Assessing the Promise and Pitfalls of ChatGPT for
Automated CS1-driven Code Generation

Muhammad Fawad Akbar Khan*t, Max Ramsdell+t, Erik Falor, and Hamid Karimit
Department of Computer Science, Utah State University
Emails:{khan@usu.edu; a02237674@usu.edu; erik.falor@usu.edu; hamid.karimi@usu.edu}

ABSTRACT

This paper undertakes a thorough evaluation of ChatGPT’s
code generation capabilities, contrasting them with those of
human programmers from both educational and software en-
gineering standpoints. The emphasis is placed on elucidat-
ing its importance in these intertwined domains. To facili-
tate a robust analysis, we curated a novel dataset comprising
131 code-generation prompts spanning five categories. The
study encompasses 262 code samples generated by Chat-
GPT and humans, with a meticulous manual assessment
methodology prioritizing correctness, comprehensibility, and
security using 14 established code quality metrics. Note-
worthy strengths include ChatGPT’s proficiency in crafting
concise, efficient code, particularly excelling in data analysis
tasks (93.1% accuracy). However, limitations are observed
in handling visual-graphical challenges. Comparative analy-
sis with human-generated code highlights ChatGPT’s incli-
nation towards modular design and superior error handling.
Machine learning models effectively distinguish ChatGPT
from human code with up to 88% accuracy, indicating de-
tectable coding style disparities. By offering profound in-
sights into ChatGPT’s code generation capabilities and lim-
itations through quantitative metrics and qualitative analy-
sis, this study contributes significantly to the advancement
of Al-based programming assistants. The curated dataset
and methodology establish a robust foundation for future
research in this evolving domain, reinforcing its importance
in shaping the future landscape of computer science educa-
tion and software engineering. Code and data are available
here: https://github.com/DSAatUSU/ChatGPT-promises-
and-pitfalls

Keywords
ChatGPT, GPT3.5 Turbo, Code Generation, Computer Sci-
ence Education, Python, Code Metrics, Machine Learning

*Co-first authors and equal contributions.

fData Science and Applications Lab @ USU
https://dsa.cs.usu.edu

M. F. A. Khan, M. Ramsdell, E. Falor, and H. Karimi. Assessing the
promise and pitfalls of chatgpt for automated csl-driven code gen-
eration. In B. Paafien and C. D. Epp, editors, Proceedings of the
17th International Conference on Educational Data Mining, pages
83-95, Atlanta, Georgia, USA, July 2024. International Educational
Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729778

1 Introduction

Emerging technologies and changing societal demands have
driven the digital transformation in education [1, 2, 3, 4, 5,
6, 7, 8, 9, 10]. A significant catalyst in this digital rev-
olution is the rise of Generative Pre-trained Transformer
(GPT) models [11], specifically ChatGPT [12] created by
OpenAl. GPT is an advanced language model tailored for
conversational applications such as question-answering and
code generation. Built upon the GPT-3.5 series architec-
ture, ChatGPT boasts an impressive 175 billion parameters
and has been fine-tuned using reinforcement learning with
human feedback. This extensive training enables ChatGPT
to produce responses that closely resemble human language
based on context comprehension. The ongoing conversation
history has garnered substantial interest within the software
engineering community. This interest is primarily attributed
to ChatGPT’s reported capability in realizing a longstand-
ing aspiration in software engineering: the automatic repair
of software with minimal human intervention [13]. These
reported outcomes suggest that ChatGPT holds transfor-
mative potential for the field, indicating a promising future
for LLM-driven software engineering and Al programming
assistant tools. However, further research is imperative to
precisely delineate the extent of LLM capabilities specifically
for generating programs.

While the utilization of Al-based code generation presents
promising prospects for enhancing productivity and automat-
ing various software development tasks, it introduces criti-
cal considerations. The process of code generation by LLMs
faces several challenges, such as the need to ensure func-
tional correctness, comprehensibility, and security of the
generated code. Additionally, the primary concern regarding
ChatGPT-generated code pertains to its correctness. Given
that two vastly different code snippets can possess semantic
equivalence, conventional NLP metrics like BLEU score [14]
lack reliability in the context of program synthesis. Ideally,
we aspire to validate the accuracy of ChatGPT-generated so-
lutions for any input formally. However, validating domain-
specific problems using techniques like translation valida-
tion [15, 16] is already a formidable task, and constructing a
universal verifier with absolute certainty for arbitrary prob-
lems, including those in code benchmarks, presents an even
greater challenge.

This paper focuses on conducting an extensive and system-
atic evaluation of code generated by ChatGPT, with a par-
ticular emphasis on assessing its correctness, comprehensi-
bility, and security. We have chosen ChatGPT, a prominent
and widely recognized LLM, to serve as a representative ex-
ample of LLMs. Many studies that focus on generating pro-

https://github.com/DSAatUSU/ChatGPT-promises-and-pitfalls
https://github.com/DSAatUSU/ChatGPT-promises-and-pitfalls
https://dsa.cs.usu.edu
https://doi.org/10.5281/zenodo.12729778

grams with ChatGPT tend to assess its performance using
outdated benchmark data available prior to 2022—-See Sec-
tion 2. This outdated data might have inadvertently influ-
enced the training data for ChatGPT. Additionally, none
of these studies conduct a comparative analysis between
ChatGPT-generated code and human-written code, effec-
tively highlighting the limitations of using the ChatGPT
model for code generation. This potential bias in experi-
mental design raises concerns about the applicability of the
reported results to new and unforeseen challenges. Further-
more, the existing literature lacks a comprehensive examina-
tion of ChatGPT’s capabilities in code generation, empha-
sizing the need for further investigation in this area. By con-
ducting this comprehensive analysis, we aim to contribute to
advancing ChatGPT-based code generation techniques, po-
tentially enhancing the broader field of AI and LLM-based
code generation. In this study, we aim to provide insightful
answers to the following fundamental questions:

v¢ Functional Accuracy: Can ChatGPT outperform hu-
mans in generating functional and highly accurate code?

w Code Understandability: Is ChatGPT capable of pro-
ducing code that is more understandable than that of
humans?

w Code Security: Can ChatGPT demonstrate superior
capabilities in generating code that is more secure com-
pared to human-generated code?

v ChatGPT code detection: Is it possible to develop a
prediction model that can reliably distinguish between
ChatGPT-generated and human-generated code reli-
ably, achieving a significant level of accuracy?

