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ABSTRACT
Solving math word problems (MWPs) involves uncovering
logical relationships among quantities in natural language
descriptions of math problems. Recent studies have demon-
strated that the contrastive learning framework can assist
models in identifying semantically similar examples while
distinguishing between different mathematical logics. This
alleviates models’ dependence on shallow heuristics for pre-
dicting problem solutions. However, we have observed sig-
nificant disparities in the positive and negative sample se-
lections among different contrastive learning frameworks,
which can sometimes exhibit complete contradictions. This
discrepancy is attributed to the lack of an effective criterion
for evaluating the distance between the mathematical log-
ics of word problems. To address this issue, we introduce a
novel formula for evaluating mathematical equation similar-
ity in the context of word problem association. Our formula
enables flexible focus on either global or local differences in
the mathematical logic, thereby implementing distinct cri-
teria for similarity calculation. We investigate the impact of
various positive and negative sample selection strategies on
contrastive learning models using the proposed formula in
order to identify the optimal strategy. Our experimental
results reveal substantial performance improvements over
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existing baselines, highlighting the effectiveness of our ap-
proach.
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1. INTRODUCTION
Math word problem (MWP) solving involves automatically
performing logical inference and generating mathematical
solutions from natural language-described math problems.
Recently, researchers have attempted to use different neural
networks for solving MWPs to avoid the tedious process of
manual feature construction. While neural network-based
models have significantly enhanced performance on bench-
mark datasets, Patel et al. [16] argues that state-of-the-
art (SOTA) models rely on shallow heuristics to solve the
majority of word problems. These models frequently face
challenges even when addressing problems that exhibit only
minor textual variations.

Some studies utilize contrastive learning frameworks to as-
sist models in discovering semantically similar examples while
discerning those with different mathematical logics in a fine-
grained manner [14, 12, 23]. The objective is to leverage
similar logic to facilitate problem-solving and enhance the
model’s sensitivity to subtle differences. One key aspect
of contrastive learning is the construction of appropriate
triplets. For each anchor data point P we find a logic-similar
positive data point P+ and a negative data point P− with
different logic to form a triplet (P, P+, P−). However, cur-
rent contrastive learning frameworks struggle to formulate
effective strategies for selecting positive and negative sam-
ples, to the extent that these strategies may exhibit complete
contradictions with each other.
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Figure 1: Triplets construction results based on different retrieval strategies.

Table 1: Example of Math Word Problems. Problems are
selected from ASDiv-A [15] datasets.

Problem 1
Text: In Kaya’s teacher’s desk there are 9 pink highlighters,
8 yellow highlighters, and 5 blue highlighters. How many
highlighters are there in all?
Equation: 9 + 8 + 5
Prefix: + + 9 8 5
Problem 2
Text: In a sports club with 28 members, 17 play badminton
and 19 play tennis and 2 do not play either. How many
members play both badminton and tennis?
Equation: ( 17 + 19 + 2 ) - 28
Prefix: - + + 17 19 2 28
Problem 3
Text: 70 students are required to paint a picture. 52 use
green color and some children use red, 38 students use both
the colors. How many students use red color?
Equation: 70 - 52 + 38
Prefix: + - 70 52 38

To demonstrate the contradiction in the positive and nega-
tive data points resulting from different selection strategies,
we use a toy sample set consisting of only three MWPs, as
presented in Table 1, as an illustrative example. For each
problem, we construct a corresponding tree diagram rep-
resenting its solution, as depicted in Figure 1. We then
apply strategies from three representative contrastive learn-
ing frameworks for solving MWPs to highlight the contra-
dictions in their results. Pattern-CL [12] utilizes positive
and negative sample selection based on the sub-tree struc-
ture within the solution. Positive samples are chosen if they
share the same abstract syntax sub-tree, while negative sam-
ples consist of those with the same abstract syntax tree but
different operator nodes. MWP-BERT+Analogy [14] con-
siders samples with the same root node in their abstract

syntax trees as positive samples while the rest are regarded
as negative samples. Textual-CL [23] considers samples with
identical equations as positive samples. Negative samples
are selected if their equations are similar but not identical,
and the equation similarity is computed through Tree Edit
Distance (TED) [17]. The positive and negative samples for
MWP P1 are chosen within samples in Table 1 using the
three selection strategies. The generated triplets are illus-
trated in Figure 1, where P2 is selected as positive and P3
as negative by Pattern-CL. The results are entirely opposite
for MWP-BERT+Analogy. Textual-CL utilizes itself as pos-
itive and P2 or P3 as its negative with the TED of 1 if only
the operator nodes are considered. As depicted, different
and even contradictory triplets are constructed using only
three samples. This issue would likely be more pronounced
in a larger candidate pool.

