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ABSTRACT
Creating effective educational materials generally requires
expensive and time-consuming studies of student learning
outcomes. To overcome this barrier, one idea is to build
computational models of student learning and use them to
optimize instructional materials. However, it is difficult to
model the cognitive processes of learning dynamics. We
propose an alternative approach that uses Language Mod-
els (LMs) as educational experts to assess the impact of
various instructions on learning outcomes. Specifically, we
use GPT-3.5 to evaluate the overall effect of instructional
materials on different student groups and find that it can
replicate well-established educational findings such as the
Expertise Reversal Effect and the Variability Effect. This
demonstrates the potential of LMs as reliable evaluators of
educational content. Building on this insight, we introduce
an instruction optimization approach in which one LM gen-
erates instructional materials using the judgments of another
LM as a reward function. We apply this approach to create
math word problem worksheets aimed at maximizing stu-
dent learning gains. Human teachers’ evaluations of these
LM-generated worksheets show a significant alignment be-
tween the LM judgments and human teacher preferences.
We conclude by discussing potential divergences between
human and LM opinions and the resulting pitfalls of au-
tomating instructional design. 1

Keywords
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1. INTRODUCTION
Instructional design, the process of creating educational ma-
terials or experiences such as textbooks and courses, is a crit-
ical component in advancing education [41]. A significant
challenge in instructional design is the need for extensive

1Our prompts are publicly available at
https://github.com/StanfordAI4HI/ed-expert-simulator.

studies involving real students to evaluate the effectiveness
of these instructional materials [16, 26]. This traditional
method is expensive, time-consuming, and fraught with lo-
gistical and ethical challenges, making it difficult to quickly
innovate and implement new teaching strategies. Recent
studies have explored the use of Language Models (LMs)
to simulate students’ interactions with educational content
[21, 12], offering a less expensive alternative. However, our
initial investigations reveal that the LMs (at the time) strug-
gled to model the dynamics of student learning, often failing
to maintain a consistent level of knowledge when simulating
students’ responses before and after learning interventions
(see Appendix A).

In light of these challenges, our work explores the use of LMs,
such as GPT-3.5 and GPT-4 [1], to evaluate and optimize
educational materials. Unlike previous attempts to directly
simulate student learning [21, 12, 25, 28, 24], we leverage the
advanced reasoning capabilities and pedagogical knowledge
of LMs and position LMs as educational experts who can
assess and enhance the effectiveness of instructional content.

To validate the potential of LMs in simulating educational
experts, we use GPT-3.5 to assess the overall effect of in-
structional materials on different student groups and find
that the judgments of GPT-3.5 can replicate two well-known
findings in educational psychology: the Expertise Reversal
Effect [14, 43, 15, 13] and the Variability Effect [29, 42].
These results suggest that LMs have the potential to act as
coherent evaluators of instructions, offering insights consis-
tent with those obtained from human subjects research.

Building on the insight that LMs can, to some extent, mimic
educational experts, along with prior work demonstrating
LMs’ capability for iterative improvement [20, 5, 50, 49, 36],
we propose an instruction optimization approach (Figure 1).
In this approach, one LM (the optimizer) generates new in-
structional materials, and another LM (the evaluator) eval-
uates these materials by predicting students’ learning out-
comes (e.g., post-test scores). We apply this approach to
optimize math word problem worksheets, aiming to maxi-
mize students’ post-test scores. External assessments like
post-tests are not perfect, but they are an important tool
in many educational systems to help shed insight into stu-
dent progress. In each optimization step, we prompt the
optimizer LM to generate new worksheets based on a list
of previously generated worksheets with their correspond-
ing post-test scores, then the new worksheets are scored by
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Figure 1: We use an optimizer LM to generate new educational materials (e.g., worksheets) and an evaluator LM to judge the
effectiveness of these materials by predicting students’ post-test performance. In this example, the optimizer LM generates
a new worksheet based on the student information and previous worksheet-score pairs, then the evaluator LM predicts the
student’s post-test score given the new worksheet. The new worksheet-score pair serves as feedback for the optimizer LM to
refine worksheets.

the evaluator LM. We show that the optimizer LM can refine
worksheets based on the judgments of the evaluator LM. We
also ask human teachers to compare worksheets generated
from different stages of optimization and find a significant
correlation between the evaluator LM’s judgments and hu-
man preferences. This highlights the potential of LMs in in-
forming the design of real-life experiments and reducing the
number of costly experiments in education. However, hu-
man teachers sometimes cannot distinguish worksheets that
LMs perceive as different, which suggests the necessity for
further investigations to ensure LMs effectively complement
traditional educational research methodologies.

Our paper makes the following contributions:

• We demonstrate the potential of LMs to serve as re-
liable evaluators of educational content by replicating
two well-established educational findings: the Exper-
tise Reversal Effect and the Variability Effect.

• We introduce an instruction optimization approach us-
ing the LM judgments as a reward function and demon-
strate the feasibility of using LMs to iteratively im-
prove educational materials, focusing on the domain
of math word problem solving.

• We recruit human teachers to evaluate LM-generated
math word problem worksheets from different stages
of optimization and find a significant alignment be-
tween human teacher preferences and LM judgments,
highlighting a promising application of LMs in inform-
ing the design of costly human subjects experiments
in education.

After describing these results, we conclude the paper with a
discussion of open issues and future directions.

2. RELATED WORK
There is an extensive and growing literature on simulating
human behaviors and LM-based tools for learning and in-
structional design.