Our contributions that followed in this study are summa-
rized below.

O Constructing a New Dataset: We curate a diverse dataset

of 131 prompts across five categories and 25 subcat-
egories featuring human-written code. This dataset
forms the foundation for a robust comparative analy-
sis, assessing the efficacy of code-generation algorithms
against human-coded solutions.

O Comprehensive Code Evaluation: Using ChatGPT3.5
Turbo, a widely recognized LLM, we systematically
evaluate generated code, prioritizing correctness, un-
derstandability, maintainability, and security. This
evaluation employs 14 interpretable code quality met-
rics.

[Comparative Analysis with Human Code: We conduct
a comparative analysis between ChatGPT-generated
and human-written code across 131 prompts in five
categories, revealing both limitations and strengths in
ChatGPT’s code generation across different categories
of code.

3 Critical Analysis of Prompts: Our research emphasizes
the influence of prompt quality on ChatGPT’s code
generation capabilities through case studies, providing
key considerations for prompt design, an emerging skill
in LLMs.

O ChatGPT Code Detection: Using introduced features,
we develop machine learning (ML) models to classify

ChatGPT code versus human code. Additionally, we
conduct a reliability test to ensure the model’s gener-
alizability. To the best of our knowledge, this is the
first ML ChatGPT code detection model.

Significance in Computer Science Education and

Software Engineering

The integration of large language model (LLM) code gen-
eration models, exemplified by ChatGPT, into software en-
gineering and education is inevitable. This research holds
broader significance, providing valuable insights into the evolv-
ing capabilities of Al-based code generation tools. As large
language models progress rapidly, it becomes imperative for
the software engineering and computer science education
communities to develop a nuanced understanding of their
promise and limitations. Our work systematically evalu-
ates ChatGPT’s code generation proficiency, comparing it
to human learners or programmers, thereby delineating the
current state of its abilities and its potential as a true pro-
grammer assistant.

The findings, particularly relevant to the field of education,
address the increasing prevalence of intelligent tutoring sys-
tems and Al teaching assistants. It is critical to precisely de-
termine their competencies and shortcomings in automating
programming education. This analysis facilitates the inte-
gration of LLM-based technologies into the education sys-
tem, offering data-driven guidance on ChatGPT’s reliability
in grading programming assignments, providing feedback,
and assisting students. Educators can leverage our insights
to make informed decisions about incorporating ChatGPT,
considering its limitations, such as challenges with visual
and advanced tasks.

Moreover, the introduced dataset and comparative analysis
methodology lay the groundwork for future learning analyt-
ics research assessing Al tutors. As educational institutions
blend online tools with in-person instruction, robust evalu-
ations of AI’s pedagogical effectiveness become imperative.
This research pioneers techniques to gauge automated pro-
gramming tutors’ capacities across languages, problem cat-
egories, and metrics like correctness. By promoting pru-
dent AI adoption and advancing evaluation methods, this
research delivers significant broader impacts for the learning
analytics community, underscoring its relevance in shaping
the future of computer science education.

2 Related Work

Since its inception, GPT-based LLMs have been getting in-
credible attention in the research community mainly because
of their exceptional abilities in Natural Language Processing
and Code Generation [13]. Various studies have attempted
to evaluate GPT code generation capabilities and address
their shortcomings [17, 18]. Fan et al. [19] systematically in-
vestigated whether automated program repair (APR) tech-
niques, including Codex, can rectify incorrect solutions gen-
erated by Codex for LeetCode problems. Xia et al. [20]
conducted a comprehensive study involving the direct ap-
plication of nine state-of-the-art Language Models (LLMs)
for Automated Program Repair (APR). Their evaluation en-
compassed various approaches for utilizing LLMs in APR,
such as entire patch fixes, code chunk fixes and single-line
fixes. Hendricks et al. [21] introduced a benchmark for
Python programming problems called “craft APPS”. They
evaluated the code generation performance of several GPT-

