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ABSTRACT

A central goal of both knowledge tracing and traditional as-
sessment is to quantify student knowledge and skills at a
given point in time. Deep knowledge tracing flexibly con-
siders a student’s response history but does not quantify
epistemic uncertainty, while IRT and CDM compute mea-
surement error but only consider responses to individual
tests in isolation from a student’s past responses. Elo and
BKT could bridge this divide, but the simplicity of the un-
derlying models limits information sharing across skills and
imposes strong inductive biases. To overcome these limita-
tions, we introduce Dynamic LENS, a modeling paradigm
that combines the flexible uncertainty-preserving properties
of variational autoencoders with the principled information
integration of Bayesian state-space models. Dynamic LENS
allows information from student responses to be collected
across time, while treating responses from the same test
as exchangeable observations generated by a shared latent
state. It represents student knowledge as Gaussian distri-
butions in high-dimensional space and combines estimates
both within tests and across time using Bayesian updating.
We show that Dynamic LENS has similar predictive perfor-
mance to competing models, while preserving the epistemic
uncertainty — the deep learning analogue to measurement er-
ror — that DK'T models lack. This approach provides a con-
ceptual bridge across an important divide between models
designed for formative practice and summative assessment.
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1. INTRODUCTION

During the course of a school year, students produce a stream
of behavioral evidence that reflects changes in their knowl-
edge and skills. Students do daily homework, regular in-
class formative assessments, and take multiple standardized
assessments each year. A teacher could integrate this behav-
ioral evidence to both interpret the student’s progress and
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needs, and simultaneously recognize when more informa-
tion is needed to make confident decisions. Unfortunately,
current mathematical and computational models are insuffi-
cient to handle this dual mandate: most assessment models
do not integrate information over time, and deep knowledge
tracing models do not capture the epistemic uncertainty nec-
essary to know when predictions should be trusted. Holisti-
cally integrating student behavioral evidence across forma-
tive and summative interactions, while simultaneously track-
ing uncertainty and confidence, would allow past measure-
ments to inform current measurements in a principled way.
This capability could be used to shorten standardized as-
sessments, increase the reliability of formative assessments,
and reduce the burdens associated with retesting.

One challenge for integrating such information is that differ-
ent paradigms are used for designing and scoring different
types of assessments. Interim and summative tests treat as-
sessment as measurement, using latent variable models like
Item Response Theory [3] to estimate latent parameters as-
sociated with student skills, and reporting results with cor-
responding measurement error. Yet, homework and other
formative practice is scored very differently, for example by
completion or detecting several correct responses in a row.
While each venue is an opportunity for students to exhibit
their knowledge and growth over time, the different scoring
mechanisms and types of information obtained mean that
results are often treated in isolation and are difficult to in-
tegrate.

Ideally, a computational model could combine multiple types
of evidence into a coherent and detailed portrait of student
learning. In recent years, Deep Knowledge Tracing (DKT)
models have been introduced that promise to flexibly in-
tegrate information from observed student behavior across
time [17, (9 |12, 13} |1§]. DKT models use machine learn-
ing techniques like recurrent neural networks and, more re-
cently, transformer and graph architectures |17} [12} |13} |1§]
to predict student performance. DKT models can be viewed
as modern variants of Bayesian Knowledge Tracing (BKT,
[5]) and Elo [1], which similarly integrate information across
time to make inferences about student progress.

While DKT models are flexible and often highly predic-
tive, they do not model epistemic uncertainty about stu-
dent knowledge states. Epistemic uncertainty is uncertainty
that can be reduced by gathering more observations, such as
the uncertainty associated with an estimate of a coin’s bias
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Figure 1: The dynamic LENS model. A learned forecasting function updates beliefs about the student latent state over time,
and a learned encoding re-weights this distribution to incorporate new evidence.

that decreases as more flips are observed [8]. In measure-
ment models like IRT, epistemic uncertainty is a key con-
cern. Computer adaptive tests (CAT) rely on measurement
of epistemic uncertainty to select questions [21]. Epistemic
uncertainty also determines test length in CATs: students
respond to questions until epistemic uncertainty (framed
as measurement error) is reduced below a threshold value.
However, models like IRT are not as flexible as DKT. IRT
models treat the space of student skills as very low dimen-
sional, do not integrate information over time, and make
strong assumptions about the form of latent student distri-
butions.

