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ABSTRACT
Test collusion occurs when examinees have prior access to a
subset of items (compromised items) administered on a live
test form. We compared three types of test collusion detec-
tion methods: ddClone, Spectral Clustering and Generalized
Binomial Test (GBT) clustering method on real data. Re-
sults show that GBT clustering has higher power and higher
type I error rates, ddClone has moderate power and type I
error rates, Spectral Cluster has relatively higher power and
the lowest type I error rates for two sets of real data.
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1. INTRODUCTION
As testing programs have moved into computer-based test-
ing and digital communication devices have become ubiq-
uitous, examinees can more easily access and widely share
test content, resulting in test collusion [1]. Test collusion
becomes a more serious problem for online classes and take-
home exams since there exists no universally applicable method
for proctoring online and take-home exams. It is therefore
hardly feasible to stop students from illegally working to-
gether.

Because compromised items are more likely to be shared
within a group of examinees, there are studies that explore
methods to detect group-level test collusions, where the groups
could refer to a group of examinees, test-prep centers, or
schools that the examinees belong to.

Those studies include answer similarity indices (e.g. [12],[13],[16],
[7]), clustering analysis based on those answer similarity in-
dices (e.g. [5],[15],[2]) and machine learning clustering tech-
niques (e.g. [6], [14]). However, the hybrid model utiliz-
ing both answer similarity indices and non-parametric tech-
niques on test collusion detection has still been underrepre-

sented in the test security literature.

The main goal of this article is (1) apply hybrid method
ddClone [12] (a hybrid model utilizes both answer similar-
ity index and non-parametric answer similarity matrix to
infer group-level test collisions) to test collusion problems;
(2) compare three types of clustering methods in detecting
group-level test collusion: GBT clustering, Spectral Clus-
tering (SC), and ddClone.

2. THREE TEST COLLUSION DETECTION
METHODS

2.1 GBT Clustering
2.1.1 GBT Index
[13] proposed Generalized Binomial Test (GBT) Index to
detect test collusion among pairwise students based on the
probability of each pairwise matching response. Let Pj be
the probability of matching response on item j assuming a
dichotomous IRTmodel for the response data, xj,copier/source =
0 or 1 indicates an incorrect or correct answer from the copier
or the source , Pj is defined as:

Pj = [P (xj,copier = 1|θ, bj)P (xj,source = 1|θ, bj)]
+ [P (xj,copier = 0|θ, bj)P (xj,source = 0|θ, bj)].

(1)

The joint probability of observing m pairwise matching re-
sponses across J items between a copier and a source given
the abilities and the item difficulties is:

fJ(xcopiers, source = m|θ, bj) =
∑ J∏

j=1

P t
j (1− Pj)

1−t. (2)

fJ is the GBT index, it shows the likelihood of obtaining m
matching responses for a pair of copier and source across J
items. GBT index will be compared with the Bonferonni-
adjusted p-value (0.05/the number of pairs of students) to
determine if the pair of copier and source has an unusually
high number of matching responses.

2.1.2 Nearest-neighbor Clustering
[15] applied nearest-neighbor clustering method to the pair-
wise GBT index matrix to detect a group-level test collusion:

[15] first compute the pairwise similarity indices matrix (e.g.,
M4 index [7], GBT index [13]). Then, let Tk′ and Tk denote
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two sets of clusters containing examinees {xi}, i ∈ 1 : nTk′

and {yi}, i ∈ 1 : nTk , respectively. If the GBT index for at
least one pair of xi and xj is below a prespecified threshold,
δ (0.05/the number of pairs of students), the clusters Tk and
Tk′ will be grouped together to become one large cluster. 1

2.2 Spectral Clustering
SC is a powerful clustering technique that can be particu-
larly effective for clustering complex data structures. The
reason we chose to include this method in our comparison is
that our response data is binary, and SC is especially useful
and efficient for clustering binary data.