based variant models by fine-tuning them with the craft APPS
dataset. Dong et al. [22] introduced the idea of a software de-
velopment lifecycle and put forth a self-collaboration frame-
work. This framework utilizes distinct GPT conversations
in various roles, such as analyst, developer, and tester, to
collaborate in the code generation process. Liu et al. [23]
analyzed various code quality issues associated with GPT-
based code generation. However, most of these studies uti-
lize a publically available dataset, for example, LeetCode
problems [24] and CWE (Common Weakness Enumeration)
scenarios (CWE’s code scenarios) as provided in [25]. The
challenge with existing code datasets lies in their lack of
customization to effectively evaluate GPT’s code generation
capabilities. For instance, these datasets may neglect sce-
narios involving the creation of visually intensive, graphical,
or drawing-oriented programs. Furthermore, the effective-
ness of the GPT for code generation is poorly understood,
and the generation performance could be heavily influenced
by the choice of prompt [26]. Therefore, using an outdated
prompt dataset such as (e.g., OpenAICookbook [27], and
PromptBase [28]) may not be an effective option. Prompts
should be custom engineering, offering sufficient informa-
tion to GPT while leveraging its dialog ability. Addition-
ally, conducting preliminary analyses of the prompts can
yield deeper insights into GPT’s code-generation abilities,
potentially leading to more suitable prompts for an enhanced
dataset. The datasets for analysis should be thoroughly tai-
lored to encompass a comprehensive spectrum of program-
ming aspects, spanning various categories and subcategories.
This approach can effectively uncover vulnerabilities and
limitations within GPT’s code generation capabilities.
Against this backdrop, our research stands out. We intro-
duce a meticulously crafted prompt dataset spanning five
distinct categories, offering a richer evaluation canvas than
generic benchmarks. By juxtaposing ChatGPT code with
human-generated code, we attain a deeper comprehension.
Our use of 14 code quality metrics and novel machine learn-
ing models for ChatGPT code detection sets a new standard
in the domain. Our holistic approach, emphasizing rigor-
ous benchmarks and thorough methodologies, brings forth
novel insights into ChatGPT’s code generation capabilities.
Consequently, our contributions lay a robust groundwork
that can spur further innovations in Al-driven programming
tools.

3 Data Collection and Curation Process

To maximize ChatGPT’s performance, we conducted our
study using Python3, a highly expressive programming lan-
guage. A study done by Zhijie Liu et al. verified that Chat-
GPT is better at generating Python3 code in terms of under-
standability, functionality, and security metrics compared to
4 other languages C++, C, JavaScript, and Java [18].

3.1 Programming Prompt Conceptualization

To pinpoint the focal area for prompt collection, we con-
ducted a preliminary investigation, thoroughly exploring dif-
ferent facets of ChatGPT’s code generation capabilities. This
investigation utilized assignments from the “Introduction to
Python Programming” course (CS1) at a major US public
university as ChatGPT’s initial prompts. Tailored for com-
puter science undergraduates without prior programming
experience, these assignments covered diverse programming
concepts, including visual and drawing problems, algorithms,

data structures, loops, and object-oriented programming.
The insights from the preliminary prompts guided our decision-
making on categories and subcategories essential for a com-
prehensive analysis of ChatGPT’s code-generation capabil-
ities, as depicted in Figure 1. To construct this framework,
we gathered prompts from diverse online platforms, includ-
ing Github, Medium, GeekforGeeks, and others.

> Algorithms and Data Structures (ADS): This category
features prompts of varying difficulty levels in algo-
rithms and data structures, evaluating ChatGPT’s abil-
ity to devise solutions for sorting, searching, recursion,
optimization, arrays, linked lists, trees, and graphs.
This category assesses its understanding of mathemat-
ics and computer science concepts.

> Data Analysis (DA): This category includes prompts
of diverse complexity in data analysis, assessing Chat-
GPT’s capacity to generate code for data cleaning, ma-
nipulation, visualization, and statistical analysis. The
goal is to evaluate ChatGPT’s proficiency in address-
ing real-world data tasks.

> Mathematics (M): This category incorporates prompts
of diverse complexity in mathematics, covering basic
geometry, trigonometry, arithmetic, algebra, calculus,
and advanced topics. This category evaluates Chat-
GPT’s ability to generate code solutions for a range of
mathematical problems.

> Object Oriented (00): This category includes prompts
of varying complexity within object-oriented program-
ming, addressing tasks related to class design, inher-
itance, polymorphism, encapsulation, and design pat-
terns. The aim is to assess ChatGPT’s ability to gen-
erate code adhering to object-oriented principles.

> Visual Graphical Drawing (VGD): The last category fo-
cuses on ChatGPT’s ability to generate code for visual
patterns, drawing, and graphical challenges. This cat-
egory includes tasks ranging from turtle graphics pat-
terns to visualizing directions, complex designs, GUIs,
pixel art, and image processing. Given ChatGPT’s
potential challenges in this domain (described in Sec-
tion 5), evaluating its code generation proficiency here
is crucial.

3.2 Collection of Prompts

A total of 131 prompts were collected, and a prompt tem-
plate was designed for consistency, featuring four essential
components: 1) Preamble: Sets up the environment and di-
rectories and defines the GPT model’s role and context. 2)
Prompt: Specifies the task and programming language for
code generation. 3) Output Formatting: Details output re-
quirements such as Python package use, commenting, and
single-file output, with no command-line arguments and op-
tional user input. 4) Exporting: Saves the generated code
as a .py file in the correct directory. A shell script was used
to automate code collection from the prompts. Out of the
total prompts, 60 were sourced online, and 71 were specif-
ically crafted for this study, predominantly in the wvisual-
graphica-drawing and algorithms-data-structures categories,
representing 23% and 26% of the prompts, respectively.

29Ddata-ana|ysis

11E3object-oriented
30Dvisua]-graphical—drawing

34 D algorithms-data-structures

27D mathematics

data-storage==
sentiment-dataset-problemse=

statistics==

data-visualizations==
iris=flower-dataset-problemse=
ml=predictive-models—

. . - patterns==
inheritance-polymorphism-encapsulization—
guimm

image-processinge==
drawing-common-objectse=
image-generation=
fractals=

R S IEN N I GRVUN-N YT, Ne WV, NV, e Y

4
23 5 generall:l 36
implementation==

m— - recursignes=
code-optimization-time-complexity—
linear-algebra==

discrete-graphs==
calculus-calctilators==

algebra—

geometr}g—

RNRPWA NP OV

Figure 1: Categories and subcategories for which data and prompts were collected. The numbers show the total number of

prompts collected for that category or subcategory.