We introduce a model called Dynamic LENS that integrates
information over time, like knowledge tracing models, while
simultaneously capturing epistemic uncertainty, like mea-
surement models. An extension of the static LENS model [4],
the model presented here uses a variational autoencoder
to represent an inference about student skills as a multi-
dimensional Gaussian distribution in a latent space. It then
uses forecasts, combined with Bayesian updating, to inte-
grate observations over time in the manner of a state-space
model. While the model does assume a simple Gaussian
latent space distribution, the decoder’s flexibility enables
complex data representations. We show proof-of-concept
performance on two datasets. The new model is competitive
with other approaches while maintaining an internal repre-
sentation of epistemic uncertainty that can power adaptive
testing and allow educators to understand the confidence as-
sociated with the statements the model makes about student
knowledge and skills.

2. DYNAMIC LENS MODEL

The LENS model, introduced in a previous work [4], is
a VAE-based model that maps student item responses to
Gaussian distributions in a latent space, then aggregates
observations using Bayes’ Rule to produce a posterior be-
lief about a student’s latent parameters. Samples are taken
from this latent distribution and then ‘decoded’ to make
predictions of student behavior for unobserved interactions.
LENS supports modeling very sparse observations, like those
present in personalized practice and computer adaptive tests.

Whereas in typical VAEs, student responses are batch-encoded

and mapped directly to a student-level posterior distribu-
tion, here each single observation is separately mapped to
a Gaussian in the latent space and is treated as the ob-
servation’s likelihood. The likelihoods of conditionally in-
dependent observations are multiplied together, and then
multiplied by the prior (typically, a standard normal with
diagonal covariance) to produce a posterior belief. Samples

from the posterior are then combined with item embeddings
to produce predictions for behavior on new items (see [4] for
a complete description of static LENS).

In this paper, we develop a dynamic version of LENS to
model student knowledge over time: at each timestep, the
prior belief is a forecast from the previous timestep. As
LENS represents beliefs about students as Gaussian distri-
butions, we adopt the framework of state-space modeling to
integrate observations over time using Bayesian updating.
A state-space model is a type of latent-variable model in
which a belief about a system’s state is updated over time,
analogous to a Hidden Markov Model but with a continuous
latent space. The dynamic LENS model presented here is a
recursive state estimator, similar to the Kalman Filter [15]
but with relaxed assumptions.

As shown conceptually in Figure the model is defined
by a state transition model (also called a forecast) and an
observation model (also called an encoding). Let x;: be the
true latent parameters for student ¢ at time ¢, and let y;;
be student i’s behavior in response to item j at time ¢. The
system evolves between discrete timesteps according to a
transition function f:

forecast(zit—1) = p(xs¢|Tie—1,ut) (1)
N(fm(@ie—1,ut), fo(@ii—1,u)I)(2)

where x; ; is the state at time ¢ and wu; is exogenous control
input at time ¢. f,,, produces a vector of means, and f, pro-
duces a vector of log-variances. Similarly, a student response
to item j is incorporated into an observation function h:

encoding(yije) = N(hm(Yijt), ho(Yiz,e)D) (3)

The encoding takes the place of the observation equation in
state-space modeling, as it defines a probabilistic relation-
ship between the latent state and observations. We combine
the forecast and the behavioral encoding by multiplying to
produce a posterior belief over the student latent space at
time ¢, namely p(z;i¢|Tit—1,¥ij,t). The behavioral encod-
ing acts as a likelihood function that re-weights the prior
in the latent space according to the relative probability of
observations given each point in the space.

As is typical of a discrete time state-space model, the dy-
namic LENS model (Figure [I)) produces predictions over
time via a sequence of time steps ¢t € (0,1,...,T):

1. For a timestep ¢ > 0, the past estimate (posterior at
t — 1) is forecast using f,, and f, to produce the prior
distribution at time t. The forecast at timestep ¢ > 0 is
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Figure 2: Dynamic LENS architecture. The encoder (left)
learns a function for relating student behavior on test items
to a distribution over the student latent space. Responses
to multiple items are combined together using an analog of
Bayesian updating. The decoder (right) samples from the
latent space and learns a function to map samples to predic-
tions of future student behavior. When incorporating new
observations about the same student at a later time point,
the current distribution over the student state is forecasted
to form a new prior over the student state.

likely to increase uncertainty and shift the mean (due
to student knowledge likely changing over time). At
time t = 0, the prior is a standard normal.

2. Individual item responses are mapped to parameters
of the encoding by h., and h,. The parameters of the
component Gaussians are used to produce the product
of multiple encodings in closed-form. These encodings
re-weight the student belief space and are treated as
likelihoods.