2.2.1 Jaccard Score Matrix
First, the method computes the similarity matrix S = {si,k}
for the binary data using the Jaccard score measure, which
effectively captures the similarity between binary vectors
from the copier and the source. The Jaccard score is com-
puted by first defining 4 quantities:

• a = the number of attributes that equal 1 for both
objects i and k;

• b = the number of attributes that equal 0 for object i
but 1 for object k;

• c = the number of attributes that equal 1 for object i
but 0 for object k;

• d = the number of attributes that equal 0 for both
objects i and k;

The Jaccard score is:

si,k = JaccardScorei,k =
a+ d

a+ b+ c+ d
, (3)

where a+d gives the number of pairs with common responses
and a+ b+ c+ d gives the total number of pairs with both
common and different responses. 2

Use n-nearest neighbor to transform S into a sparse adja-
cency matrix A = {ai,k} with n clusters. We determine the
value of n by using validation data.

2.2.2 Normalized Laplacian
Then, SC calculates the Laplacian of the similarity graph S.
The normalized Laplacian will be used in this study:

Lsym = I −D−1/2SD−1/2, (4)

where I is the identity matrix, D is a diagonal degree matrix

D = {dii} =
{∑K

k = ai,k

}
, where dii is the sum of the

similarities of node i to all other nodes in A matrix.

1For example, cluster Tk contains 3 examinees, denoted as
Tk = {x1, x2, x3}, Tk′ contains 2 examinees, denoted as
Tk′ = {y1, y2}, if the M4 index between any members in
Tk and Tk′ exceeds a clustering threshold, cluster Tk and
Tk′ will be joined together.
2For example, source={0,1,1}, copier={1,1,1}, a + d = 2,
a+ b+ c+ d=3.

2.2.3 Eigenvalue Decomposition and Clustering
SC then performs the eigenvalue decomposition on the Lapla-
cian matrix Lsym to reduce the data to a lower-dimensional
space. Finally, a traditional clustering algorithm, like k-
means, is used to cluster the data points in the reduced
space defined by the eigenvectors.

The advantage of spectral clustering is that it does not make
strong assumptions on the form of the clusters. As opposed
to k-means, SC can solve very general problems [14].

2.3 ddClone, distance-based Bayesian Model
ddClone [11] originally aims to enhance the detection of
clonal cell clusters in cancers by statistically integrating data
from both single cell and bulk tumor sequencing.

In this study, we apply ddClone to test collusion detection
scenario because the ddClone model leverages the strength
of parametric likelihood model based on the observed num-
ber of pairwise matching responses and the non-parametric
Bayesian prior informed by the Jaccard Distance of pair-
wise response vectors. We expect this hybrid model to offer
improved inference in clustering group-level test collusion.

2.3.1 The Likelihood Function of Pairwise Matching
Responses

We modified Eq (2) to have the same probability of a match-
ing response if the current copier is assigned to cluster k.
According to the Binomial theorem, the modified Eq (2) is
equivalent to the term with

(
J
m

)
in the expansion of (Pk +

Qk)
J , and becomes:

fJ(xcopiers, source = m|Pk) =
∑ J∏

j=1

P t
k(1− Pk)

1−t

=

(
J

m

)
Pm
k (1− Pk)

J−m,

(5)

where Pk is the probability parameter of the binomial dis-
tribution.

The purpose of this modification is to identify collusion at
group level directly since the probability parameter is now
group-specific rather than item-specific as in Eq (2).

Then, the prior of Pk is assumed to follow a Beta distribution
if the assigned cluster of the copier is cluster k :

Pk|ck
iid∼ Beta(1, 1), k = 1, . . . ,K. (6)

2.3.2 The Latent Collusion Cluster of Examinees: c(i)
To estimate Pk, we define the latent cluster c of the ith
copier as c(i) with the following prior distribution:

c(i)
iid∼ Categorical(π1, . . . , πK), i = 1, . . . , N, (7)

where πk, k ∈ 1 : K, is modeled by a non-parametric prior
probability using the distance-dependent Chinese Restau-
rant Process (ddCRP) [11].



2.3.3 Cluster Probability Model: ddCRP
In traditional Chinese Restaurant Process (CRP), customers
enter a Chinese restaurant and opt to sit at a table where the
probability of joining a table is proportional to the number
of customers already sitting at the table. Customer may also
choose to sit at a new table with probability proportional to
parameter α.

In the case of test collusions, customers represent students
and tables represent collusion clusters. Let c(i) denote the
cluster the copier i is assigned to, the probability of copier
i in cluster k is proportional to a function of the Jaccard
distance (answer similarity) between the copier i and the
source k (the source k can also be interpreted as the cluster
k).