3.3 ChatGPT Code Generation

To streamline the process, we developed a shell script that
uses OpenAl’s GPT API to harness the GPT-3.5 Turbo
model (July 2023) to automatically generate code solutions
for each of the 131 prompts. To ensure the quality and func-
tionality of the code generated from the prompts, we began
by manually evaluating a few sample codes. We then itera-
tively refined the prompts to ensure that ChatGPT performs
to its fullest potential before proceeding to generate code for
all 131 prompts. Following the successful validation of our
automated process, we efficiently generated code solutions
for all 131 prompts, resulting in a total of 131 code files.
Subsequently, we organized the obtained code into separate
.py files and meticulously structured them within nested di-
rectories to ease subsequent analysis.

3.4 Human Code Collection

To create the human-coded dataset for all 131 prompts, we
engaged six computer science major individuals, each re-
sponsible for selecting prompts based on their preference.
They were instructed to produce code solutions indepen-
dently in their unique coding styles, with strict guidance not
to utilize AI assistance tools, including ChatGPT, GitHub
Copilot, or Kite. However, they could access online re-
sources to collect ideas to generate the code. Approximately
80 prompts were meticulously crafted through manual cod-
ing in this manner. In order to diversify the dataset to
encompass a broader range of coding styles, an additional
approximately 51 codes were sourced from various online
platforms. These codes were meticulously curated to ensure
their authors were human programmers. Particular empha-
sis was placed on retrieving code snippets from the most
recent (after Sept 2021) or non-public sources whenever fea-
sible to guarantee that the code had not been incorporated
into the training set of ChatGPT 3.5.

4 Methodology

Utilizing a dataset of 262 code samples (131 from ChatGPT
and 131 from humans), we performed a collaborative effort
for a manual evaluation of each code. The focus was primar-

ily on assessing functionality. A customized test suite was
meticulously designed for each prompt. This approach facil-
itated a comprehensive examination of the code’s capabili-
ties and helped identify potential limitations in ChatGPT’s
coding capabilities. For codes resulting in compilation er-
rors, runtime errors, or incorrect output, a corrective pro-
cess ensued, spanning up to 10 rounds. Task-related infor-
mation was incrementally provided within the prompts with
each successive round to guide the code generation process.
Codes that remained unsuccessful even after the 10-round
correction process were categorized as incorrect. We did not
impose any time or round limits for human-generated code,
allowing for the completion and execution of all codes, con-
sistently yielding correct outputs. For ChatGPT-generated
code, the authors manually assessed the functional correct-
ness of codes. In the subsequent sections, we elaborate on
the code metrics utilized in our analysis and elucidate the
methodology employed for training the machine learning al-
gorithm.

4.1 Code Analytical Metrics

To comprehensively assess ChatGPT’s code compared to
human-generated code, we employed 14 well-established pro-
gramming metrics commonly utilized in the research liter-
ature. These metrics serve a dual purpose, enabling us to
not only gain insights into the coding style of ChatGPT and
humans but also facilitate in-depth examinations of specific
coding behaviors, thus enhancing our observations. This
approach allows for a thorough evaluation of functionality,
understandability, and security.

1. Cyclomatic Complexity: Cyclomatic Complexity quan-
tifies the number of linearly independent paths in code,
offering a pure complexity measurement. Lower com-
plexity, indicative of fewer branches, aligns to achieve
comprehensive code coverage. This metric is frequently
employed to determine the number of paths necessary
for full testing coverage. Additionally, it has been ob-
served that Cyclomatic Complexity correlates strongly
with Source Lines of Code (SLoC) and may share sim-
ilar predictive capabilities.

2. Halstead Metrics: Halstead metrics are derived from
the code’s count of operators (e.g., '+’ or ’int’) and
operands (e.g., variable names or numbers). These
metrics aim to quantify the “physical” properties of
code, similar to how physical matter is characterized
by mass and volume. 1) Halstead Difficulty: Mea-
sures the code’s readability and understanding. 2)
Halstead Effort: Estimates the effort required to write
the code. 3) Halstead Volume: Reflects the program’s
size, including operator and operand counts. 4) Hal-
stead Time: Predicts the time needed to develop the
program. 5) Halstead Bugs: Estimates potential bug
count, aiding debugging efforts.

3. Source and Logical Lines of Code (SLoC and LLoC):
The physical number of lines of code. Logical Lines of
Code (LLoC) takes a file’s total lines of code and re-
moves whitespace lines and comment lines—the num-
ber of statements in a program. For example, a line
with a print statement after an if statement on the
same line would have 1 SLoC and 2 LLoC.

4. Difference of SLoC LLoC: Since the difference between
SLoC and LLoC can provide insight into code quality.
Higher quality code will have lower difference values.
Therefore, we add that as a metric.

5. Number of Lines: Total number of lines in the code.
That is, counting code, new lines, and comments. This
is different from LLoC and SLoc.

6. Number of Comments, Functions, and Classes : The
total number of comments in the code. This counts
the comments by counting the start of each comment.
The number of Functions count the number of func-
tions used in code. The number of Classes counts the
number of classes used in code.

7. Maintainability Index: The Maintainability Index is a
software metric that measures how maintainable and
comprehensible a software system is. It considers fac-
tors such as code size, complexity, and coupling, pro-
viding a numerical score that reflects the ease with
which developers can understand, modify, and main-
tain the codebase. A higher Maintainability Index in-
dicates better code maintainability.

Using these code metrics, we embark on an in-depth analysis
using scientific visualization to identify the nuance difference
between human-generated and ChatGPT-generated code.

