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ABSTRACT
Estimating response time (RT) to questions in exam or home-
work practices is becoming more important in online learn-
ing platforms to improve the learning experience and item
allocation. To predict RT, we applied the Empirical Best
Linear Unbiased Predictor (EBLUP) technique from the lin-
ear mixed-effects model to predict RT to each question. The
proposed method provides more precise response time pre-
dictions in terms of mean absolute errors, correlation coef-
ficient, and close-to-1 ratio counts compared with feature-
based linear regression and 95 quantile predictions.
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1. INTRODUCTION
As digital communication devices have become ubiquitous,
online testing and internet-based learning platforms are be-
coming more popular testing and learning forms.

In those applications, predicting the response time (RT)
needed to complete each question in learning practices and
exams has implications for both reasonable item allocations
in exams and improving learning experiences and efficien-
cies. In learning practices and adaptive exams, it is often
desirable to allocate items across a range of RTs, because al-
locating too little time makes the test and practices speeded
and affect learning experiences whereas allocating too much
time makes it inefficient.

There are three commonly used models for RT predictions of
test items: Natural Language Processing (NLP) techniques
based on text features; feature-based machine learning re-
gressions such as Random Forest and Neural Networks (RT
as the sole dependent variable); lognormal model based on
RT data and hierarchical RT model based on both response
matrix and RT data (RT and response accuracy as depen-

dent variables).

However, NLP methods require high-dimensional word em-
beddings and linguistic characteristic feature engineering;
machine learning methods also require complicated feature
engineering to predict RT; lognormal and hierarchical RT
models require larger sample sizes since they strictly assume
the distributions of RT and the Item Response Theory (IRT)
model of response data, moreover, RT models not only esti-
mate item speed parameters, they also focus on estimating
item difficulty and student ability parameters.

Studies in predicting RT of questions have still been under-
represented in the test and learning activity constructions,
especially when predicting RT to a new item with few his-
torical RT logs. Therefore, in the current study, we apply
the Empirical Best Linear Unbiased Predictor (EBLUP) in
the mixed-effects model to predict RT to items even when
their RT samples are small.

In summary, the contribution of the work is three-fold: (1)
the first study in applying EBLUP to item RT predictions;
(2) predicting RT when the sample size for the item is small;
(3) demonstrating the precision of EBLUP comparing with
other RT models and 95 quantile methods in online learn-
ing programs using Riiid data for full and small samples,
respectively.

2. BACKGROUND WORK
In this section, we will briefly review common methods in RT
prediction and the mixed-effects model that will be applied
in RT prediction.

2.1 Common Methods in RT Prediction
There are 3 types of common methods in RT prediction, they
are Natural Language Processing (NLP) technique, Machine
Learning regression and Response Time Lognormal models.

NLP technique analyzes linguistic features [2] and word em-
beddings [7] generated from item text to predict RT. The
drawbacks of the NLP methods in RT prediction are that
they require high-dimensional feature engineering and large
sample sizes to achieve desirable performances.

Researchers from the statistical measurement realm esti-
mate RT by modeling it as a set of latent parameters in the
Response Time Lognormal models, the log-response time is
then regressed to the RT, item difficulty and student abil-
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ity parameters. However, The purpose of the lognormal RT
model is not only estimating the RT for each item. Instead,
it investigates the ability of a person on a set of test items
and improves model fit to RT data. In addition, RTL models
are time consuming due to the large amount of parameters
to be estimated.

Previous studies also used Machine Learning methods to
predict RT. For example, [3] extracted 10 features from the
student’s interaction with the mouse in the test and trained
Random Forests, Neural Networks, Linear Regression, and
Gaussian Process regression to predict the completion time
of each question. Random Forests and Neural Networks give
the smallest average prediction errors in predicting the com-
pletion time compared to the other two methods.

In this study, We only focus on the time-efficient methods,
therefore, we will compare our proposed method with Ma-
chine Learning methods such as the Linear regression and
Gradient Boosting regression.

2.2 Linear Mixed-Effects Model and EBLUP
Predictions

2.2.1 The Linear Mixed-Effects Model
Suppose J observations and p independent features, each
observation is nested within one of the I groups, then the
LMM is defined as:

yij = µ+Xiβ + bi + eij , (1)

where yij is an observation j in group i, µ is the expected
value for the dependent variable, Xi and β are the 1 × p
independent features vector for group i and the correspond-
ing coefficient vector of dimension p × 1, respectively; bi is
the random effects for group i and is assumed to follow iid
N(0, σ2

b ), eij is the random error for observation j and is
assumed to follow iid N(0, σ2

e). The model in Equation 1 is
also called the nested-error mixed-effects regression model
[6].