The discrepancy arises due to the absence of a clearly de-
fined distance or similarity measure between the logic struc-
tures of problems. It is challenging to intuitively discern
which strategy is more appropriate. Pattern-CL and MWP-
BERT+Analogy adopt a straightforward way to selection by
directly comparing the same sub-tree and root node differ-
ences. They intentionally target different parts of the tree
structure. On the other hand, Textual-CL utilizes Tree Edit
Distance (TED) to quantitatively measure the similarity be-
tween two MWPs. However, TED assigns equal weight to
operators at different levels of the tree, hindering its ability
to differentiate between global and local structural differ-
ences. Another concern is that TED seeks to reduce dissim-
ilarity between two trees by swapping left and right sub-trees
of nodes that perform operations like subtraction, division,
and exponentiation, where such swaps violate the inherent
non-commutative properties of these operations.

Inspired by TED, we propose the Tree Level Weighted Dis-
tance (TLWD), a method for calculating equation similarity
tailored specifically for MWPs. TLWD offers the flexibility



to distinguish between root and leaf differences by adjust-
ing the weights assigned to different levels of the equation
tree. This enables us to generate various sets of positive
and negative samples by focusing on either global or local
logic structure. Thus, it facilitates the exploration of the im-
pact of different triplet construction strategies on contrastive
learning.

To summarize, the contributions of this paper are as follows:

• We demonstrate the inconsistency in the triplets con-
struction strategies of current contrastive learning frame-
works designed for MWPs.

• We propose a specific equation similarity calculation
method for MWPs that empowers the baseline model
with the flexibility to focus on local and global differ-
ences of problem logics.

• We conducted experiments using various positive and
negative sample selection strategies derived from the
proposed similarity measure, and provide guidance for
the application of contrastive learning to address MWPs.

2. RELATED WORK
2.1 Math Word Problem Solving
Early studies usually address MWPs using either rule-based
methods or statistical methods to match problems to equa-
tion templates [9, 18] with semantic parsing [19, 33]. Re-
cently, a deep learning-based approach inspired by sequence-
to-sequence (seq2seq) framework was proposed, emphasiz-
ing various designs for both the encoder and decoder [28,
26, 27, 30, 13, 11]. Various neural networks, including re-
current neural networks (RNNs)[28, 26, 27], graph neural
networks [31], and the most recent pre-trained models, such
as BERT and its variants [24, 13, 16], can be used as dif-
ferent encoders to extract and aggregate information from
the problem statements. More recent studies have also fo-
cused on implementing more effective decoders. For exam-
ple, Xie et al. [30] introduced a goal-driven tree structure
decoder that enforces the model to predict math equations
following an exact tree structure. Treating the solution as
a Direct Acyclic Graph (DAG), Seq2DAG[2] makes predic-
tions in a bottom-up manner by aggregating quantities and
sub-expressions iteratively. A deductive reasoning decoder
[8] selects in each step two operands and their operator in
a bottom-to-top manner. The unified tree decoder [1] al-
leviates the issue of multiple solutions between input and
output by predicting the solution in a non-autoregressive
way. Other studies leverage auxiliary tasks, such as ranking
and memory augmentation [21, 7], to improve model perfor-
mance.

Large language model (LLM) -based step-by-step math rea-
soning [22, 25, 20, 5] is another recently explored research
direction, in which chains of thought or code explanations
are provided in addition to the final answer. However, the
chains of thought in natural language are not computation-
ally executable, and code explanations are computationally
executable but difficult for users who are not familiar with
programming code to interpret mathematically.

2.2 Contrastive Learning
Despite achieving relatively high performance on benchmark
datasets, researchers have further challenged the understand-
ing of the MWP solvers by introducing small variances [16]
or employing adversarial attacks [10] on the problem text.
The results demonstrate that current MWP solvers rely on
shallow heuristics to solve the majority of word problems
and struggle to detect subtle textual variances.