4.2 ChatGPT Code Detection

Utilizing 14 code metrics, we trained seven machine learning
algorithms—including Decision Trees (DT), Random Forest
(RF), and K-Nearest Neighbors (KNN)—to discern between
ChatGPT and human code. The typical training procedure
involved:

Q Train-Test Split: An 80-20% ratio ensured 210 codes
in the training set and 52 in the test set from both
ChatGPT and humans.

U Hyperparameters Tuning: Parameters were determined
through grid search based on literature and experimen-
tation.

U Training: Each algorithm was trained with optimized
hyperparameters, and performance was gauged using
standard metrics. To mitigate randomness, models
were trained multiple times with varied seeds.

4.2.1 Reliability Tests.
We conducted reliability tests to evaluate the classifiers’ real-
world applicability:

Q Train-Test Split Ratio Test: We experimented with
train-test ratios from 10% to 100% in 5% increments.

QO Per-category Performance Test: Checked model perfor-
mance across categories to prevent overfitting to any
single category.

U Gaussian Noise Test: The classifiers’ resilience was as-
sessed by incrementally adding Gaussian noise, rang-
ing from 0 to 1 in 0.01 steps, to the standard deviation
of the noise generator.

4.2.2 Feature Analysis.
The 14 features across 262 data instances were analyzed to
discern coding style variations. Two methods were adopted:

U Random Forest-based Approach: Evaluated importance
through impurity decrease metrics.

Q Feature Permutation-based Technique: Assessed fea-
ture relevance by modifying performance metrics after
feature permutation.

By averaging results from both methods over 1000 iterations,
we gained a robust understanding of feature importance,
balancing the strengths and weaknesses of each method.

5 Experimental Results
This section presents experimental results delineating Chat-
GPT deep code analysis and prediction.

5.1 Functional Accuracy

Since we didn’t impose any time and attempt limits on Hu-
mans, functionally correct codes for all 131 prompts were
generated. For ChatGPT, After the assessment of 131 codes
for functional accuracy, the results for the 131 prompts were
categorized into three classes:

1. Correct and Compilable

These codes were not only accurate in fulfilling the task de-
scription but also provided the required output across the
test suite. Among the accurately generated prompts, a sub-
stantial majority were classified under the Data Analysis
category, with 93.1% of the prompts being correct. This
highlights ChatGPT’s robust comprehension of concepts re-
lated to predictive modeling, data storage, statistics, and
data visualizations. Out of the total 16 failures, 7 (23.3%),
3 (8.8%), 3 (11.11%), 2 (6.8%), and 1 (9%) occurred in the
VGD, ADS, M, DA, and OO categories, respectively. All
Human and ChatGPT codes are provided in the GitHub
repository.

Listing 1: An example of error handling, code commenting, and debugging
information style
CHATGPT

Listing 2: An Example of Functional Programming
CHATGPT

HUMAN HUMAN

Listing 3: Making Chessboard example
CHATGPT: Initial Attempt

£ drawRectangle(x, y, width, height): [

Initial Attempt Output
I

Final Attempt Output

Figure 2: Codes and outputs for the presented case studies.

2. Incorrect and Compilable.

Codes falling into this category were deemed uncompilable
for various reasons, such as compile errors, type errors, time
limit exceeded errors or runtime errors. This category in-
cludes compilable codes that produce incorrect output. It
also includes instances of codes with infinite loops resulting
in a “time limit exceeded” condition. In another scenario, we
observed that overloading ChatGPT with excessive details
and imposing numerous conditions could adversely impact
its code generation capabilities. This leads to ChatGPT
desperately trying to solve the problem by generating com-
pilable code yet with incorrect output. We provide insights
about this category through Case Studies 1,2 and 3.

3. Incorrect and Uncompilable.

Non-compilable codes, marked by compile or runtime er-
rors persisting even after 10 rounds of incremental correc-
tion attempts, revealed ChatGPT’s struggle in adapting to
outdated methods and functions. The model’s lack of aware-
ness of changes beyond September 2021 renders it a liability
for coding tasks with newer contexts or requirements involv-
ing recently released packages. Additionally, the generated
code may employ outdated methods, potentially leading to
slower performance and suboptimal memory management.
To provide more detail about the nature of this category, we
present Case Study 4.

Conclusion.

In conclusion, our evaluation encompassed three key aspects
of ChatGPT’s coding capabilities. In generating Correct
and Compilable code, ChatGPT exhibited proficiency with
a commendable 93.1% accuracy, notably emphasizing modu-
larity through a higher number of functions. However, when
tackling “Incorrect but Compilable” codes, the model faced
challenges in tasks requiring advanced visual imagination
and multi-layered problem-solving, showcasing limitations
in creativity and optimal code generation. Notably, Chat-
GPT lacks the ability to leverage visual feedback for quick
error detection, hindering accuracy in drawing and visual
problem-solving. Lastly, the examination of “Incorrect and
Uncompilable” codes highlighted the model’s struggle with
outdated methods, emphasizing the importance of contin-

ual model updates to adapt to evolving coding practices.
While ChatGPT’s limitations were evident, successful cor-
rective adjustments demonstrated the model’s potential for
improvement with targeted interventions, offering valuable
insights for future advancements in natural language pro-
gramming models.