2.1 Simulating students for education
Long before LM-based tools, researchers explored methods
to build simulated students (usually machine learning sys-
tems whose behavior is consistent with data from human

students) and applications of such simulated students in ed-
ucation [44, 3, 8, 24, 22]. For example, [44] discusses how
teachers can develop and practice their tutoring strategies
by teaching simulated students, as demonstrated in recent
work that develops an interactive chat-based tool that allows
teachers to practice with LM-simulated students [21]. An-
other promising application of student simulators considered
in [44] is to enable collaborative learning where students can
work collaboratively with a simulated peer or by teaching a
less knowledgeable simulated student [23, 19, 39, 11].

Our work is closely related to prior studies on simulation-
based evaluations of instructional design [27, 44, 24]. Run-
ning empirical experiments with real students to test dif-
ferent instructions, often called formative evaluations [26],
can help instructional designers pilot-test and improve their
designs. Since formative evaluations with real students are
expensive, it is of interest to build simulated students who
can provide cheap, fast evaluations. [27] introduces Heuristic
Searcher, a system that can be used as a simulated student
who learns arithmetic skills from instructions encoded as for-
mal constraints that describe erroneous states. They show
that simulations can reveal interactions of instruction with
students’ prior knowledge. Similarly, [24] uses a cognitive
model as a simulated student to help design instructions
for training circuit board assemblers. However, these sys-
tems are limited by their inability to process instructions in
natural language or adapt to broader, less structured knowl-
edge domains. Although advancements in LMs [1, 6] offer
opportunities to simulate students who can interact with ed-
ucational content in natural language, recent attempts show
that LM-simulated students can at times produce responses
that are unrealistic or overly advanced, particularly in situ-
ations where such capability is not expected [21, 2]. There-
fore, instead of focusing on simulating students who can in-
teract with instructions, we aim to simulate educational ex-
perts capable of evaluating the quality of those instructions.

2.2 LMs as educational experts and tutors
Recent advancements in LMs [1, 6] have sparked a new
wave of work that explores ways in which LMs can im-
prove education. Some studies have considered using LMs
for educational content development [38, 39, 7, 47, 51]. [38]
uses LMs to produce educational resources (e.g., code ex-



amples and explanations) for an introductory programming
course. They find that students perceive the quality of LM-
generated resources to be similar to materials produced by
their peers. [45] explores the ability of LMs to become
teacher coaches who can provide teachers with pedagogical
suggestions. There have been many papers that focus on
using LMs to provide automated feedback and explanations
to students learning math [31, 46, 17, 35], programming [30,
34], and physics [37]. None of these studies considers opti-
mizing educational content for a given student.

2.3 LMs for simulating humans
Our work is loosely related to recent work on using LMs to
simulate different aspects of human behavior. For instance,
researchers have used LMs to replicate results from social
science experiments and public opinion surveys [4, 2, 10].
The ability of LMs to mimic human behaviors opens up
exciting possibilities in areas such as education [21], product
design [33, 32], and skill training [40, 18].

3. INSTRUCTION EVALUATION
To do instructional design without running experiments with
real students, we introduce a new type of evaluation for as-
sessing the impact of instructions on student learning gains.

3.1 LM-based simulated expert evaluation
Traditionally, developing effective instructional materials in-
volves administering pre-tests and post-tests to numerous
students under different experimental conditions. However,
this type of evaluation is expensive and time-consuming [44,
16]. Another option is to have pedagogical experts cre-
ate content based on their (often implicit) assessment of
how well it will support student learning [48]. Such human
experts can also judge whether particular instructions are
likely to be more or less effective.

Inspired by this, we use an LM to simulate a human peda-
gogical expert evaluation of a particular instructional con-
tent that can be described in text. More precisely, we task
an LM to take in information about a student’s relevant
background (e.g., the student’s prior knowledge), a particu-
lar set of instructional content that would be provided to the
student, and predict the student’s subsequent performance
on particular test questions. We outline this procedure in
Alg. 1. We call this evaluation a Simulated Expert Evalu-
ation (SEE). In general, we are interested in understanding
whether a particular instructional artifact is effective for a
group of students, such as eighth graders doing algebra, or
fifth graders struggling with fractions. To do this evalua-
tion, we will have a simulated expert assess the impact on
many different students with different prior knowledge or
background, to get an aggregate estimate of the impact of a
particular instruction.

More precisely, the input of an SEE are an evaluator LM
Me (for example, ChatGPT/Claude/Gemini/etc), a text de-
scription of a student persona, a text instruction, an eval-
uation task description, and T test questions x1, ..., xT . In
an SEE, we first initialize an evaluator LM instance me. We
create a list of prompts {p1, p2, ..., pT } and sequentially give
these prompts as input to me. The initial prompt p1 (see
an example in Figure 2) includes the student persona that

Algorithm 1 Simulated Expert Evaluation (SEE)

Input: Evaluator Me, student persona, instruction,
eval task, test questions x1, ..., xT

Initialize me as an instance of Me

Set p1 ← student persona||instruction||x1||eval task
Give p1 as input to me and receive output o1
for i = 2, 3, . . . T do