The LMM defined in Equation 1 can also be rewritten as:

yij
iid∼ N(yi, σ

2
e)

where yi
iid∼ N(µ+Xiβ, σ

2
b )

(2)

which is a typical form of a hierarchical Bayesian model
under normal distributions.

2.2.2 The BLUP and the EBLUP of LMM
Since we are interested in predicting yi in model 2, the true
value of the dependent variable for group i, then, the Best
Linear Unbiased Predictor (BLUP) can be derived as the
following based on [6]:

ŷBLUP
i (σ2

e , σ
2
b ) = (1− γi)

[
µ̂+ X̄iβ̂

]
+ γiȳi. (3)

where X̄i is the sample mean of the independent feature for
group i; ȳi is the sample mean of the dependent variable for

group i; γi = σ2
b

(
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b + σ2

en
−1
i

)−1
; µ̂ and β̂ are the ordinary

least square (OLS) estimators of the coefficient parameters
in model (1).

It is interesting to note that γi is a weighting parameter
between the least square estimator µ̂+ X̄iβ̂ and the sample
mean estimator ȳi for the true value of yi. If σ

2
en

−1
i is large

(either large random errors in the observed yij ’s or small
sample size in group i), γi will become small, therefore less
weight will be given to the sample mean predictor ȳi and

more weight will be given to the OLS estimator
[
µ̂+ X̄iβ̂

]
;

on the other hand, if σ2
b is large or sample sizes are sufficient,

γi will be relatively large, and more weight will be given to
the group-specific sample mean ȳi.

BLUP is used directly when the variance components σ2
e and

σ2
b in (3) are known, but they are unknown for real data

set and need to be estimated using Restricted Maximum
Likelihood (REML) method [5] under the model in Equation
(1), one obtains what is referred to as the Empirical Best
Linear Unbiased Predictor (EBLUP) [4] of ti as

ŷEBLUP
i (σ̂2

e , σ̂
2
b ) = (1− γ̂i)

[
µ̂+ X̄iβ̂

]
+ γ̂iȳi. (4)

The formulation of BLUP/EBLUP in LMM is beneficial
in predicting the true value of interested features at the
group level especially when the sample sizes are small in
that group. In RT prediction, there are many new items
that don’t have sufficient RT history but still need RT pre-
dictions for practical implementations. In this case, the
BLUP/EBLUP is a suitable method for solving the small
data issues for new item RT prediction, this is also the mo-
tivation of our study to apply LMM in RT prediction.

3. APPLYING EBLUP OF LMM IN RT PRE-
DICTION

3.1 The LMM Model in RT Prediction
To apply the theory of LMMs to predict RT to test items,
we replace yij in (2) by tij , the log RT of student j to item
i :

tij = µ+Xiβ + bi + eij , i = 1, . . . , I, j = 1, . . . , J (5)

where µ is the expected log RT for the whole item popula-
tion, Xi is the independent feature of each item, it represents
the students’ accuracy rate for item i, its coefficient is β; bi
is the random effect for item i, indicating the variation of
RT for item i from the expected RT µ, it is assumed that

bi
iid∼ N(0, σ2

b ); eij is the random errors for tij , it is assumed

that eij
iid∼ N(0, σ2

e). Note that more features can be in-
cluded in the LMM; here, we only include the accuracy rate
for each item. Hence, there is only one β coefficient in the
model.

3.2 The EBLUP Predictors
Given the formulation of EBLUP in Equation (4), we can
obtain the EBLUP for predicting the true RT value of each
item by the following:

t̂EBLUP
i (σ̂2

e , σ̂
2
b ) = (1− γ̂i)

[
µ̂+ x̄iβ̂

]
+ γ̂it̄i. (6)



t̂EBLUP
i is the predictor for the expected log RT for item
i, that is the expected time by which students can finish
completing an item, we still need to obtain the RT by which
the majority of the students can finish the item, therefore,
we need to predict the RT that 95% of the students can
finish item i in this study.

3.3 Upper Bound of RT by EBLUP
Using t̂EBLUP

i in Equation (6), the final RT prediction is:

t̂EBLUP ′
i = t̂EBLUP

i + z ∗ σ̂RTi, (7)

where σ̂RTi is the sample standard deviation (SD) of log RT
for item i, from the historical RT data; z is how many SD
away from the predicted expectation of RT under the sample
distribution of the observed log RT’s for item i. We deter-
mine the value of z via cross-validation procedure, which
will be discussed in Section 4.3.