Contrastive learning was first introduced in computer vision
[3, 6] and subsequently adopted in MWP solvers aiming to
encourage models to pay attention to both the similarity
and subtle differences between problems [12, 14, 23]. Un-
like the perturbation-based augmentation [29] used in nat-
ural language processing (NLP) to create positive samples
for contrastive learning, constructing positive and negative
samples in this manner cannot be directly applied to MWP
tasks. Researchers have attempted to seek similarity from
the logics of the problem solution to select positive and neg-
ative samples [23, 12]. However, there is no fixed way to
determine the similarity or distinctiveness of the logics be-
tween problems. As discussed in the introduction, different
or even contradictory positive and negative samples can be
selected for an anchor question by Pattern-CL [12], MWP-
BERT+Analogy [14] and Textual-CL [23]. An interesting
work by Zhang et al. [32] applied contrastive learning to
two different views of the solution from the top-down and
the bottom-up, avoiding the issue of selecting positive sam-
ples.

3. THE PROPOSED APPROACH
For each anchor problem P = (T,E), where T represents
the description of the problem and E represents the solution
equation, a pair of positive data point P+ = (T+, E+) and
negative data point P− = (T−, E−) is constructed. This
allows the use of contrastive learning to bring the repre-
sentations of P and P+ closer to each other while pulling
away the representations of P and P−. To determine the
optimal way of selecting positive and negative samples for a
given problem in a contrastive learning-based MWP solver,
we propose Tree Level Weighted Distance, abbreviated as
TLWD, to calculate the similarity between math equations
and to represent the similarity of logics in problems with the
flexibility to focus on differences either locally or globally.

Following Shen et al. [23], we employ an equation similarity-
based retrieval strategy, determined by the proposed TLWD,

to extract positive candidate set {P̃+} and negative candi-

date set {P̃−}. Our proposed training pipeline is illustrated
in Figure 2. According to the pipeline, abstract syntax trees
for all equations in training data are first constructed and
normalized. Subsequently, we construct a dictionary

(Ei, Ej) : Simeq(Ei, Ej)

to record the similarities between the equation trees, which
are then further used to construct the negative and positive
candidate sets. Finally, we train the MWP solver, mapping
T to E, by minimizing both the contrastive loss and the
negative log likelihood loss for solution generation using the
constructed training triplets derived from different retrieval
strategies.

In the following subsections, we will explain the main com-



Figure 2: Retrieval-based triplets construction and its usage for training neural solver.

ponents of the pipeline in detail.

3.1 Normalization
To normalize the equation trees, we consider operators and
operands variables separately. We use variable unification
(VU) on the numerical operands in the logic equation to
avoid variations caused by different numerical values and
apply the commutativity operation on the operators to nor-
malize and simplify the logic equation.

3.1.1 Variable Unification
When selecting positive and negative samples, we unify the
all the numerical variables in the solutions by replacing them
with a common number placeholder N , thereby disregard-
ing differences between them. This step is crucial as it maps
equations differing only in variable values to the same math-
ematical pattern, increasing the diversity of positive and
negative samples for an anchor problem.

3.1.2 Commutativity Normalization
For a non-leaf node in a tree, commutativity normalization
refers to an operation that swaps the left and right sub-trees
of the current operator if it satisfies the following conditions:
1) the current operator is either addition or multiplication,
2) the length of the left sub-tree is less than that of the right
sub-tree.

The commutative property holds for addition and multipli-
cation operations, where the order of operands does not af-
fect the final result. Based on this observation, we design
commutativity normalization, through which we can trans-
form two binary trees with seemingly significant structural
differences into the same standardized binary tree.

Commutativity normalization and TED differ in their ap-
proach to handling the swapping of left and right sub-trees
in tree structures. While TED performs this swapping indis-
criminately, regardless of the operator types involved. For
example, TED may swap the sub-trees of the root node in
Figure 3, potentially disrupting the logic of operations like
subtraction. This can introduce logic violations. In contrast,
commutativity normalization strictly perform swapping for
commutative operators aiming to maintain the logical in-
tegrity of operations.

3.2 Tree Level Weighted Distance

Considering binary trees for two math problems, Tree1 and
Tree2, our proposed TLWD recursively calculates the dis-
tance between the trees in three steps: overlapped tree con-
struction, single node distance calculation, and recursive
traversal over nodes from the bottom-up.

3.2.1 The Overlapped Tree Construction
To construct the common overlapped tree, denoted as Tree3,
between Tree1 and Tree2, we focus on their structures and
disregard the value of each node. The common overlapped
tree refers to a tree that simultaneously encompasses the
structures of both Tree1 and Tree2 in a minimal way. The
process of common overlapped tree construction is illus-
trated in Figure 3, where the corresponding values of Tree1
and Tree2 at each node position are recorded in Tree3. If
Tree1 or Tree2 lacks a certain node on Tree3, its value is
recorded as Null.

