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ABSTRACT
Large language models (LLMs) are increasingly being de-
ployed in user-facing applications in educational settings.
Deployed applications often augment LLMs with fine-tuning,
custom system prompts, and moderation layers to achieve
particular goals. However, the behaviors of LLM-powered
systems are difficult to guarantee, and most existing evalua-
tions focus instead on the performance of unmodified ‘foun-
dation’ models. Tools for evaluating such deployed systems
are currently sparse, inflexible, or difficult to use. In this pa-
per, we introduce an open-source tool called FlexEval. Flex-
Eval extends OpenAI Evals to allow developers to construct
customized, comprehensive automated evaluations of both
pre-production and live conversational systems. FlexEval
runs locally and can be easily modified to meet the needs of
application developers. Developers can evaluate new LLM
applications by creating function-based or machine-graded
metrics and obtaining results for chat completions or entire
conversations. To illustrate FlexEval’s utility, we share two
use-cases involving content moderation and utterance clas-
sification. We built FlexEval to lower the effort required to
implement automated testing and evaluation of LLM appli-
cations. The code is available on GitHub1.
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1. INTRODUCTION
The use of Large Language Models (LLMs) in educational
settings has increased dramatically during the past year with
the release of LLM APIs by OpenAI and others. Khan
Academy’s Khanmigo is a widely-cited example, but LLM-
powered systems have also been deployed to act as tutors [25,

1https://github.com/DigitalHarborFoundation/
FlexEval/

7], simulated students [32, 28], teacher coaches [29], essay ed-
itors [1], item writers [4, 19, 24], debate partners [26], exam
graders [30], and even career coaches [10].

Each of these software applications is accompanied by im-
plicit or explicit design goals, or behaviors to which the
system is expected to adhere. A fundamental design goal
common for education applications is that systems avoid
hateful, abusive, or derogatory speech, particularly when
used with children [5]. Another design goal might be that
a tutor engages in ‘Socratic-style’ dialogues that guide stu-
dent through a process of arriving at the correct answer
without directly providing a solution [23]. Other goals can
be more straightforward to evaluate: developers may prefer
short responses, appropriate for WhatsApp-based tutors [6],
or longer responses, appropriate for giving feedback on essay
drafts [20].

Explicit articulation of design goals is necessary for evalu-
ating whether the built system behaves as expected. How-
ever, it is not sufficient: the system’s behavior must also
be thoroughly evaluated against these goals. In an effort
to facilitate automated evaluation of LLM-based systems,
we introduce FlexEval, a software system for evaluating the
adherence of educational dialogue systems to explicit de-
sign goals. To illustrate its functionality, we share example
use-cases involving content moderation and utterance clas-
sification.

While LLMs are fundamentally ‘inscrutable artifacts’ and
can behave unpredictably when prompted with a novel in-
put [15], researchers have made progress in standardizing
the evaluation of standalone models. For example, Hugging-
Face maintains a leaderboard in which LLM responses to
standardized datasets are quantified and ranked [14]. These
datasets specify both a prompt and an ‘ideal’ result, typi-
cally a short string like a number, word, or multiple-choice
response option. Tasks such as question answering [18],
translation [22], reasoning [33], and solving math word prob-
lems [17] can be formulated in this way. Tools like OpenAI’s
open-source Evals2 package facilitate the evaluation of foun-
dation LLMs on these tasks.

Evaluation of LLM-based systems, which build upon founda-

2https://github.com/openai/evals
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tion LLMs to produce open-ended responses, is much more
difficult. In educational contexts in particular, the ‘ideal
response’ paradigm is a poor fit for generative tasks. A de-
veloper creating a tutor-bot has no ‘test set’ of expected
responses: there is no ground-truth ideal output. Instead,
systems are designed to be conversational and responsive to
diverse student input, and to facilitate productive student
thought rather than produce specific output. Such systems
might be judged on the use of supportive and encouraging
language or on giving topical hints phrased in a way a 7th
grader would understand. They are also evaluated by what
they do not say: a tutor generally should not answer math
questions for a student, for example, and should never use
harmful or inappropriate language, or agree with harmful
statements offered by students. System outputs must be
reliably accurate and safe for use with students, but man-
ual evaluation processes (including ‘red-teaming’ [11]) are
expensive and slow. Cheaper evaluation enables faster and
more confident iteration on product improvements.