4. REAL DATA AND RESULTS
We demonstrated the RT prediction performances of EBLUP
and compared the predictor with other predictors: Weighted
Least Square (WLS) predictor, 95 quantile predictor, and
gradient boosting regressor (GBR) predictor using the Riiid
dataset [1] 1. Because we don’t have the question’s texts
and we only focus on time-efficient methods in this study,
we exclude the NLP and RT models in our real data com-
parison.

4.1 Riiid Data and Data Preprocessing
Riiid data is students’ test answer data from a complete edu-
cation app, the data include student’s historic performance,
the performance of other students on the same question,
metadata about the question itself, and it contains test an-
swering data about 1M+ students in time-series format.

We preprocessed the Riiid data by removing the records
without responses, removing the records for the lecture con-
tent type (’content id=1’), keeping the first record for du-
plicated rows if the same user id answers a ’content id’ more
than once; we also removed the records if the RT is too fast
(RT < quantile 0.01) or too slow (RT > quantile 0.99), pre-
sumably because too fast RT indicates guessing or cheating,
and too slow RT indicates learner being offline or distracted;
since we use the historical RT data to compute predictors
and test the precision of the predictors on the test data, we
only keep the items with RT records greater than 20. Af-
ter preprocessing, the data contains 368420 users and 4712
items.

Since the data is time-series data within each item, we can’t
use random sample cross-validation to determine the opti-
mal values of the parameters in each method. In this case,
we sorted the RT (in milliseconds) for each item by ’times-
tamp’, and then keep the first half of the records within each
item as the training data (4712 items and 189707 users), use
the first half of the remaining data as validation data (4712
items, 95208 users) and the remaining data within each item
as the test data (4712 items, 95272 users).

1https://www.kaggle.com/competitions/riiid-test-answer-
prediction/data

The data contains variable ’prior question elapsed time’, so
we shifted the variable by -1 and use the shifted
’prior question elapsed time’ as the RT of each student for
each item. In addition, we compute a new variable ’accu-
racy rate’ for each item using the variable ’answered correctly’
/ the number of responses for each item, and use the ac-
curacy rate as the independent variable in all feature-based
methods. For WLS and GBR, in addition to ’accuracy rate’,
we also add question-specific independent variables ’bun-
dle id’ and ’part’ and convert them to categorical variables.

4.2 Evaluation Criteria
We compared the performance of the EBLUP with the other
three methods by using three evaluation metrics:

1. Mean Absolute Errors (MAE): which is the average of
the absolute difference between the predicted RT and the
observed RT across all items in test data.

2. Close-to-1 Ratio Counts (RC): we allow a certain degree
of discrepancy of the prediction, hence, we compute the ratio
between the prediction and the observed 95th RT in the test
data (being closer to 1 indicates that the prediction and the
observed 95th RT are the same, the closer to 1, the more
precise the prediction).

Then, we group the ratios to 7 categories: [0, 0.5], [0.5, 0.8],
[0.8, 1.0], [1.0, 1.2], [1.2, 1.5], [1.5, 2], [> 2] and count the fre-
quencies within each ratio interval, we expect more ratios
within the intervals of [0.8, 1.0] and [1.0, 1.2].

3. Correlation Coefficient (CC): we also compare the corre-
lations between the predictions and the observed 95th RT
for each method.

Because EBLUP is especially beneficial when the sample
sizes of the item is small (such as new items), therefore, we
compute the three metrics of each method for the full item
data and the small item data, respectively. The full item
data contains all the items, while the small item data are
the items with answer frequencies < 50.

4.3 Methods Implementation
4.3.1 EBLUP
In the mixed-effects model of EBLUP, we regress tij , the log
of the shifted ’prior question elapsed time’ to the accuracy
rate for each item Xi, we use ’question id’ as the unit of the
random effects bi. We use the resulting EBLUP computed
by Equation (6) as the predicted expectation of the RT for
item i.

To find the upper bound of RT for each item, we tune the
values of z from 1.5 to 2 by step of 0.01 to find out the best
z in Equation (7) in giving the most close-to-1 RCs in the
validation data, results show z = 1.78 predict the RT on
validation data the best.

4.3.2 WLS, 95 Quantile and GBR
We compute the 95th RT quantile for each item and use
the log-transformed quantile as the direct predictor for the
RTs of the items on test data; We use the 95th quantile
RT for each item as the dependent variable, ’accuracy rate’,



’bundle id’, ’part’ as the independent variables in WLS and
GBR. We obtained the best parameters through a 1-fold
cross-validation for WLS and GBR predictors based on the
sorted timestamp. Check our code for detailed implementa-
tions 2.