3.2.2 Node Distance
The constructed overlapped tree records the differences be-
tween Tree1 and Tree2 at each node. By comparing value1
and value2 at each node of the overlapped tree, we can de-
termine the distance between Tree1 and Tree2 at that node.
The node distance of each node d(n) is defined as:

d(n) =

{
0, V alue1 = V alue2

1, otherwise,
(1)

where n denotes the node in one tree.

3.2.3 Tree Distance
A typical binary tree consists of a root node along with left
and right sub-trees. Therefore, for a sub-tree with its root
node at level l, its tree distance d(tl) can be defined as the
sum of the node distance of its root node d(nl) and the tree
distance of its left and right sub-trees at level l + 1 in a
recursive way:

d(tl) = d(nl) + α · (d(tleftl+1 ) + d(trightl+1 )), (2)

where α is the weighting coefficient on the left and right
sub-trees, nl denotes the node and tl denotes the sub-tree
at level l. Varying the value of α provides the flexibility to
control the contribution of node distances at different levels
to the total tree distance, enabling the model to focus on
either local or global differences between the trees.



Figure 3: Overview of the TLWD Calculation procedure. Levels of the tree are defined from top to bottom. Lower levels are
closer to the root and carry global information of the tree, while higher levels are towards the bottom and provide more detailed
local information.

3.2.4 Interpretation of α
Let us delve deeper into the impact of the value of α on the fi-
nal TLWD. Assuming that none of the nodes in two abstract
syntax trees are identical, we can observe from simulation,
shown in Appendix A, that

d(t1) → 2, when α = 0.25 and l → ∞. (3)

The above suggests that when α is set to 0.25, the root
node’s distance carries more weight than the combined dis-
tance of all child nodes, indicating that differences near the
root node have a greater impact on the TLWD of two ab-
stract syntax trees. When α is set to 1, TLWD considers
the number of different nodes between the two abstract syn-
tax trees to be the distance. This implies that nodes at
different levels have equal distance weights, and the differ-
ences resulting from disparities in root nodes and leaf nodes
are equivalent. When α is greater than 1, the distance away
from the root node increases exponentially as calculated re-
cursively. In this scenario, distances far from the root node
carry more weight, indicating that differences further from
the root node have a more significant impact. By changing
the value of α, we can determine the weight of differences in
nodes at different levels when calculating the distance be-
tween two trees. This allows us to adjust retrieval strategies
during positive and negative sample selection.

3.3 Equation Similarity
To retrieve the positive and negative samples, we evaluate
the similarity between equations, i.e., Simeq, based on the
proposed TLWD. The similarity of two equations E1 and
E2 is then defined as:

Simeq(E1, E2) = 1− TLWD(E1, E2)

TLWDmax(E1, E2)
, (4)

where TLWDmax(E1, E2) is the maximum tree distance of
E1 and E2 where all node distances achieve their maximum,
i.e., d(n) = 1 for all nodes. Normalizing TLWD(E1, E2) by

the maximum tree distance TLWDmax restricts the values
for the Simeq(E1, E2) score to the range between 0 to 1.

3.4 WMP Solver and its Training
3.4.1 MWP Solver
We follow Li et al. [23] and use the baseline model BERT-
GTS as our MWP solver. The pre-trained language model
BERT [4], known for its robust textual representations, serves
as the encoder in our approach. We utilize the goal-driven
tree-structured (GTS) decoder [30] to systematically gener-
ate the prefix equation solution step by step, with a recursive
neural network used to update sub-tree representations at
each step. Given the target equation y = [y1, y2, ..., ym],
where m is the equation length, the solver generates k-th
token yk recursively, and the negative log likelihood is used
as the generative loss computed as:

Lsolver =
∑
P

− logP(y|P ), (5)

where

P(y|P ) =

m∏
k=1

P(yk|P ) (6)

is the probability of y given P .

3.4.2 Contrastive Learning
Contrastive learning operates on triplets z = (P, P+, P−),
pulling closer the problem representations of P and P+ while
pushing them away for P and P−. The contrastive loss used
is given below:

Lcl =
∑
z

max(0, η + sim(e, e−)− sim(e, e+)), (7)

where (e, e+, e−) is the encoder embedding of (T, T+, T−),
sim(·) is the cosine similarity, and η is a margin hyper-
parameter. The final training objective is to minimize L,



which is the sum of the generation negative log likelihood
loss Lsolver and the balancing parameter β-weighted con-
trastive learning loss Lcl:

L = Lsolver + β · Lcl. (8)

3.4.3 Selection Strategy
We select the positive candidate set {P̃+} and the negative

candidate set {P̃−} as follows:

• If there are examples with equations that are identical

to that of the anchor, they form {P̃+}.