3. The product of the encodings is multiplied by a pre-
existing prior distribution to produce a posterior dis-
tribution over student belief space. This posterior will
serve as a past estimate for the next time step.

4. Posterior samples are taken to make predictions at
time ¢.

The functions fm7 fv, iLm, and h., are parameterized neural
networks learned from data (see Figurefor an architecture
diagram). The loss function is the typical VAE loss, which
is a weighted sum of the negative log likelihood (NLL) of re-
sponses given the posterior and the KL divergence between
the posterior and the prior beliefs. The NLL component op-
timizes for predictive accuracy, while the KL component reg-
ularizes the information gain from individual observations.
We sum this loss at each timestep.

3. MODEL PERFORMANCE

As an initial test of the performance of the Dynamic LENS
model, we compared it with four models designed to accu-
mulate information about student skill evolution over time,
including two latent variable models and two deep learning
models. Our goal was to provide a proof-of-concept evalu-
ation for whether Dynamic LENS was competitive with al-
ternative options and to examine the posterior outputs. We
trained each model, including hyperparameter tuning where
appropriate, on both a simulated dynamic CDM dataset and
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Figure 3: Predictive AUC by model. All models have com-
parable performance on the CDM dataset. For MAP, lower
AUCs:s are explained by the adaptive nature of the test. LENS
performance on MAP falls between that of the simpler mod-
els (BKT/Elo) and that of the deep models (DKT/SAINT).

on historical student responses on interim assessmentsEI

3.1 Comparison Models

We compared Dynamic LENS with both Elo [1} |[16] and
Bayesian Knowledge Tracing (BKT [5| |14]), latent variable
models used to track student progress in intelligent tutor-
ing and formative assessment systems. Elo treats student
skills as continuous and updates student skill estimates af-
ter each response. Our implementation of the Elo model
is based on [1], and uses a separate skill parameter for each
skill category in the dataset. BKT treats student skills as in-
dependent discrete latent variables. We used the PYBKT |[2]
implementation with both forgetting and “multigs” enabled.

We also compared Dynamic LENS with standard Deep Knowl-
edge Tracing (DKT) and SAINT, as implemented in the
pyKT package [10]. The DKT implementation uses an RNN
with LSTM units, similar to the original 2015 paper [17].
The SAINT model is a transformer-based architecture that
considers a context window of previous student responses
when predicting the response to the subsequent item [18].

3.2 Datasets

We examine performance on two datasets that measure stu-
dent progress over time, one historical and one synthetic.

MAP Growth Mathematics. The MAP Growth Mathe-
matics assessment is an interim assessment taken by mil-
lions of K-12 US students, typically three times a year. The
assessment is adaptive, meaning that items are selected se-
quentially for each student to improve assessment efficiency.
We fit each model to data from a cohort of students who
completed all six math tests over their 4th and 5th grade
years; data were provided in anonymized form and their use
is not considered human subjects research by the IRB. Each
of the six assessments has roughly 52 questions. In total, the

"Hyperparameters and a complete architecture diagram for
LENS are available in the supplementary materials.
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Figure 4: Estimates from each model predicting one simulated student’s response to an item given the previous N items. The
vertical axis indicates the number of items considered in the student’s history. For example, 5 items (bottom row) indicates
that only the most recent 5 items are considered, whereas 50 items (middle row) indicates that the 50 most recent items are
considered. All models are closer to the true probability correct (gray line) with more information, and the posteriors from
Dynamic LENS (B) shows that the model’s estimate is more confident with more information. Including information further in
the student’s history has diminishing returns on both the model’s accuracy and level of confidence.

dataset contains 157,338 students and approximately 49M
responses.

Dynamic Cognitive Diagnostic Model. We also constructed

a simulated dataset that incorporates student learning into
a cognitive diagnostic model (CDM). CDMs treat student
skills as binary attributes and typically include conditional
dependencies between skills. This dataset contains 10k sim-
ulated students based on the skill prerequisite relationships
on page 18 of [11], a well-known analysis of the Mixed Frac-
tion Subtraction dataset from [19]. Each simulated student
started at time ¢t = 0 with a configuration of skills, in which
the probability of having each skill was p = 0.2 if the student
had all prerequisites and p = 0.05 if they were missing one
or more prerequisites, similar to a DINA model [6].