4.4 Results
We report the 3 evaluation metrics for the full item data and
the small item data (with <50 RT records), respectively.

Table (1) and (2) show that EBLUP produces the smallest
MAE on full data, and is slightly smaller MAE compared
to GBR for small item data. EBLUP also produces the
smallest Standard Deviation (SD) of MAE for small item
data. Table (3) shows the CCs for the 4 methods, EBLUP
has the highest correlation with the observed 95th RT on
both full data and small item data. Figure (1) shows that
WLS and GBR tend to underestimate the long RT items.

Table 1: MAE Comparisons for All Items (in milliseconds)

Quant 95 EBLUP WLS GBR
MAE 6572 6046 6937 6482

SD of MAE 6392 5755 6236 5723

Table 2: MAE Comparisons for Small Items (in milliseconds)

Quant 95 EBLUP WLS GBR
MAE 7063 6417 6925 6570

SD of MAE 6657 6022 6439 6392

Table 3: Correlation Comparisons

Quant 95 EBLUP WLS GBR
All items 0.678 0.702 0.678 0.676
Small items 0.644 0.669 0.650 0.600

Figure 1: Scatterplots for 4 methods with CC on Full Item
Data

We compare the ratio counts within each of the 7 ratio in-
tervals for the full data and the small item data, respec-
tively. EBLUP has the most ratios (3202 and 2512) within
the [0.8, 1] and [1, 1.2] intervals for the two data sets; GBR
also performs well on both data.

2https://github.com/pengluyaoyao/Predicting-
Response-Time-of-Questions-Using-Linear-Mixed-effects-
Model/tree/main

Figure (2) shows the density comparisons of the ratios from
the 4 methods, the dotted vertical lines represent the 0.8
and 1.2 boundaries. For the full data, EBLUP has obviously
higher density between [0.8, 1.2], and slightly higher density
on the small item data compared to GBR. WLS has the
lowest ratio density on both data.

Table 4: Comparing Counts on Full Data

Quant 95 EBLUP WLS GBR
[0,0.5] 9 9 11 8
[0.5,0.8] 527 547 657 401
[0.8,1] 1511 1674 1495 1469
[1,1.2] 1591 1528 1357 1725
[1.2,1.5] 818 781 944 893
[1.5,2] 238 156 205 203
>2 18 17 43 13

Table 5: Comparing Counts on Small Data

Quant 95 EBLUP WLS GBR
[0,0.5] 9 9 9 6
[0.5,0.8] 489 490 544 378
[0.8,1] 1187 1231 1149 1156
[1,1.2] 1231 1281 1147 1322
[1.2,1.5] 750 741 839 799
[1.5,2] 230 145 193 221
>2 18 17 33 32

Figure 2: Ratio Densities on Full and Small Data

We see that EBLUP tends to have more prediction ratios
in [0.8, 1], because when the sample is large for each item,
EBLUP gives more weight on the sample estimate of the RT,
it is more similar to Quant 95; when the sample is small, such
as new items, EBLUP gives more weight to the generalized
least square estimate of the whole item population.

Recall that EBLUP only uses ’accuracy rate’ as the inde-
pendent variable, while WLS and GBR include other inde-
pendent variables. It is suggested to use EBLUP when the
independent features are limited or difficult to extract. On
the other hand, if more item features are included in the
LMM, WLS and GBR models, the prediction accuracy will
be improved.



5. CONCLUSION
Our work applied EBLUP in the linear mixed-effects model
to predict RT for each item. EBLUP is a predictor by
weighting between the sample estimate and the generalized
least square estimate of RT for each item, it is the empirical
best linear unbiased predictor for item-level RT predictions
even when the sample size is small.

Results show that EBLUP outperforms or slightly outper-
forms the other three methods on both full item data and
small item data in terms of MAEs, CCs and RCs. EBLUP
has better performance on the full item data compared to
the small item data. Due to the formulation of EBLUP in
Equation (4), it tends to have shorter RT predictions com-
pared to other methods.

Although EBLUP performs relatively well in different met-
rics, this study has limitations: 1. we didn’t include categor-
ical features in the LMM, however, categorical features can
be added to improve the prediction performance; 2. unlike
WLS and GBR which uses 95th quantile RT for each item
as dependent variable directly, EBLUP can only predict the
expectations of the interested variables, it cannot predict
95th RT quantile directly, therefore, we have to use Equa-
tion (7) to compute the upper bound prediction of RT for
each item. 3. We only apply one-fold cross-validation based
on the sorted timestamp, we can apply the cross-validation
for time-series data in future study to find the optimal values
for the parameters in GBR and EBLUP.
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