Set pi ← xi||eval task
Give pi as input to me and receive output oi

end for
Extract s1, ..., sT from o1, ..., oT

Set s←
∑T

i si
T

return s

represents the student’s proficiency in relevant skills, the in-
struction, the first problem on the post-test x1, and the task
for the LM (which is to predict the probability that the stu-
dent can solve the problem correctly). For example, in the
figure we show a case where a student is learning to solve
systems of equations. The student starts with some skill lev-
els, and then the student is provided with a worked example,
and then given a problem to work out a solution to a new
problem, along with other activities (omitted for space). As
shown in orange, after such “simulated” instruction, the stu-
dent will be asked a test question (in orange)– here a word
problem requiring the student to set up and solve two equa-
tions to work out the age of a sister. In green the LM me will
be instructed to predict the performance on this question of
the student who start from this initial background knowl-
edge and completed the provided activities (worked example
etc). More formally, the LM evaluator me takes in this p1
(as shown in Figure 2) and outputs a response o1. We then
feed the LM me the subsequent prompts p2, ..., pT , where
each prompt pi includes an additional test problem xi and
the task description (see an example in Figure 3). Since we
give all the prompts to the same LM instance me, me gen-
erates oi in the context of {p1, o1, p2, o2, ..., pi}. Essentially
this repeated interaction just allows us to have the LM me

evaluate how the student persona would do on the post test,
given the provided instruction.2 After we collect o1, ..., oT ,
we extract the probability of success (in percentage) for each
test problem s1, ..., sT and calculate the post-test score s as
the average probability of success:

s =

∑T
i si

T
(1)

We will later discuss the specific student personas (student
background description) we use.

A simulated educational expert offers many benefits. For ex-
ample, we can easily get a simulated expert assessment of the
impact of different instructional content on the same student
by altering the instructional content in the prompt. Addi-
tionally, by setting the instructional content to an empty
string (see Figure 15 in Appendix), we ask the simulated
expert to estimate a student’s pre-test score, allowing for
the use of identical questions in both pre-tests and post-

2We also explored providing all the test questions and then
asking the LM to predict the probability of the student get-
ting each right, but we found that asking the LM to predict
one by one was more effective.



Here is an 8th-grade student with the following skill levels (each skill is rated on a scale from 1 to 5):

1. Being able to set up systems of equations given a word problem: {level1}

2. Being able to solve systems of equations: {level2}

Here’s the instruction that the student receives. The student is asked to study a problem and its solution. Here’s the
problem:

A brownie recipe is asking for 350 grams of sugar, and a pound cake recipe requires 270 more grams of sugar than a brownie
recipe. How many grams of sugar are needed for the pound cake?
Here’s its solution:
Step 1: Identify the amount of sugar needed for the brownie recipe, which is 350 grams.
Step 2: Understand that the pound cake recipe requires 270 more grams of sugar than the brownie recipe.
Step 3: Add the additional 270 grams of sugar to the 350 grams required for the brownie recipe.
Step 4: The total amount of sugar needed for the pound cake recipe is 350 grams + 270 grams = 620 grams.

The student is then asked to work on the following problem on their own:
The size of a compressed file is 1.74 MiB, while the size of the original uncompressed file is 5.5 times greater. What is the
size of the uncompressed file, in MiB?

(. . . more instructions . . . )

Now the student is asked to work on the following problem on a test:

Alyssa is twelve years older than her sister, Bethany. The sum of their ages is forty-four. Find Alyssa’s age.

Given the student’s initial skill levels and the instruction the student has received, what’s the probability that the student
can solve the problem correctly? Explain your reasoning and give a single number between 0 and 100 in square brackets.

Figure 2: The prompt for predicting the post-test score in a simulated expert evaluation. The blue text is the student persona.
The black text is the instruction given to the student. The orange text is a problem on the post-test. The green text describes
the evaluation task for the LM.

Now the student is asked to work on the following prob-
lem on a test:

{problem}

Given the student’s initial skill levels and the instruction
the student has received, what’s the probability that the
student can solve the problem correctly? Explain your
reasoning and give a single number between 0 and 100 in
square brackets.

Figure 3: The orange text is the test question. The green
text describes the evaluation task for the LM.

tests. This approach allows us to estimate learning gains
while avoiding biases associated with memorization.

Importantly, using an LM as a simulated educational ex-
pert is different from using an LM to directly simulate a
given student. Simulating a student involves modeling the
student’s problem-solving process, while an SEE only pre-
dicts the post-test scores without actually simulating the
student’s responses. In our early explorations, we found
that the LMs we were using were poor simulators of student
learning processes (see Appendix A). For example, while an
LM might successfully offer an answer as to what a fifth
grader might respond to an algebra question, if we then

provided some pedagogical material and asked the LM to
directly simulate what the student would now respond to a
test question, the LM frequently could “forget” its (the fifth
graders’) limited knowledge and answer the question per-
fectly. In other words, the LMs (at the time) had a poor
model of the dynamics of student learning. To emphasize
the distinction using our example, a simulated educational
expert LM will predict the chance the student will correctly
answer the sister age question (e.g., 70% chance the student
will get it right) whereas an LM-as-student must generate
the actual answer (e.g., “Alyssa is 32”).

We now evaluate to what extent a given LM, such as GPT-
3.5, can act as a simulated educational expert and predict
the impact of instructions on student learning outcomes. In
particular, such a simulated educational expert should align
with prior known results about student learning from differ-
ent types of instructional materials. Our primary interest
is to consider if we can use LMs as simulated educational
experts to evaluate and optimize new instructional content.
Therefore, our focus here is not a comprehensive evaluation
of the ability of LMs to match known results in the learning
sciences, but to do a small set of basic tests to make sure
there are reasons to believe that an LM might be a good
simulated educational expert.