5.2 Code Understandability, Maintainability

and Security

In evaluating the potential and limitations of GPT-3.5 con-
cerning code understandability, maintainability, and secu-
rity, we applied the metrics introduced in Section 4.1 to all
code samples. Subsequently, to facilitate comparison and
discussion, we created box-and-whisker plots and radar plots
(refer to Figures 3 and 4). These visualizations offer insights
into the understandability, maintainability, and security of
both ChatGPT and human codes. Analyzing programming
styles, our observations are as follows:

O Functional Programming: The plots highlight ChatGPT’s
significant use of functions, particularly in the M and ADS
categories, showcasing its inclination towards functional pro-
gramming. In contrast, humans tend to minimize unneces-
sary functional usage. This distinction is evident in the spi-
der plot, with a notable contrast in the number of functions
used by ChatGPT and humans, especially in the M and
ADS categories. However, this difference is less apparent
in the OO, DA, and VGD categories, suggesting a nuanced
response influenced by the emphasis on functional program-
ming in the prompts. Additionally, as programs increase in
size and complexity, humans typically introduce more func-
tions. The strategic use of functional programming enhances
ChatGPT’s coding efficiency, leading to fewer Logical Lines
of Code (LLoC) and a higher maintainability index.

[Lines of Code and Comments Significant disparities in the
distribution of the Number of Lines of Code and Comments
are evident across the entire dataset and within each cat-
egory. Generally, humans tend to produce more lines of
code and fewer comments, exhibiting sporadic behavior. In
contrast, ChatGPT consistently generates concise and effi-
cient code with succinct comments, typically not exceeding
one line. This distinction is more pronounced in the VGD
and ADS categories, containing the most challenging prob-

-

N

Case Study 1 (Drawing Chessboard): In our preliminary investigation, ChatGPT was tasked with replicating a
Python script assignment where CS students at a large public university in the US created a chessboard using the
Turtle module. The assignment was in a 3-page PDF file with detailed instructions about the task implementation
and execution. Despite providing detailed prompts with instructions on how to implement and execute the task,
ChatGPT consistently produced incorrect but compilable code, struggling with nuances like the chessboard border
placement of missing tiles and misalignment of tiles and the box. Interestingly, simplifying the prompt to a concise
instruction,“Create Python code to generate an 8x8 chessboard using the Turtle Python package,” resulted in accurate
code on the first attempt. This suggests that, akin to humans, ChatGPT excels at smaller and straightforward tasks.
Notably, the performance improvement parallels the success of human students given a similar concise prompt for a
smaller chessboard task, underscoring the impact of task framing on language model performance.

Case Study 2 (ChatGPT Directional Dyslexia): When addressing issues in the ChatGPT output, it became apparent
that while ChatGPT correctly followed the prescribed steps, it encountered challenges in aligning the tiles within the
chessboard bounding box or rectangle. A chessboard consists of tiles inside a rectangular box. To create a tile, we
utilized the commands pen.right () and pen.forward() repeated four times. However, a problem arose as ChatGPT
struggled to discern how using pen.right() or pen.left() to construct the tiles (black squares) would impact their
alignment within the box—See Listing 3 Code and Output in Figure 2. Notably, the use of pen.right() resulted in
the first row of tiles being positioned below and outside the chessboard, and this alignment issue was rectified by
employing pen.left().

Case Study 3 (Generating Sprite): Contextual meaning is crucial for ChatGPT to provide accurate output. For
instance, a prompt instructing the machine to create a script generating “Sprites” for video games resulted in a script
producing a flat image. Recognizing the misunderstanding, we modified the term “Sprite” to “pixel art image,” leading
to a script generating images resembling static on an old television—technically correct as a form of “random pixel art
image.” This highlights the significance of providing contextual framing for prompts, as ChatGPT may struggle with
words carrying double meanings without such context, unlike humans familiar with the associated concepts.

Case Study 4 (Outdate Methods): ChatGPT relies on training data up to September 2021, potentially leading
to outdated knowledge of packages. For example, when tasked to create a script using “sklearn” for a predictive
model, ChatGPT chose the “Boston Housing Dataset,” unaware it had been deprecated since sklearn’s 1.2 update
in December 2022. This limitation means ChatGPT might generate code with deprecated or nearly deprecated
features, necessitating caution. In contrast, while not always the latest, human-written code can offer more recent,
relevant, and reliable solutions. Despite initial failures, corrective adjustments, such as changing load_boston() to
fetch_california_housing(), were deemed correct, showcasing a nuanced evaluation approach.

12Cg/clomatic Complexity Halstead Difficulty Halstead Effort Halstead Volume

600 150
10.0 4
7.5 400 100
2
5.0 200 50
25
0 01— = 0

ChatGPT Human ChatGPT Human ChatGPT Human ChatGPT Human

-
| -

Halstead Time

3 0.04 40
20
0.02
10 20
0 E -1 000

0
ChatGPT Human ChatGPT Human ChatGPT Human

Halstead Bugs SLoC Logical SLoC
60

-

0
ChatGPT Human

HEH
DERN

Number of Comments

e

ChatGPT Human

Number of Functions Number of Classes Number of Lines
6 x B

03
B 75
02 50
2 01 25
0 00— ———

0
ChatGPT Human ChatGPT Human ChatGPT Human

}—m_‘ 5
D

Diff SLoC LLoC Maintainability Index
* 0

1.0 1.0

10
2 08 08
80
0.6 06
1 60 0.4 0.4
0 0.2 02
0

ChatGPT Human o4) 09

ChatGPT Human 0.0 05 1.0 0.0 05 10

Figure 3: This box and whisker plot illustrate key values of an-
alytical metrics: Median (line within the box), Mean (‘x’ sym-
bol), Minimum (lower whisker), Maximum (upper whisker),
Lower Quartile (bottom of the box), and Upper Quartile (top
of the box) for each metric.

lems. Notably, ChatGPT tends to provide more comments
for OO, M, and DA categories while offering fewer com-
ments for VGD and ADS categories. This pattern arises
from humans’ tendency to avoid extensive comments and
longer codes, particularly when confronted with the com-
plexity of challenges in VGD and ADS categories.