We share FlexEval, an open-source tool built using OpenAI
Evals, to facilitate the evaluation of any LLM-based sys-
tem deployed behind an API. With FlexEval, users can col-
lect ‘test cases’—conversations that led to undesirable sys-
tem behavior in the past—and re-run those conversations
against updated APIs to get new completions for evalua-
tion. Users can also evaluate entire conversations produced
by a live model. FlexEval is highly customizable, allowing
users to create rubrics and choose an LLM (either a locally-
hosted model or an online service) to grade conversations
or conversational turns. In addition, users can create and
apply custom Python functions to assess various features of
LLM outputs (e.g., string length or text readability). Flex-
Eval safeguards sensitive education data by running locally,
only calling out to external services for rubric evaluation
if requested by the user. Evaluation results are stored in
portable formats: JSON and SQLite files. We release Flex-
Eval on GitHub.

2. DESIGN AND FUNCTIONALITY
FlexEval is a wrapper for OpenAI Evals that simplifies the
process of creating customized evaluations of LLM-based
systems. OpenAI Evals supports the creation and multi-
threaded execution of LLM evaluations, including rubric-
based ‘model-graded’ evaluations. The Evals tool is extensi-
ble, offering mechanisms for adding custom datasets, evalu-
ation types, and integration with non-OpenAI LLMs (gener-
ically called ‘completion functions’). However, customizing
Evals is non-trivial and requires understanding the struc-
ture of the package’s internal classes, configuration files, and
folder organization. Moreover, evaluation outputs are saved
as JSON and are not easily queryable for analysis.

We developed FlexEval to support the development of LLM-
powered math interventions by members of the educational
technology community. There is a strong need by practition-
ers to evaluate the performance of LLM-powered systems
in a variety of education-related applications, but OpenAI
Evals does not meet these needs as currently implemented.
FlexEval increases the ease-of-use of Evals by allowing de-
velopers to:

1. define custom metrics as simple Python functions that
take text as input and return numbers as output, rather
than dealing with Evals’ class inheritance and direc-
tory structure

2. define machine-graded rubrics for evaluating conversa-
tions or completions, which can be graded by any LLM
available via an API call, hosted either locally or on a
remote service

3. evaluate new conversation completions (e.g. by a new
model version) or historical conversations (e.g. from
student interactions with a deployed model)

4. easily test their own applications, as long as they are
accessible via a REST API

5. create test suites, where multiple metrics can be cal-
culated against one dataset

The purpose of FlexEval is to reduce the complexity of au-
tomated testing, allowing developers to increase visibility
into system behavior both prior to and following product
releases. To that end, the package provides four files in a
single directory that can be edited by users:

• evals.yaml: specifications of test suites, including spec-
ifications for conversational data, metrics to be col-
lected, the completion function to test (if applicable),
and the LLM to use as a rubric grader (if applicable)

• function_metrics.py: developer-written Python func-
tions that accept a conversational turn as a string in-
put and return one or more numeric metrics as output

• rubric_metrics.yaml: rubrics in the format expected
by Evals. These are typically text files with templated
entries like {input} and {completion}, that are au-
tomatically filled out and graded via chain-of-thought,
producing both a rationale and a score

• completion_functions.py: default and developer-
written Python functions that accept a conversational
history, and optionally additional arguments, and re-
turn the system’s next “turn” in a dialogue

Raw data for test cases must be stored in jsonl format,
formatted as follows and then flattened into a single line per
conversation:

{

"messages": [

{

"role": "system",

"content": "You are a tutor..."

},

{

"role": "user",

"content": "I need help..."