In particular, we run simulated expert evaluations (SEEs)
over a population of student personas to see if the judg-



ments of our simulated educational expert LMs can replicate
two well-known instructional effects: the Expertise Reversal
Effect [14, 43, 15, 13] and the Variability Effect [29, 42].
We selected these two phenomena in part because they are
compatible with text-only prompts, though in the future we
hope to extend LM-based simulated educational experts to
multi-modal instructional inputs.

3.2 Replicating prior studies using SEEs
Replicating previous experiments involves: 1) creating par-
ticipant personas that include relevant covariates; 2) allo-
cating participants to different experimental conditions; 3)
creating instructional materials customized for each exper-
imental group and implementing the intervention; and 4)
conducting post-tests to evaluate the impact of the interven-
tion. Optionally, conducting pre-tests to determine baseline
measures could also be included.

Since prior studies did not publish their experimental ma-
terials, we create new student personas and instructional
materials, focusing on the domain of math word problem
solving. We create n = 120 student personas using a fixed
template (see the blue text in Figure 2) that describes their
initial proficiency in the relevant math skills: the ability to
set up systems of equations and the ability to solve systems
of equations. The student persona vary only in skill levels,
level1 and level2, for which we randomly assigned integers
between 1 and 5 (inclusive) to simulate diverse student abil-
ities. We define the experimental groups and assign student
personas to these groups using the same procedures as prior
studies. We simulate the pre-test stage by running one SEE
(see Alg. 1) for each student persona. The instruction for all
these SEEs is an empty string because the students have not
received any instruction yet (see Figure 15 in Appendix). To
implement the intervention and collect students’ post-test
scores, we run multiple SEEs (one for each student persona)
with specific instructions tailored to their assigned experi-
mental group. After collecting post-test scores, we compare
the overall effect of various instructions on different experi-
mental groups with results from prior studies. We describe
the two phenomena we replicate below.

3.3 Expertise Reversal Effect
The Expertise Reversal Effect, introduced by [14], suggests
that the effectiveness of instructional strategies changes as a
learner’s knowledge and skills develop. In the early stages of
learning, beginners often benefit from structured guidance,
which compensates for their limited background knowledge
and helps manage cognitive load. However, as learners gain
proficiency, the same strategies that were once helpful can
become superfluous or even hinder learning by overload-
ing the cognitive system. For learners who have achieved
a higher level of expertise, minimal guidance is preferable
because they have built up a sufficient framework of knowl-
edge that allows for efficient organization and processing of
new information [13].

3.3.1 Prior real-life experiments
In Experiment 3 of [15], they replicate the Expertise Re-
versal Effect in the domain of coordinate geometry problem
solving. Their experiment consists of three stages: pre-test,
instruction, and post-test.

During the first stage, they administer a pre-test to all par-
ticipants (42 Year 9 students from a Sydney Catholic girls’
school). Based on the pre-test scores, they divide partici-
pants into two groups: more knowledgeable learners (upper
median group) and less knowledgeable learners (lower me-
dian group). They then randomly allocate students in each
of these two groups to two subgroups: one receives practice-
based instruction, and the other receives worked-example-
based instruction. This leads to four experimental groups:
1) Low-knowledge/practice, 2) Low-knowledge/worked ex-
ample, 3) High-knowledge/practice, and 4) High-knowledge/
worked example.

In the second stage, participants in the practice conditions
are given 8 problems (numbered from 1 to 8) to solve on
their own. Participants in the worked-example conditions
are given the same set of 8 problems in the same order but
with fully worked-out step-by-step solutions for the prob-
lems with odd numbers.

In the final stage, they ask participants to take a post-test.
They find that for less knowledgeable (low-expertise) learn-
ers, the worked-example group performs significantly better
than the practice group on the post-test. For more knowl-
edgeable learners (high-expertise), there is no significant dif-
ference between the worked-example group and the practice
group. Similarly, [43] uncovers the Expertise Reversal Effect
in their experiment teaching students how to use a database
program (see their Figure 1).

3.3.2 Replication
Following the procedures used in [15], we run SEEs in a dif-
ferent domain: math word problems involving systems of
equations. We create 120 student personas that describe
their initial proficiency in relevant math skills (see Section
3.2). Based on the sum of skill levels for the two skills, we di-
vide these student personas into two groups: high-expertise
learners (upper-median group) and low-expertise learners
(lower-median group)3. For each group, we randomly as-
sign half of the students to the practice condition and the
other half to the worked-example condition, which leads to
four experimental groups:

1. low-expertise/practice.

2. low-expertise/worked example.

3. high-expertise/practice.

4. high-expertise/worked example.

We create the two types of instructions (practice and worked
example), the pre-test, and the post-test, using math word
problems from the Algebra dataset [9]. We randomly se-
lect 8 problems for the two instructions and a different set of
8 problems {x1, ..., x8} for the pre-test and post-test. The
practice instruction contains 8 word problems with no so-
lutions, while the worked-example instruction includes the
same set of 8 problems with step-by-step solutions for the
first, third, fifth, and seventh problems. Detailed instruc-
tions are available at https://github.com/StanfordAI4HI/ed-
expert-simulator.