Let si,k denote the Jaccard Distance between copier i and
source k, the probability of c(i) is:

π(c(i) = k|S, α) =

{
f(si,k) for i ̸= k

α for i = k
(8)

where f(si,k) = exp(−si,k/a) and S = {si,k} =
JaccardDistance(i, k), for i, k = 1, . . . , N , in Eq (3).

We set up a threshold of the f(si,k) to 0.9 to determine
which sources are the candidate clusters to the current copier
(including the copier him/herself). The sources with the
distances to the copier that are above the threshold will be
used to compute the cluster probability π in Eq (8); the
sources with distances below the threshold will be ignored.

2.3.4 Inference and Clustering
We define ck as the kth cluster, x1:N as the observed match-
ing response vector across N copiers. Given P1:K , the prob-
ability of having a matching response for each cluster, the
joint conditional likelihood for N copiers is factored as:

L(x1:N |P1:K) =

K∏
k=1

∏
copier∈ck

p(xcopier,source|Pk), (9)

where p(xcopier,source|Pk) is the same as Eq (5).

Having the conditional likelihood, we need to find out the
posterior distribution of the cluster identity for each copier.
Let c(1:N) be the cluster assignments for all examinees. c(i)
is the cluster of the ith copier, c(−i) is the copiers’ cluster
assignments other than the ith copier, define λ = {a, α} be
the collection of the hyperparameters in the ddCRP model,
the full posterior conditional distribution of the cluster for
the ith copier is:

p(c(i)|x1:N , c(−i), λ) ∝ π(ci|λ,D)p(x1:N |c(i), c(−i), λ), (10)

where π(ci|λ, S) is the same as Equation 8, p(x1:N |c(i), c(−i), λ)
is factored as:

∫
P1

· · ·
∫
PK

L(x1:N |P1:K)

K∏
k=1

π(Pk|ck)dP1 . . . dPK , (11)

where L(x1:N |P1:K) is equal to Eq (9) and π(Pk|ck) is equal
to Ep (6).

To infer the cluster identity of each examinee, we use Gibbs
sampler to draw samples from the posterior distribution of
c(i) in Eq (10). We initialize the sampler such that all ex-
aminees are in their own groups.

After burn-in Markov chain and Monte Carlo (MCMC) sam-
ples, each student is assigned clusters with the number of
samples times. To cluster examinees into groups, we first
compute the posterior similarity matrix and then maximize
the PEAR index to compute a point estimate [3] as imple-
mented in the R package mcclust.

3. REAL DATA
3.1 Data
We applied the 3 methods to the common credentialing
dataset 3. The data come from a single year of testing for a
computer-based licensure program that tests continuously.
The identity of the program is confidential.

This licensure program administers multiple equated forms,
Form 1 and Form 2. Each form contains 170 scored items
and is paired with one of three different 10-item pretest sets,
for a total test length of 180 items. Between Forms 1 and
2, there are 87 common items and 83 scored items that are
unique to the form.

Dataset Form 1 contains 1636 examinees, 46 of whom had
been flagged by the test vendor for illegally obtaining live
test content prior to the exam (though other types of mis-
conduct were possible as well)4. Form 2 contains 1644 ex-
aminees, 48 of whom had been flagged [1].

Both forms included binary responses to 170 items. The
dataset also provided grouping variables such as schools ID,
center ID, and the flagging information for aberrant stu-
dents.

Table 1 shows the center ID with the number of flagged
examinees greater than 1 for Form 1 and Form 2. Due to
the computational complexity of ddClone, we apply 3 meth-
ods on selected groups on Form 2: {2305}, {2305, 5856},
{2305, 5856, 2331} on Form 2 (Form 1 is used as validation
data).

3.2 Evaluation Metrics
3Data is obtained upon request to the Testing and Eval-
uation Services of The University of Wisconsin-Madison,
http://www.testing.wisc.edu
4Candidates were flagged through a combination of statisti-
cal analysis and a careful investigative process which brought
in other pieces of information. While all examinees flagged
are believed to have engaged in test fraud, it is certainly
possible that there are other examinees who ought to have
been flagged, but were not



Table 1: center id with at least 2 flagged examinees

Form1 Form2
cent id flagged cent id flagged

1 2 81 2
37 2 2305 6

2305 6 2331 2
5204 2
5856 3

We take the most assigned cluster from each of the 3 meth-
ods as the collusion cluster. We compute the following two
evaluation measures for the students in the collusion cluster:

1. The power is computed as the number of true positive
students who are clustered in the biggest cluster divided
by the total number of flagged examinees in the selected
center/centers.