• Otherwise, two strategies are considered: 1) {P̃+} =
{(Ti, Ei)} satisfying argmaxEi,Ti ̸=T (Simeq(E,Ei)), con-
taining samples with the nearest equation, which is
known as the nearest neighbor (NN) selection strat-
egy. 2) The anchor problem P selects itself as the
positive sample. This, along with the aforementioned
step for positive sample selection, is referred to as the
exact match (EM) selection strategy.

• For the negative candidate set, we consider {P̃−} =
{(Ti, Ei)} containing examples that satisfy

argmaxEi /∈E∪E+(Simeq(E,Ei)),

which holds the closest equation considering the posi-
tive example.

• We then randomly select one from each of the two sets
and construct a triplet (P, P+, P−).

4. EXPERIMENTS
We conducted experiments on three widely-used real datasets
to answer the following questions:

• How does our proposed strategy select the positive and
negative samples for the anchor question compared to
existing selection strategies? To which level of the
math equation should we pay attention to in order to
improve the model’s prediction accuracy?

• How good would the performance be for baseline mod-
els if they used our proposed strategy instead of the
existing ones?

4.1 Datasets and Experimental Settings
The three datasets that we used for the experiments include:
Math23k [23], a Chinese dataset consisting of 23,162 prob-
lems (21,162 for training, 1,000 for validation, and 1,000 for
testing); MathQA [14], an English dataset at GRE level and
ASDiv-A [15], a dataset of relative simple MWPs mostly
with one to two operators. For MathQA, we follow the lat-
est version used in [14], which includes the four arithmetic
operators +,−, ∗, / with 16191 training samples and 1605
testing samples. We evaluated all three datasets using the
accuracy metric, which checks whether the numerical an-
swers of the model’s equation solutions matches the ground
truth values.

The baseline models utilized in this paper can be catego-
rized into those employing contrastive learning and those

Table 2: Main results on Math23k, MathQA and ASDiv-A.
82.4∗ is our reproduced result, the reported accuracy is 82.9
in [23]; 73.8∗ is the reported accuary in [14].

Model Math23k MathQA ASDiv-A

Solvers w/o CL

GTS 75.6 68 68.5

Graph2Tree 77.4 69.5 71

BERT-GTS 82.4∗ 74.3 73.4

Solvers w/ CL

Pattern-CL 83.2 73.8∗ -

Textual-CL 84.1 74 74.2

MWP-BERT+Analogy 85.1 - -

BERT-GTS+TLWD(ours) 85.5 75.4 75.9

that do not. For solvers without contrastive learning, we
selected GTS [30] and Graph2Tree [31] which are the most
commonly-used baselines in other papers. For solvers with
contrastive learning, we investigated three strong baseline
contrastive learning models: Pattern-CL [12], Textual-CL
[23] and MWP-BERT+Analogy[14].

Our model was trained and evaluated using Pytorch with a
single NVIDIA RTX 4090 GPU. We used language-specific
BERT model as the problem encoder. BERT base model
is used for English datasets of MathQA and ASDiv-A and
its Chinese version is used for Math23K. Following Shen et
al. [23], the maximum input length of the BERT model was
set to 256, and the maximum length of equation generation
for the decoder was set to 45. The embedding size used for
the decoder was 128. We trained the model on Math23K
and MathQA for 120 epochs and on ASDiv-A for 50 epochs,
using a batch size of 16 and a learning rate of 5e-5. The loss
margin η was set to 0.2. The weight β for the contrastive
learning loss was set to 5.

4.2 Comparative Experiments
We compare our model’s performance against the baselines
in terms of accuracy, and the performance results are shown
in Table 2. On the Math23k benchmark, the performance
of BERT-GTS exhibited a substantial improvement when
using our proposed retrieval strategy, rising from 82.4% to
85.5%. Our pipeline also surpassed the performance of the
best contrastive learning model, MWP-BERT + Analogy,
establishing itself as a state-of-the-art model in the field of
contrastive learning. Similarly, for the MathQA dataset, the
accuracy of BERT-GTS improved from 74.3% to 75.4% us-
ing our pipeline, outperforming other contrastive learning
solvers. We were unable to produce reasonable accuracy
on MathQA using MWP-BERT + Analogy, therefore we
leave the results empty. Consistent performance improve-
ment from 74.2% to 75.9% was also observed on the ASDiv-
A dataset.