O Complexity of Code (LoC): ChatGPT consistently gener-
ates code with higher cyclomatic complexity, particularly in
the challenging M, ADS, and VGD categories, showcasing its
ability to produce intricate solutions. This is evident in the
relatively lower disparity between physical and logical lines
of code, highlighting ChatGPT’s efficiency in crafting con-
cise codes using advanced Python concepts such as list com-
prehensions, functional programming, inheritance, polymor-
phism, generators, iterators, decorators, and sophisticated
data structures. Notably, its strength lies in compact code
generation across most categories, except for VGD and ADS,
where performance was subpar, leading to more incorrect
solutions. In comparison, human programmers may avoid
these advanced techniques due to perceived complexity. A
cross-category analysis reveals ChatGPT’s weaknesses in vi-
sual, graphical, or drawing problems.

O Halstead Metrics: Additionally, we evaluated the qual-
ity of the generated code using Halstead metrics, includ-
ing difficulty, effort, volume, and time. Humans showed an
anomalously high standard deviation of difficulty, volume,
effort, and bugs for the mathematics category, which means
some prompts were poorly executed by humans compared to
ChatGPT. Overall, the ChatGPT code had lower means for
all Halstead metrics than humans, specifically for M, ADS,
and VGD categories. This showed that ChatGPT was able
to provide efficient code for these categories. However, it

Table 1: Performance of various classification models in pre-
dicting ChatGPT code

[Model | Class | Precision | Recall | F1 | Accuracy |
w [CROTT| B WS
T | Y | o | s | w5

ot | CBSET |00 a0
%GB | | so | o2 | 1on | T
KN | i | ot | e | s | 0%

also performed poorly in terms of functional accuracy in the
VGD and ADS categories.

0 Maintainability Index: Furthermore, ChatGPT’s code ex-
hibits enhanced maintainability across all categories from a
maintainability and security perspective. This is also char-
acterized by fewer bugs measured by the Halstead Bugs met-
ric and the implementation of high-quality error-handling
techniques. These techniques encompass robust exception
handling, the adoption of Testing and Test-Driven Develop-
ment (TDD) practices, a strong emphasis on functional pro-
gramming principles, and proficient memory management
strategies.

Conclusion. Comparing code understandability, maintain-
ability, and security between ChatGPT and humans, metric
distribution plots reveal that ChatGPT tends to generate
code with higher cyclomatic complexity, excelling in craft-
ing concise code using advanced Python concepts. Chat-
GPT displays proficiency in list comprehension, functional
programming, and sophisticated data structures. Evalua-
tion with Halstead metrics consistently indicates that Chat-
GPT produces higher-quality code, exemplified by lower dif-
ficulty and time scores while maintaining lower effort and
volume scores compared to human-generated code. From a
maintainability and security perspective, ChatGPT exhibits
enhanced qualities, showcasing robust error handling, com-
menting, and debugging output. Despite potential biases
in the instructions, the observations emphasize ChatGPT’s
ability to produce code with advanced constructs and qual-
ity practices.

5.3 ChatGPT Code Detection using Machine

Learning
This section presents our findings concerning hyperparame-
ter tuning for the seven classification algorithms, their clas-
sification performance, and their resilience during reliability
testing.

5.3.1 Code Detection Performance.

Table 1 demonstrates the performance of ChatGPT code de-
tection using different machine learning models and across
different measures. The Decision Trees (DT) algorithm ex-
hibited exceptional performance with an accuracy of 88%,
closely followed by the Random Forest (RF) algorithm, which
achieved an accuracy of 87%. Since the dataset is perfectly

Cyclomatic Complexity Halstead Difficulty
M DA M DA

Halstead Bugs
M DA

Number of Lines Number of Comments

Halstead Effort

Logical SLoC
M

Diff SLoC LLoC

Halstead Time
DA

Halstead Volume

ADS

VGD

Number of Functions Number of Classes
DA

Maintainability Index

90°
45°
1.0
00
7! 150
270°

Figure 4: The mean (solid line) and standard deviation (dotted line) for each metric across categories, providing a comprehensive

view of ChatGPT (red) and human (green) coding styles.

balanced, the F1 and Weighted F'1 scores align closely. It
is intriguing that RUSBoost, typically employed for imbal-
anced datasets, delivered outstanding results with an accu-
racy of 81%

5.3.2 Reliability Tests

The results of the three reliability tests provided insight into
the model’s generalizability. For this analysis, we only used
the top three best-performing algorithms: Random Forest
(RF), Decision Trees (DT), and Random UnderSampling
and Boosting (RUSBoost). Tests were performed using the
best hyperparameter. The following observations were made
from each test.

[Train-Test Split Ratio Test. Our analysis of the impact
of varying train-test split ratios on the performance of three
models revealed distinct patterns. The RF and RUSBoost
models exhibited stability across different splits, with RF
peaking at an 87% Weighted F1 Score at an 80% train split,
as illustrated in Figure 5. The DT model, however, showed
greater variability and inconsistent performance as the train
split size increased, which may be due to the DT’s tenden-
cies to overfit the data and the effects of random sampling
post-train split decision. A notable performance dip for DT
between 40-50% train split sizes suggests concerns regarding
its generalizability. Remarkably, RUSBoost outperformed
the RF classifier at several split ratios, although RF main-
tained the highest performance at the 80% split. This un-
derscores the efficacy of the conventional 80-20% train-test
split for training classifiers. All models displayed a perfor-

mance decline beyond an 80% train split, likely attributable
to the reduced size of the test set, emphasizing the balance
needed between training and testing datasets for optimal
model evaluation.