}

]

}



Table 1: Configuration options in FlexEval

Configurable Items Descriptions Developer Options

LLM completions Python functions that produce the next di-
alogue turn based on a conversational his-
tory and optionally additional arguments

OpenAI models, locally hosted LLMs, any
LLM accessible via API

Function metrics Python functions that evaluate dialogue
turns and produce numeric metrics as out-
put

existing metrics in FlexEval (e.g., string
length, text difficulty, and harmful con-
tent), developer-provided metrics

Machine-graded rubrics rubrics that guide the grader LLM in grad-
ing conversational completions or entire
conversations to approximate human judg-
ment

existing metrics in FlexEval (e.g., yeasayer
effect grading rubrics), developer-provided
metrics

Grader LLM LLM models queried by FlexEval to eval-
uate dialogue turns based on the custom
rubrics, producing numeric metrics as out-
put

foundation models (e.g., GPT-4), locally
hosted models, deployed LLM applications

When an evaluation suite is run, FlexEval constructs the
needed configuration files and calls the oaievalset com-
mand from Evals. Raw results are then saved in a SQLite
database. Unlike many services offering LLM system moni-
toring and visibility, no data leaves the user’s system unless
the user explicitly requests calls to an external API for con-
versation completion or rubric grading.

3. EXAMPLE USE-CASES
To illustrate the functionality provided by FlexEval, we show
two example evaluations in some detail. These are not pre-
sented as significant findings, but instead as ‘worked exam-
ples’ to illustrate the tool’s capabilities. In the first exam-
ple, we determine whether a pre-release model will agree
with harmful statements (i.e., Yeasayer Effect [27]) or pro-
duce harmful statements of their own. In the second, we
evaluate historical conversations between a math tutor and
students from the NCTE dataset [8] and classify the tutor
utterances as either on or off task (an MQI score [12, 9])
using an LLM-graded rubric.

3.1 Testing release candidates for safety
Evaluating model safety is critical when developing applica-
tions for use with students because poorly controlled mod-
els may produce abusive or unsafe language [2]. However,
assessing whether a certain model or system will produce
harmful language is difficult, as the relationship between
prompts and responses is often unpredictable. One plausi-
ble approach is to collect conversations that have led to un-
desirable system behavior in the past and evaluate whether
the ‘starts’ of those conversations lead to similarly undesir-
able behavior in updated systems. For convenience in this
demonstration, we will perform the analysis using conversa-
tions from the Bot Adversarial Dialogue (BAD) dataset [31].
The dataset contains records of humans attempting to solicit
explicit or implicit harmful behavior by chatbots.

We processed the BAD dataset to produce conversational
starts that led to harmful chatbot productions in the past as
judged by human raters. We prompted several LLM models
with these starts and collected their completions. We then

Figure 1: FlexEval’s completion function takes conversational
starts and queries a pre-release model to generate new com-
pletions. The new completions are then analyzed using a
function metric and graded by a grader LLM based on a
machine-graded rubric. The results are stored in the local
SQLite database.



Figure 2: Example metrics evaluated via FlexEval. On the
left, FlexEval solicited completions from each model to sam-
ples from the Bot Adversarial Dialogue dataset, and then
scored them using the OpenAI Moderation API. Plotted
are the 98th percentile harassment scores from each model,
calculated over assistant turns, and higher scores indicate
more problematic language. On the right, completions were
graded by GPT-4 according to a rubric developed to eval-
uate whether the completion committed the Yeasayer effect
graded on an A-F scale, with F being the most pronounced
occurrences of the effect. These 5 models are stand-ins for
release candidates and demonstrate the value of increasing
visibility into model outputs.

Table 2: Example of student and teacher ‘on task’ turn dis-
course feature from the NCTE dataset [8].

Discourse Feature Example

Student on task We both have the same number of
blue, and red, and yellow

Teacher on task Good, find the range. Find the
range. Remember it’s the span of
the least to the greatest number.

evaluated the generated completions using both the Ope-
nAI Moderation API and a machine-graded rubric designed
to detect the Yeasayer Effect. In practice, developers would
replace our stand-in LLM models with the application they
are developing. This evaluation can be considered an au-
tomated, less expensive version of red-teaming. Results are
shown in Figure 2. Note that this evaluation is only for illus-
trative purposes. We recommend users use validated rubrics
for this task.

When framed as software testing, each conversational start
is a test-case. The system is prompted with each test-case
and elicited system behavior is evaluated against success cri-
teria aligned with the system’s design goals. This evaluation
comprises a set of functional tests of the software, allowing
functionality to be assessed before the system is released to
production.