Students were then forecast forward in time in discrete time
steps. At each time step, students could learn (L) or forget
(F) skills independently and with probabilities depending on
both the skill value at the previous time step and the pres-
ence of prerequisite skills at the current time step; students
were more likely to learn skills for which they had the pre-
requisites. We created a 1000-item item bank, where each
item was aligned to 1 of 6 skills; see supplementary materi-
als| for complete dataset generation code. At each of the 100
time steps, students responded to 5 randomly chosen items.
In total, the dataset included 5M simulated responses.

3.3 Results

We first examine predictive AUC on each dataset when pre-
dicting response N for each student in the test set using that
student’s previous responses 1,..., N—1. N varies from two
to the total number of items in the dataset. As shown in
Figure[3] all models have relatively similar AUC for the sim-
ulated CDM dataset, with SAINT having a slight edge over
all other models. For MAP, Dynamic LENS outperforms
the simpler BKT and Elo, and is competitive with DK'T and
SAINT. Overall AUC is much lower for MAP than for the
simulated dataset, likely due to the adaptive item selection

in the test design.

Unlike the other models in this comparison, Dynamic LENS
estimates epistemic uncertainty. Figure [4] illustrates the
changing estimates of all models when more history is avail-
able. The Dynamic LENS posteriors (Fig.[4B) show increas-
ing certainty about the estimate as more information is col-
lected, becoming more concentrated as the number of items
in the history increases from one (bottom of plot) to 99. In
a model of a static latent parameter, uncertainty typically
decreases as more observations are included in the compu-
tation of the posterior distribution. Here, each row includes
both new observations and a forecast between timesteps.
The former decreases uncertainty, while the latter typically
increases it. Furthermore, each prediction uses information
from further back in history. For this reason, uncertainty
reaches a stable state after about 40 items and does not de-
crease further. The plots also demonstrate that individual
items can have differential impacts on the estimate, depend-
ing on the information each student response provides about
the prediction in question.

4. DISCUSSION

In this paper we introduce a model called Dynamic LENS
that integrates information across multiple assessments over
time. We share proof-of-concept results that this model has
competitive predictive performance with existing knowledge
tracing models while also providing estimates of epistemic
uncertainty. The goal of Dynamic LENS is to integrate infor-
mation across both formative assessments and other types of
interactions, such as homework or standardized tests. Such
integration must consider the both the reliability of each
piece of new evidence and the confidence of any resulting
belief. The architecture of Dynamic LENS makes such in-
tegration possible: each response is mapped to a Gaussian
distribution, and accumulated to create a posterior belief
akin to measurement error, but with greater flexibility. In
contrast to measurement models used in educational assess-
ment, Dynamic LENS also avoids imposing strong inductive
biases via the structure of the latent space and instead learns
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a representation from data in a manner that optimizes pre-
dictive accuracy.

Unlike most machine learning models, Dynamic LENS repre-
sents both aleatoric and epistemic uncertainty in its predic-
tions. Epistemic uncertainty is decreased when more obser-
vations are made and is therefore critical for signaling when
predictions can be relied upon, or when more data would
be likely to change them. This is the machine learning ana-
logue of the notion of reliability in traditional assessment
and is not typically captured by Deep Knowledge Tracing
models. Quantifying epistemic uncertainty also allows us to
perform active learning, as items can be selected according
to expected information gain. Since Dynamic LENS incor-
porates information from previous assessments, the model
could be used to construct new assessments that are per-
sonalized for each student to focus on areas with highest
uncertainty, similar to current computer adaptive testing
systems.

While the primary features of Dynamic LENS are flexibility
and maintenance of epistemic uncertainty, predictive power
is also critical. Our comparisons showed that the predictive
AUC of LENS was very similar to DKT and slightly worse
than SAINT. We suspect that performance is due to the fre-
quent probabilistic forecasts required during model fitting.
To address this, we are exploring methods to ensure numeric
stability over frequent updates with few observations at each
time point, or training schedules that gradually expand the
history length.

Several considerations must be made before using Dynamic
LENS with real students. First, it is important to assess
whether Dynamic LENS makes similar predictions for dif-
ferent subgroups of students, as measured by ABROCA (7]
and MADD |[20], but preliminary (unpublished) analyses
look promising. Second, because of the computational de-
mands of Dynamic LENS versus IRT, using Dynamic LENS
for adaptive testing will require investigation into how to
approximate information gain efficiently. Finally, there is a
need to explore reporting strategies so that the results from
the Dynamic LENS model can be shared with all stakehold-
ers - administrators, teachers, parents, and students - in a
comprehensible and useful way.
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