3In our SEEs, we do not need to divide students into low-
expertise learners and high-expertise learners based on their
pre-test scores since we know all students’ latent skill levels.

https://github.com/StanfordAI4HI/ed-expert-simulator
https://github.com/StanfordAI4HI/ed-expert-simulator
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Figure 4: The LM-based simulated expert evaluations can
replicate the Expertise Reversal Effect. According to the LM
judgments, low-expertise learners benefit more from worked
examples than practice, but there is no significant difference
between practice and worked examples for high-expertise
learners. Circles and squares indicate the average test score
for each group. The error bars show the standard error.

We simulate the pre-tests and post-tests as described in Sec-
tion 3.2. Figure 15 in the Appendix shows a prompt for
the pre-test. Figure 2 shows a prompt for predicting the
post-test scores for the worked-example group. We use gpt-
3.5-turbo-16k as the evaluator LM for all SEEs, with the
temperature parameter set to 0 for more consistent output.

3.3.3 Results
We find that LM-based SEEs can accurately replicate the
Expertise Reversal Effect, as shown in our comparison of
pre-test and post-test scores across all participants (see Fig-
ure 4). Among low-expertise learners, the worked-example
group significantly outperforms the practice group on the
post-test. This performance difference is not observed among
high-expertise learners, where both practice and worked-
example groups show similar outcomes.

This finding might seem expected, considering the LM has
likely been trained on data that includes descriptions of
these prior studies. However, the ability of the LM to make
these accurate judgments is particularly noteworthy for two
reasons. First, our evaluation methods do not explicitly
hint at those prior studies (for instance, we do not specify
whether the instruction is practice-based or involves worked
examples). Second, we develop and use new instructional
materials in a domain different from those explored in prior
studies. This highlights the LM’s ability to generalize its
learning to novel contexts.

3.4 Variability Effect
The Variability Effect [29, 42] suggests that introducing a
variety of instructional examples is not always beneficial for
students. Variability in problem situations can enhance stu-
dent learning only if students have sufficient working mem-
ory resources to handle the added cognitive load.

3.4.1 Prior real-life experiment

The experiment in [29] demonstrates the Variability Effect in
the domain of geometrical problem-solving. The researchers
divide participants (60 students from fourth-year classes of
a secondary technical school) into four experimental groups:

1. low-variability/practice.
2. low-variability/worked example.
3. high-variability/practice.
4. high-variability/worked example.

Participants in the practice conditions receive a set of six
problems. Participants in the worked-example conditions
receive the same problems with their step-by-step solutions.
The problems with odd numbers (first, third, and fifth) are
identical for the low-variability and high-variability condi-
tions. The problems with even numbers in the low-variability
conditions have the same problem formats as the problems
with odd numbers, but with different values. The problems
with even numbers in the high-variability conditions have
different values and problem formats than the problems with
odd numbers. After receiving the intervention, participants
take a post-test consisting of six problems.

The results show that introducing a variety of examples can
significantly enhance learning and the ability to apply knowl-
edge, especially when the cognitive load is low, such as when
students learn from worked examples. However, in situa-
tions where the cognitive load is already high, like when
students solve practice problems independently, there is no
effect of variability because too much variability can over-
load a learner’s memory capacity. This finding highlights
the balance needed between introducing diversity in learning
materials and managing cognitive load for optimal learning
outcomes.

3.4.2 Replication
We run SEEs in the domain of math word problems involv-
ing systems of equations, which is the same as Section 3.3.2.
We create n = 120 student personas that describe their ini-
tial proficiency in relevant math skills (see Section 3.2). Fol-
lowing [29], we randomly divide these student personas into
four experimental groups of equal size:

1. low-variability/practice.
2. low-variability/worked example.
3. high-variability/practice.
4. high-variability/worked example.

We create four types of instructions (one for each experi-
mental group) and a post-test, using math word problems
from the Algebra dataset [9]. We randomly select a set
of 6 problems {x1, ..., x6} for the post-test, which is iden-
tical in all conditions. In the instructions for both low-
variability and high-variability conditions, the first, third,
and fifth problems are identical. In the low-variability condi-
tions, the second, fourth, and sixth problems have the same
format as the odd-numbered problems but use different val-
ues. In the high-variability conditions, the even-numbered
problems differ from the odd-numbered ones in both val-
ues and formats. In practice conditions, only problems are
presented. In worked-example conditions, all problems and
step-by-step solutions are presented. We use gpt-3.5-turbo-
16k as the evaluator LM for all SEEs, with the temperature
parameter set to 0 for more consistent output.



3.4.3 Results
We find that these LM-based SEEs successfully replicate
the Variability Effect. We plot the post-test scores for all
participants in Figure 5. High variability in problems signifi-
cantly enhances performance in worked-example conditions,
whereas it has no effect in practice conditions. Addition-
ally, our data from these SEEs also replicates the Expertise
Reversal Effect (see Figure 6), suggesting that the LM judg-
ments are consistent. As discussed in Section 3.3.3, despite
the LM potentially being trained on datasets that include
descriptions of previous studies, our evaluations use new
instructional materials from a different domain than prior
studies and do not reference these studies. This demon-
strates the LM’s capability to act as a reliable evaluator.
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Figure 5: The LM-based simulated expert evaluations can
replicate the Variability Effect. According to the LM judg-
ments, high variability in problems significantly enhances per-
formance in worked-example conditions, but there is no effect
of variability in practice conditions. Circles and squares in-
dicate the average test score for each group. The error bars
show the standard error.
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Figure 6: The simulated expert evaluations designed for repli-
cating the Variability Effect can also replicate the Exper-
tise Reversal Effect, demonstrating the consistency of LM
judgments. Among the low-expertise learners, the worked-
example group performs significantly better than the prac-
tice group on the post-test. Among the high-expertise learn-
ers, there is no significant performance difference between the
practice and worked-example groups. Circles and squares in-
dicate the average test score for each group. The error bars
show the standard error.