2. The type I error is computed as the number of true nega-
tive students who are clustered in the biggest cluster divided
by the total number of naive examinees in the considered
center/centers.

3.3 Implementation
We used Form 1 data as the validation data to determine
the tuning parameters: the threshold of the f(si,k) matrix
in Eq (8), the number of clusters prespecified in the Spectral
Clustering method, the threshold of GBT index δ in GBT
clustering method.

We implemented ddClone using Python library NumPyro
[9], a lightweight probabilistic programming library supports
a number of inference algorithms, with a particular focus
on MCMC algorithms. Convergence of ddClone model is
assessed in a standard fashion using the approach proposed
in [4]. We run four chains with diffuse initializations and
verify that they converge to the same mean and variances
(using the criterion R̂ < 1.1).

We implemented SC using scikit-learn package [8] using pre-
specified Jaccard distance matrix as the affinity matrix and
clusterqr as the label assignment method; we also imple-
mented GBT clustering using R [10].

3.4 Results
We applied ddClone, GBT clustering and SC method on
Form 2 data. We cluster examinees using a threshold of
0.9 for ddClone and Bonferoni corrected 0.0005 threshold
for the GBT clustering, the number of clusters prespecified
in spectral clustering are 22, 35, 41 for data with different
selected ’cent id’.

Table 2 shows the powers and type I errors for 3 methods
for data of different selected centers. GBT clustering has
the highest power across different centers, however, its type
I errors are also high; ddClone performs in the middle com-
pared to the other methods in that it has moderate powers
and lower type I errors compared to GBT clustering; SC
performs the best due to its good power and very low type
I error rates.

Table 2: Powers and Type I Error Comparisons for Form2
Data

Center 2305 2305, 5856
2305, 2331,

5856

ddClone
hit rate 0.5 0.444 0.636

false alarm
rate

0.136 0.125 0.184

GBT
hit rate 0.833 0.889 0.909

false alarm
rate

0.409 0.375 0.368

SC
hit rate 0.667 0.533 0.555

false alarm
rate

0.053 0.038 0.032

We can visualize the clustering results by using the pairwise
same-answer similarity matrix to create a heatmap (each cell
is the number of matching responses between a pair of stu-
dents, the darker the more common responses) and reorder-
ing the cells by putting the students in the biggest cluster in
front of the students outside the biggest cluster on both X
and Y axis. Hence, we can identify if the clustered students
really have high number of observed common responses. The
heatmap should have a black diagonal because each student
has the most common responses with himself/herself.

Figure (1) shows the heatmaps of 3 methods for 2 sets of
centers from Form 2 test. Since all the clustered students are
put in the front, it is obvious that the upper left corners have
darker colors (higher amount of common responses among
those clustered students).

For both data (Center 2305, Centers 2305 and 5856), GBT
has larger dark areas due to its high power, but it also in-
cluded some light cells due to its high type I errors, while
ddClone and Spectral Clustering miss some dark cells. Spec-
tral Clustering performs relatively better for Centers 2305
and 5856 compared to ddClone.

4. CONCLUSIONS
This study compared 3 clustering methods in detecting group-
level test collusion. The results show that GBT has higher
power and higher type I error rates; ddClone has moderate
power and type I error rates; Spectral Clustering has rela-
tively higher power compared to the ddClone and the lowest
type I errors across all data sets.

To implement these methods in detecting test fraud at group
level, SC is an efficient method for large data and is flexible
for different type of data such as polynomial responses, but
the method is not suitable if the data contains too many
different fraud clusters; GBT clustering has high power but
also high type I errors, so the detection results should be
judged via other analysis and manual check; ddClone per-
forms relatively worse and it also takes a long time to sample
the posterior clusters for each student, therefore, it is not
suitable for large data.

This study has 3 limitations: 1, more clustering methods
can be included for a more comprehensive comparison, such
as SC using other distance matrices for binary data; 2, even
though ddClone performs moderately, it is worth exploring



Figure 1: Clustering Heatmaps for center (2305) and (2305,
5856)

other matching options instead of matching responses for
each question in the future study; 3, more evaluation criteria
can be used such as F1 accuracy.
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