O Per-category Performance Test. In this test, we investi-
gated the comparative performance of three machine learn-
ing models—RF, DT, and RUSBoost—across various cat-
egories as presented on the x-axis in Figure 6. The RF
model consistently delivered strong results, particularly ex-
celling in categories such as “Algo Data Struct,” “Mathe-
matics,” and “Object Oriented,” where it achieved perfect
scores in some tests. However, the DT displayed variable
effectiveness; it performed well in “Mathematics” but was
less reliable in other categories. Notably, it exhibited mul-
tiple misclassifications in “Human” codes, demonstrating a
tendency to overfit GPT-generated codes. RUSBoost dis-
tinguished itself with high performance in the “Mathemat-
ics” category; however, it generally performed less effectively
across other categories. All models faced challenges in the
“Algo Data Struct” and “Visual Graph Draw” categories,
where the codes are complicated to distinguish, as evident
from the metrics comparison in Figure 4. This analysis un-
derscores the necessity of selecting an appropriate model
based on the specific demands of each category. Further-
more, the varied performance of all three models across dif-
ferent categories suggests that an ensemble approach could
potentially improve overall performance.

O Gaussian Noise Test. In assessing model resilience against
external perturbations, we introduced Gaussian noise to the

[

N

Case Study 5 (Error Handling, Code Commenting, and Debugging Information): In many of the prompts, ChatGPT
was seen to perform excellent error handling, commenting, and debugging output, as shown in Listing 1 in Figure 2. In
that example, fairly indicative of the differences between many of the scripts, it is easy to see that the error handling
code is more comprehensive, there are more comments, and the debugging output is higher quality in the ChatGPT
written script than the human one. Focusing on error handling, ChatGPT wrote excellent error handling code, taking
into account not just a general case but also the specific FileNotFoundError exception as well. The human code
was written without any error handling. Also note that if you remove the error handling, comments, and debugging
output, the GPT code would be a single line longer than the human code. In this situation, ChatGPT prioritizes error
handling and debugging output to make the code more useable and understandable despite not having been specifically
instructed to do so. We can also see it outperforming the human code in the number of comments explaining the code.
We can note that the debugging output could be considered its own form of comment, further promoting the idea that
ChatGPT is proficient at writing code that follows general best practices for writing high-quality and understandable
code.

Case Study 6 (Functional Programming): It was seen that ChatGPT used functions at a significantly greater rate than
humans. The code in Listing 2 of Figure 2 showcases this use of functions. It is easy to see that the program generated
by ChatGPT has 5 different functions, each performing a different task, while the human code has a single function.
We can see here that GPT used functions to promote understandability and reusability in its code, significantly
contrasting with the human code in this case. This was often the case in most of the ChatGPT codes, while humans
tend to code function only when necessary.

~

Figure 5: ML model performance on the test set for different train split sizes (x-axis).

test data, incrementally varying the noise’s standard devia-
tion from 0 to 1 in 0.01 steps to test stability. The Random
Forest (RF) model maintained consistent performance up to
a noise standard deviation of 0.5, beyond which it showed
sensitivity, as depicted in Figure 7. Despite this, the RF and
RUSBoost models exhibited notable noise tolerance, with
RF outperforming others in resilience, underscoring its ro-
bustness and reliability amidst data perturbations. In con-
trast, the DT model demonstrated considerable performance
fluctuations, highlighting its vulnerability to overfitting and
limited adaptability.

Based on the results of the three tests, we conclude that the
Random Forest (RF) algorithm shows robustness in terms
of random sampling of changing train set size, addition of
random Gaussian noise with varying standard deviation, and
cross-category performance across the test set.

5.4 Feature Analysis

As depicted in Table 2, the Number of Comments and Lines
of Code stand out as pivotal features, echoing the insights
discussed in Section 5.1. While these metrics hold impor-
tance, particularly for RF models, our exploration delves
deeper into other metrics of higher significance. Among
these, the Maintainability Inder proves most paramount
in predicting source code authorship. This index encom-
passes metrics such as Cyclomatic Complezity, Source Lines
of Code, and Halstead Volume. Interestingly, the aggregate
influence of the maintainability index surpassed the indi-

Table 2: Feature Importance of the 14 coding metrics using
the dual feature importance approach

‘ Feature ‘ Forest Importance ‘ Perm Importance ‘ Mean Importance ‘
Number of Comments 0.172082 0.298360 0.235221
Number of Lines 0.123837 0.179766 0.151802
Maintainability Index 0.099583 0.178798 0.139190
Number of Functions 0.088670 0.167553 0.128111
Logical SLoC 0.085149 0.122872 0.104010
SLoC 0.084966 0.122422 0.103694
Halstead Time 0.049588 0.073684 0.061636
Halstead Volume 0.048599 0.074152 0.061376
Halstead Bugs 0.048450 0.074172 0.061311
Halstead Effort 0.049134 0.072983 0.061058
Cyclomatic Complexity 0.048372 0.070053 0.059212
Halstead Difficulty 0.045021 0.070368 0.057695
Diff SLoC LLoC 0.045856 0.065013 0.055435
Number of Classes 0.010693 0.014973 0.012833

vidual impacts of both Source Lines of Code and Cyclo-
matic Complexity. Regarding maintainability, ChatGPT-
generated code consistently exhibited superior performance
compared to human-written code. This superiority is likely
attributable to its lower Halstead Volume, reduced count of
source lines, and minimized Cyclomatic Complezity. On the
lower end of the significance spectrum lie metrics such as
Cyclomatic Complexity, Number of Classes, Difference be-
tween Logical and Source Lines of Code, and Halstead Diffi-
culty. Their diminished importance might be a result of their
strong correlation with dominant features like Source Lines
of Code (SLoC) and Logical SLoC, making them somewhat