4. INSTRUCTION OPTIMIZATION
We showed that LMs have relevant educational knowledge
when used via SEEs, which suggests SEEs can be used to
craft better instructional materials.

4.1 The Instruction Optimization algorithm
We introduce the Instruction Optimization algorithm (see
Alg. 2), which iteratively refines instructional materials by
using an evaluator LM (Me) and an optimizer LM (Mo). In
this algorithm, Mo generates new instructions based on prior
instructions and resulting learning outcomes (e.g., post-test
scores) of a particular student, and Me evaluates these new
instructions by predicting the student’s learning outcomes.

More precisely, the input of the algorithm are Me, Mo, an
initial text instruction c0, a text description of a student per-
sona, an evaluation task description, an optimization task
description, and T test questions x1, ..., xT . We use an SEE
(Alg. 1) to assess the quality of c0 and receive an initial post-
test score r0. We store the instruction-score pair (c0, r0) in
mem. Following the prompt design strategy in [49], we con-
struct the initial optimization prompt p0 (see an example in
Figure 7) that includes the student persona, the instruction-
score pair(s) in mem, and the optimization task description
for the LM (which is to generate a new instruction to fur-
ther increase the post-test score of the student). In each
optimization step n, we give pn−1 as input to Mo, which
generates a new instruction. We repeat this K times and
generate K new instructions for each optimization step. We
evaluate each of the K instructions using Alg. 1 and store
the resulting instruction-score pairs in a temporary mem-
ory mem′. We then add instruction-score pairs in mem′

to mem. We sort instruction-score pairs in mem by their
scores in ascending order and remove the instructions with
the lowest scores from mem until mem meets the maximum
length requirement (due to the LM’s prompt length limit).
We update the prompt using the updated mem and use the
new prompt for the next iteration.

Algorithm 2 Instruction Optimization

Input: Evaluator Me, Optimizer Mo,
Initial instruction c0, student persona, eval task,
optimization task, test questions x1, ..., xT

Evaluate c0 using Algorithm 1 and receive score r0
Set D ← {(c0, r0)}
Set mem← [(c0, r0)]
Set p0 ← student persona||mem||optimization task
for n = 1, 2, . . . N do

Set mem′ ← []
for k = 1, 2, . . .K do

Generate c(n−1)K+k by feeding pn−1 into Mo

Evaluate c(n−1)K+k using Algorithm 1 and receive
score r(n−1)K+k

Append (c(n−1)K+k, r(n−1)K+k) to mem′

Set D ← D ∪ {(c(n−1)K+k, r(n−1)K+k)}
end for
Set mem← mem ∪mem′

Sort mem by scores in ascending order
Set mem← mem[: max length]
Set pn ← student persona||mem||optimization task

end for
return D



Here is an 8th-grade student with the following skill levels (each skill is rated on a scale from 1 to 5, where higher numbers
indicate more proficiency):

1. Being able to set up systems of equations given a word problem: 1

2. Being able to solve systems of equations: 1

I have some worksheets along with the student’s test scores after receiving the worksheets. The worksheets are arranged
in ascending order based on their scores, where higher scores indicate better quality.

Worksheet:
You need to study a problem and its solution. Here’s the problem: A brownie recipe is asking for 350 grams of sugar, and
a pound cake recipe requires 270 more grams of sugar than a brownie recipe. How many grams of sugar are needed for the
pound cake? Here’s its solution: Step 1: Identify the amount of sugar needed for the brownie recipe, which is 350 grams.
Step 2: Understand that the pound cake recipe requires 270 more grams of sugar than the brownie recipe. Step 3: Add
the additional 270 grams of sugar to the 350 grams required for the brownie recipe. Step 4: The total amount of sugar
needed for the pound cake recipe is 350 grams + 270 grams = 620 grams.
Test score: 20

Worksheet:
{worksheet2}
Test score: 34

Worksheet:
{worksheet3}
Test score: 66

(...more worksheets and scores...)

Generate a new worksheet to further increase the test score of the student. You will be evaluated based on this score
function:
“‘python
{utility string}
”’
The new worksheet should begin with <WORKSHEET> and end with </WORKSHEET>.

Figure 7: The optimization prompt for generating a new instruction (e.g., a worksheet) based on prior instructions and post-test
scores for a given student. The blue text is the student persona. The orange text contains the previous worksheet-score pairs,
sorted in ascending order. The green text describes the optimization task for the LM. The score function is a Python program
that illustrates how post-test scores are computed without revealing the content of the post-test.

4.2 Optimizing math worksheets
We demonstrate the effectiveness of our Instruction Opti-
mization algorithm (Alg. 2) on optimizing math word prob-
lem worksheets. Starting with an initial worksheet that
yields a low post-test score (see the first worksheet-score
pair in Figure 7), we demonstrate that the optimizer LM
(GPT-4) can improve the post-test score of the generated
worksheets until convergence (see Figure 8). Figure 9 shows
two examples of LM-generated worksheets.