4.3 Ablation Studies
As there are two major contributions, i.e., equation normal-
ization and different contrastive pairs retrieval strategies by
adjusting α in the proposed TLWD, we conducted a break-
down analysis on Math23K to pinpoint the impact of each
contribution.



Table 3: Results of different equation normalization.

Variable Unification Operator Normalization Acc.

Positive Negative Commutativity TED TLWD

× × × 84.1 84.2

✓ × × 84.3 84.3

× ✓ × 84.3 84.8

✓ ✓ × 84.4 85.4

✓ ✓ ✓ 84.5 85.5

4.3.1 Normalization
We assessed and analyzed the impact of equation normal-
ization from two perspectives: 1) the answer accuracy of
the solver on the test data and 2) the number of distinct
equations in the training data. Given that Math23k con-
tains many unique equations, it can be challenging to find
a similar positive sample and a negative sample with subtle
differences for these equations. Equation normalization can
help mitigate this issue by reducing the number of unique
equations.

We evaluate the influence of applying variable unification
separately to positive and negative samples during positive
and negative sample retrieval. The results in Table 3 verify
the contribution of disregarding numerical differences when
conducting positive and negative sample retrieval. Simulta-
neously ignoring numerical differences during positive and
negative sample retrieval yielded the highest performance
improvement for the solver. This suggests that contrastive
learning models can learn the necessary mathematical logic
solely from the operators in equations, and excessive focus
on numbers may not be conducive to the solver’s learning
process.

Simultaneous application of the commutative property and
variable unification resulted in the most significant improve-
ment for the model. This is because unifying variables in-
creased the number of samples for various types of equa-
tions. Applying commutativity normalization, in this case,
grouped some equations that had slightly different forms but
possessed the same mathematical logic into the same cate-
gory. This allowed contrastive learning to stay focused on
general mathematical logic.

To pinpoint the relative contributions of the components of
the normalization and the tree distance calculation, a com-
parative study between ”Normalization+TED” and ”Nor-
malization+TLWD”is done. As shown in Table 3, the appli-
cation of both the commutative property and variable uni-
fication simultaneously improves the model’s performance
using TED. We observed performance improvements from
84.1 to 84.5, validating the effectiveness of the normalization
step. This aligns with our previous conclusion highlighting
the importance of operators in mathematical logic. More-
over, the comparison results between ”Normalization+TED”
and ”Normalization+TLWD” demonstrate that model with
TLWD consistently outperforms that with TED under var-
ious normalization conditions, underscoring the distinct ad-
vantages and effectiveness inherent to TLWD.

Table 4 illustrates the changes in equation distribution af-
ter applying various normalization techniques. After apply-
ing variable unification and commutativity normalization,
the number of unique equation types in the training data
decreased from 3012 to 1005, the number of samples with
unique equations decreased from 1874 to 539, and the count
for equations with frequency lower than the average dropped
from 2664 to 805. Normalization significantly increased the
sample diversity for both positives and negatives. For in-
stance, with the exact match criterion, normalization helped
to avoid the selection of itself as a positive for a number of
1874− 539 = 1335 samples.

4.3.2 Retrieval Strategies
We investigated the impact of different retrieval strategies on
contrastive learning. The training data was first constructed
using the positive and negative sample retrieval strategies
from Pattern-CL, Textual-CL, MWP-BERT+Analogy, and
ours respectively. Subsequently, the performance of the BERT-
GTS model was compared. For Textual-CL, we used an ex-
act match (EM) for positive samples with completely iden-
tical equations. We utilized TED to assess the similar-
ity between all equations and selected samples with the
most similar equations as negative samples. For MWP-
BERT+Analogy, we adopted their top-2 selection approach
for positive samples, emphasizing equations with the same
root node and the root of the left sub-tree. Negative sam-
ples were randomly chosen from samples with a different
root node. For the Pattern-CL approach, positive samples
were selected from those with the same sub-tree structure,
and contrastive loss was calculated using the corresponding
node embedding of the sub-tree.

While our basic retrieval strategy for positive and negative
samples is similar to Textual-CL, the difference lies in the
use of TLWD to calculate equation similarity. By setting
different values for α in TLWD, we enable the model to focus
on differences at different levels of the tree. In the following
experiments, the weighting coefficient α is set to 0.25, 1.1,
and 1, respectively. According our negative sample selection
strategy, samples with second most similar equation trees
are considered as difficult negatives. Therefore, α being 0.25,
1.1, and 1 represents a focus on the difference of leaf nodes,
root nodes, and all nodes when selecting negative samples,
respectively.

