perry, R.P., 2008. The interrelation of first-year college
students’ critical thinking disposition, perceived academic
control, and academic achievement. Research in Higher Edu-
cation, 49, pp.513-530.