We describe the implementation details below. We use gpt-
3.5-turbo-16k as Me and gpt-4 as Mo. We use temperature
= 0 for gpt-3.5-turbo-16k, and we use temperature = 1 for
gpt-4 to encourage more diverse generations of new work-
sheets. We generate K = 3 worksheets per optimization
step. We run a total of N = 19 steps. When we evalu-
ate each worksheet using Alg. 1, we run three independent
evaluations and take the average post-test score across the
three evaluations as the final post-test score for each work-
sheet, which allows Mo to get more stable reward signals.
We randomly select T = 6 problems from the Algebra
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Figure 8: LMs can iteratively improve math word problem
worksheets using their own judgments as the reward func-
tion. Each dot represents the average post-test score of 3
worksheets generated at each optimization step, with error
bars indicating the standard deviation.



Figure 9: Two examples of worksheets generated by the optimizer LM. As predicted by the evaluator LM, the left one leads to
a post-test score of 34, and the right one gives a post-test score of 87.

dataset [9] as the post-test. The post-test is identical in
all evaluations. The max length limit for mem is set to be
8 worksheet-score pairs. We use a fixed student persona,
where the student’s initial skill levels are low (see the blue
text in Figure 7), to simulate a personalized instructional
design process. In the optimization task description, we use
a Python program to show how post-test scores are com-
puted without showing specific problems on the post-test
(see Figure 16 in Appendix).

4.3 Human evaluation of worksheets
We conducted a human teacher evaluation on worksheets
generated by the LM, involving 95 participants from Prolific.
All participants met the following criteria:

1. The participant has a background in teaching.

2. The participant is based in the U.S.

3. The participant is fluent in English.

4. The participant has an approval rate over 95% on Pro-
lific.

All participants provided informed consent before participa-
tion following an approved institutional review board (IRB)
protocol4. We paid participants at a rate of 12 USD per
hour.
4The risks associated with this study are minimal. Partic-
ipants were told that the study data would be stored se-

We asked participants to do pairwise comparisons where
they need to indicate their preferences between two work-
sheets (worksheet A and B) using a continuous slider scale,
with a rating of −1 assigned for a strong preference towards
the first worksheet, a rating of 1 for a strong preference
towards the second worksheet, and a rating of 0 for no pref-
erence (see the task description in Figure 10).

We evaluated a total of 10 worksheets, of which one was
the initial worksheet we provided to the optimizer LM, and
the rest were randomly selected from LM-generated work-
sheets. There are 45 unique pairs of worksheets, and we
randomly assigned 4 or 5 pairs of worksheets to each partic-
ipant. We also assigned an additional catch-trial question
after the first three pairs of worksheets to filter participants
who did not pay attention. We collected a total of 465 rat-
ings from n = 95 participants, and each pair of worksheets
has at least 7 ratings. After filtering out participants who
failed the catch trial, we have a total of 270 ratings from
56 participants. We calculate the human preference score
for each worksheet c, hps(c), by accumulating the negative
ratings when a worksheet was less preferred and the positive
ratings when it was more preferred, normalized by the total
number of times each worksheet was compared:

curely, minimizing the risk of confidentiality breach. Their
individual privacy is maintained during the research and in
all published and written data resulting from the study.



Imagine an 8th-grade student who has been taught how to tackle math word problems on setting up and solving systems of 
equations but hasn't yet had the opportunity to practice them. This student is about to receive a worksheet to complete before 
an upcoming test. We will present you with pairs of these worksheets. Your task is to evaluate and compare how useful each 
worksheet would be for the student. These worksheets were generated by AI and/or humans. There may be errors in them. 
Sometimes there may be significant differences between the two worksheets, but sometimes they may seem very similar.

Which worksheet would be more useful for the 8th-grade student in terms of improving their test performance? Please adjust 
the slider below. Please keep in mind that the student will not receive any extra feedback or guidance beyond what is provided 
in the worksheet itself. Here are two sample test questions:
Question #1: Two containers of gasoline hold a total of fifty gallons. The big container can hold ten gallons less than twice the 
small container. How many gallons does the big container hold?
Question #2: Shelly spent 10 minutes jogging and 20 minutes cycling and burned 300 calories. The next day, Shelly swapped 
times, doing 20 minutes of jogging and 10 minutes of cycling and burned the same number of calories. How many calories 
were burned for each minute of jogging?

Worksheet A Worksheet B

Figure 10: The evaluation task description for teachers. In each evaluation, we ask the teacher to compare two worksheets in
terms of their effectiveness in improving the student’s test performance, and we show the teacher two sample test questions.
Teachers can indicate their preference by adjusting the slider.

hps(c) =

∑
(a,b)∈Sc

A
−R(a, b) +

∑
(a,b)∈Sc

B
R(a, b)

|Sc
A|+ |Sc

B |
, (2)

where Sc
A denotes all the pairs of worksheets where c appears

as the first worksheet (which means we need to negate the
rating to indicate how much c is preferred over the other
worksheet), and Sc

B denotes all the pairs of worksheets where
c appears as the second worksheet. |Sc

A| and |Sc
B | denote the

size of the each set.

We calculate the Pearson correlation between post-test scores
predicted by the LM and the human preference scores for all
worksheets and find a significant correlation (r = 0.661, p <
0.05) between the LM judgments and human teacher prefer-
ences (see Figure 11). However, human teachers sometimes
cannot distinguish worksheets that LMs identify as distinct,
particularly those with predicted post-test scores ranging
from 60 to 90.