Table 5 demonstrates that the BERT-GTS model achieved
its best performance when trained with sample sets con-
structed using our retrieval strategies with α = 0.25. Specifi-



Table 4: Statistical results of equations after applying equation normalization.

Normalization

Commutativity Variable Unification Count(Equ) Count = 1 Count < Avg.

× × 3012 1874 2664

× ✓ 1025 548 825

✓ ✓ 1005 539 805

Table 5: Results of different retrieval strategies. EM represents the selection criterion of exact match, while NN stands for
nearest neighbor. Random stands for choosing randomly an sample from the candidate set. For positive sample selection, NN
is used only when there is no sample with exact match equation in the training dataset.

Math23k MathQA Positive Negative Strategy α

BERT-GTS 82.4 74.3 - - - -

w/ CL 83 74.1 Top-2 Match Different Root MWP-BERT+A -

w/ CL 83.1 73.6 Sub-tree EM Different Op Pattern-CL -

w/ CL 84.1 74 EM NN(TED) Textual-CL -

w/ CL 83.2 73.1 NN(TED) NN(TED) Textual-CL -

w/ CL 83.8 75.2 EM NN(Leaf) TLWD 1.1

w/ CL 81.1 73.6 NN(Leaf) NN(Leaf) TLWD 1.1

w/ CL 84.9 75.3 EM NN(Random) TLWD 1

w/ CL 84.6 74.8 NN(Random) NN(Random) TLWD 1

w/ CL 85.3 74.9 NN(Root) NN(Root) TLWD 0.25

w/ CL 85.5 75.4 EM NN(Root) TLWD 0.25

cally, an exact match criterion for positive samples and near-
est neighbors for negative samples selection, focusing on the
similarity of global root nodes and differences at the higher-
level local leafs. Significant fluctuations were observed when
using training sets generated by other retrieval strategies. In
some cases, models trained with these training sets even ex-
perienced a decrease in performance after introducing con-
trastive loss. This is due to the vague criteria of these re-
trieval strategies, leading to potentially large variations in
positive and negative sample selection between runs. Our
experimental results reveal that selecting samples with the
highest root node similarity as negative samples yielded the
greatest improvement in contrastive learning for datasets of
Math23K and MathQA. This is intuitive, as samples with
local mathematical logic differences are more suitable chal-
lenging examples, especially for relatively complex MWPs.

4.3.3 Error Analysis
We further analyzed the error patterns exhibited by the
model on the test dataset following the implementation of
various retrieval strategies, detailed in Table 6. We dis-
tinguished between two primary types of errors: operator
error and variable error. This classification was based on
whether the discrepancy between the model’s prediction and
the correct answer first arose from an operator or a vari-
able. Despite disregarding variable distinctions in our sam-
ple selection process, a comparison to the Textual-CL ap-
proach revealed no detriment to the model’s capacity to
grasp variable-based mathematical reasoning. In addition,
variable errors and operator errors were diminished using
our strategy.

4.4 Discussions
4.4.1 Complexity Analysis
Two main steps are involved in our method: TLWD-based
triplet pair retrieval and model training. Similar to Textual-
CL, TLWD-based triplet pair retrieval involves calculating
the similarity across all types of equations. Consequently,
the computational complexity for this retrieval process is
O(n2), where n is the number of unique equation types in
the training data. Comparing to Textual-CL, as TLWD-
based triplet pair retrieval reduces the number of unique
equation types by applying normalization and does not need
the additional text similarity computations, the time con-
sumed for triplet pair retrieval step is approximately 2% of
that of Textual-CL using the Math23K as an example in
our experiment. Given that same baseline model including
a BERT encoder and a GTS decoder, is used in Textual-
CL, Pattern-CL and Analogical-CL, the model complexities
of all methods are comparable. For a detailed comparison
of the parameter counts, refer to Table 8.

4.4.2 Limitations
Two kinds of tree structural ambiguities are noticed, which
potentially undermine the effectiveness of global or local
structure focuses as nodes positions change. One is the
situation where logics could be represented by trees with
different root nodes. The other considered in [1] involves
constructing a unified tree structure to represent multiple
solutions. However, based on our understanding from the
datasets, the golden solutions are typically created in a way
that is most relevant to problem description and consistent
over the whole data, making golden logics easier to under-



Table 6: Error distributions of different methods using Math23K.

Strategy α Total Error Operator Error Variable Error

BERT-GTS - - 176 63 113

w/ CL Textual-CL - 159 55 104

w/ CL TLWD 0.25 145 46 99

Table 7: Comparison of Parameter Counts Across Different
Models.