3.2 Evaluating completed conversations
It is also important to monitor the behavior of live systems,
as they can exhibit behavior not captured by existing test
cases. Misbehaving systems can be taken offline or rolled
back to previous versions if undesirable behavior is detected.
FlexEval supports the evaluation of completed conversations
by computing metrics over each conversational turn and
then aggregating by both ‘user’ and ‘assistant’ roles.

To demonstrate the analysis of historical conversation, we
used FlexEval to score conversational turns from the NCTE

Figure 3: FlexEval evaluates entire conversations produced
by a live model by using a grader LLM to score/label each
conversational turn based on a machine-graded rubric. The
scores/labels are saved in a local SQLite database.

Figure 4: Example of custom machine graded rubric to clas-
sify teacher turns’ focus on instruction (on vs off instruction
task) against human ratings. We used binary classification
and report two F1 scores, with either class considered as the
positive label. We illustrate the possibility to compare mod-
els for grading: GPT-4 and GPT-3.5-Turbo (over API) and
Mistral Instruct v2 (locally hosted).



dataset [8]. This dataset features classroom transcripts of
conversations between students and instructors, along with
rich metadata and expert-coded utterance-level evaluations
of instruction. We provided FlexEval with instructor utter-
ances and evaluated them by configuring FlexEval to per-
form a rubric-based evaluation. When run, FlexEval pop-
ulates user-provided scoring templates with conversational
text. The completed rubrics are then scored using chain-
of-thought by an LLM grader. To demonstrate FlexEval’s
ability to use various graders, we scored the results using
both OpenAI’s GPT-3.5-turbo and GPT-4, as well as a lo-
cally hosted 7B version of Mistral. We categorized each
instructor turn as ‘on’ or ‘off’ task [9] and compared clas-
sifications to expert evaluations. Calculated F1 scores are
shown in Figure 4. In practice, developers could use such
post-hoc evaluation to quantify tutor performance or mea-
sure conformity to conversational guidelines.

4. DISCUSSION & SIGNIFICANCE
LLM-powered applications have the potential to provide per-
sonalized instruction to students at a massive scale. The
flexibility of LLMs is accompanied by uncertainty about
their behavior when confronted with novel prompts. While
this uncertainty cannot be eliminated, it can be reduced.
Product developers are increasingly using multiple LLMs or
pre-response moderation gates as system components to in-
crease the probability of producing desirable outputs. Even
so, the adherence of the application as a system to design
goals should still be determined.

Automated functional testing of software provides a com-
pelling model for evaluating LLM-powered systems. Ap-
plication developers create a suite of test-cases that probe
the behavior of applications after each new change in the
code, with tooling to facilitate the automation process and
improve visibility into application behavior. We encourage
developers of LLM-powered applications to adopt a similar
approach and offer FlexEval to the community in an effort
to ease the challenges of system evaluation.

Though FlexEval facilitates evaluation, developers retain re-
sponsibility for articulating design goals and creating rubrics
that specify whether those design goals are met. LLM-based
grading of rubrics is an active area of research (see e.g. [16]).
As with human-graded rubrics, LLM-graded rubrics should
be validated before they are relied upon in production.

While FlexEval reduces the complexity of LLM-based sys-
tem evaluation, it still requires tests to be written in a spe-
cific format, and requires evaluation functions to be writ-
ten in code by users. To further increase ease-of-use and
encourage widespread application testing, we hope to (1)
include a suite of useful built-in metrics, (2) facilitate ac-
cess to standard testing datasets referenced in the literature
(e.g. from [21]), (3) provide a user interface for less techni-
cal users like teachers or product managers, and (4) create
a dashboard for visualization of evaluation metrics.

As LLM-powered products continue to proliferate in educa-
tion, we believe the excitement surrounding their potential
will be tempered by the complexity of ensuring that these
products reliably serve students. We share FlexEval as an
early contribution to this effort. FlexEval can be easily in-

tegrated with other tools, for example by leveraging text
analysis functionality from existing tools like NLTK [3] or
spaCy [13]. FlexEval is configurable to user needs, is un-
der active development, and safeguards sensitive educational
data.
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