Model Param.(M)

BERT-GTS+TLWD(ours) 116.5

Textual-CL 116.5

Pattern-CL 109.1

MWP-BERT+Analogy 116.8

stand. Changing root node or tree structure may result in
a less relevant logic to the problem description while still
being correct. The impacts of these structural ambiguities
will be a focus of our future research.

4.4.3 Educational Implications
We demonstrate that focusing on subtle local differences for
selecting hard negative samples in challenging questions can
facilitate model learning. This finding has potential peda-
gogical applications, for instance, introducing subtle varia-
tions in problem descriptions to alter the local logic of ex-
amples and exercises where students commonly make mis-
takes, to enhance their learning outcomes. However, this
hypothesis needs further pedagogical study. Our model has
the potential to be deployed in online learning/education
system to generate tree-structured answers to questions for
students’ reference.

5. CONCLUSION
Existing contrastive learning-based MWP solvers differ sig-
nificantly in their selection strategy for constructing posi-
tive and negative triplets, with negative samples selected
for one solver probably being positive samples for another
solver. We propose a tree level-weighted distance with ad-
justed weights for MWP to answer the question of which
part of the equation tree we should character two problems
as similar. We demonstrate that adjusting the weight in the
distance allows similarity to be calculated in a flexible way
by focusing on different levels of the equation trees, which
facilities the setting of the positive and negative sample se-
lection strategy for contrastive learning-based MWP solvers.
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APPENDIX

A. DERIVATION OF EQUATION 3
Assuming that the overlapped tree is a perfect binary tree
and each node in it has unique values for both value1 and



Figure 4: The simulation of the limitation in Equation 3.

value2, we can rewrite Equation 2 as:

d(tl) = 1 + 2α · (d(tl+1)), (9)

which is a recursive sequence. We can plot the variation
of d(t1) as the maximum level L of the perfect binary tree
changes. We can observe in Figure 4 that as L increases,
d(t1) approaches 2 but always remains below 2.

B. IN-DEPTH ANALYSIS OF THE IMPACT
OF SUB-TREE WEIGHTING COEFFICIENT
VALUES

In equation trees, nodes closer to the root encapsulate the
overarching information pertinent to the mathematical prob-
lem, whereas nodes near the leaves, or leaf nodes themselves,
embody specific, localized details. By adjusting the value of
α in the TLWD calculation, we gain the ability to fine-tune
the emphasis on either comprehensive global or detailed lo-
cal information during the selection of positive and negative
samples, thereby influencing the model’s learning focus.

B.1 α = 0.25
When α = 0.25, analysis in Appendix A demonstrates that
d(t1) is less than 2. This finding, stemming from the char-
acteristics of the recursive sequence, holds true universally
across all nodes. Consequently, for any given node, should
there be a discrepancy between V alue1 and V alue2, we can
obtain:{

d(tl) = d(nl) + α · (d(tleftl+1 ) + d(trightl+1 )) < 2,

d(nl) = 1,
(10)

which leads us to the following conclusion:

α · (d(tleftl+1 ) + d(trightl+1 )) < d(nl). (11)

This indicates that regardless of the sub-tree’s complexity,
the disparity at the current node creates a distance that
surpasses the collective disparities of all sub-trees. Conse-
quently, when selecting negative samples, there’s a prefer-
ence for samples that align in value with nodes at lower
levels, thereby focusing more intensively on the variations
among leaf nodes.

B.2 α = 1.1
When α > 1, akin to the scenario when α = 0.25, any
node’s variance within the current node’s sub-tree leads to
a distance exceeding 1. This surpasses the distance result-
ing from the current node’s own variance. In this context,
when selecting negative samples, there is a strategic prefer-
ence for samples matching in value with higher-level nodes,
emphasizing a closer examination of root node variations.

B.3 α = 1
When α = 1, every node in the tree carries equal weight,
implying that the discrepancy between any two nodes con-
tributes a uniform distance of 1. In this scenario, the se-
lection of negative samples relies on random differentiation
among nodes, albeit governed by a probabilistic approach.
In the case of a perfect binary tree at level L, comprising
2L−1 leaf nodes and 2L−1 − 1 non-leaf nodes, the process
for randomly selecting a differing node as a negative sample
introduces a calculable probability for a leaf node’s selection:

P =
2L−1

2L − 1
. (12)

We can observe that:

lim
L→∞

2L−1

2L − 1
= 0.5. (13)

This means that our strategy for selecting negative samples
will choose samples different from leaf nodes with a proba-
bility greater than 50%, and this probability will approach
50% as the level increases.