5. LIMITATIONS
There are several limitations to our work. First, the LMs
we used were likely trained on data containing descriptions
of experiments similar to those we replicated. Therefore, we
developed instructional materials in a domain different from
previous studies.

Second, one potential concern is that LMs do not consis-
tently replicate established educational results. Our exper-
iments focused solely on mathematics and only tested the
performance of GPT-3.5 and GPT-4 with a limited num-
ber of straightforward prompts. Exploring all available LMs
would have been prohibitively costly, so we chose GPT-3.5
and GPT-4 due to their popularity and robust performance.
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Figure 11: Evaluations by human teachers (n = 56) show a
significant correlation between the LM judgments and human
teacher preferences (Pearson r = 0.661, p < 0.05). The error
bars are bootstrapped 95% confidence intervals.

We used GPT-3.5 as the evaluator LM because it is more
cost-effective for handling long prompts. GPT-4 served as
our optimizer LM, chosen for its capability in critical assess-
ment, a feature typically reliable only in the most advanced
models. Our goal was to demonstrate the potential of LMs
in these tasks, not to claim these LM choices as the definitive
best.

Third, there are discrepancies between the evaluations made
by LMs and those by human teachers, who sometimes fail to
perceive differences that LMs identify. These discrepancies



raise concerns about the models’ decision-making processes
and the potential impact of biases in their training data.
Furthermore, our evaluations are limited to the perspective
of teachers. However, ultimately, the effectiveness of the ed-
ucational materials depends on how students engage with
them. While LMs could aid in accelerating the design pro-
cess by providing preliminary evaluations, they should not
be seen as replacements for direct evaluations involving hu-
man students.

6. CONCLUSION
We show that LMs can act as evaluators on a couple of
well-known findings for pedagogical effectiveness, including
results that require understanding that different students
can be impacted differently by different content. Even if
the LM succeeds at these judgments due to reading relevant
studies, it is still remarkable for two reasons: 1) Nothing
in the evaluations directly cued those studies, and 2) We
developed new instructional materials in a domain different
from the ones explored in prior studies. This shows that
the LM can read and synthesize educational science reliably
into useful evaluators. In addition, LM evaluators correlated
positively with expert humans in their evaluations of the
effectiveness of new content.

However, there may be other known educational findings
that LM evaluators do not replicate, and human teachers
sometimes cannot distinguish instructional materials that
LMs perceive as different and may disagree with LMs on
what is optimal. Therefore, the LM may be useful as a
coarse evaluator to help speed up content design as a human
augmentor but not to replace human evaluators or empirical
studies. An interesting open question is whether we can
extend LM-based simulated educational experts to multi-
modal instructional input.
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APPENDIX

A. MODELING COGNITIVE PROCESSES OF LEARNING DYNAMICS
We simulate a scenario where LMs play the role of students learning from scratch, engaging with a Khan Academy video
transcript to understand how to set up and solve systems of equations (see our prompt in Figure 12). To test the models’
understanding, we give them a quiz with 14 math word problems related to the topic, evaluating their performance after they
have read every few sentences of the transcript (see the first 30 sentences of the transcript in Figure 13).

We find that LMs would often transition from a lack of algebraic knowledge to proficiency after a minimal interaction (e.g.,
like reading just a few sentences from a lecture), which is not a realistic representation of how humans learn. We plot LMs’
performance accuracy on the quiz over the number of sentences LMs have read in Figure 14. GPT-4, despite being asked to
act as a novice, solves about 40% of the problems on the quiz after encountering the first 6 sentences of the video transcript.

You are a student who is initially ignorant. You are learning by watching a video. Here’s the video:

In this video, we’re gonna get some more practice setting up systems of equations.
So we’re told Sanjay’s dog weighs five times as much as his cat.
His dog is also 20 kilograms heavier than his cat.

Let’s stop the video. Remember, you’ve only been taught what was shown in the video. It typically takes you 5-10
practices to learn a new skill, and you often need to rewatch a lecture and do practice problems. Remember you have done
0 examples, and that is less than 5! Can you apply what you’ve just learned to solve the following problem? If you do not
know how to solve it, don’t try to guess and ask to keep watching the video. If you do know how to solve it, then place
the final answer (a number) in square brackets. Here’s the problem:
Alyssa is twelve years older than her sister, Bethany. The sum of their ages is forty-four. Find Alyssa’s age.

Figure 12: The black text is the video transcript. In this example, we show the LM the first three sentences of the transcript.

Figure 13: The first 30 sentences in the video transcript.
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Figure 14: Simulating the dynamics of learning with language models (LMs) poses a challenge. Unlike human learners, LMs
can shift from having no knowledge to being proficient after only a brief interaction, such as reading just a few sentences from
a lecture.

B. PROMPTS
Prompts used in this work are publicly available at https://github.com/StanfordAI4HI/ed-expert-simulator.

Here is an 8th-grade student with the following skill levels (each skill is rated on a scale from 1 to 5):

1. Being able to set up systems of equations given a word problem: {level1}
2. Being able to solve systems of equations: {level2}

Now the student is asked to work on the following problem on a test:

{problem}

Given the student’s initial skill levels, what’s the probability that the student can solve the problem correctly? Explain
your reasoning and give a single number between 0 and 100 in square brackets.

Figure 15: The prompt for predicting the pre-test score in a simulated expert evaluation. The blue text is the student persona.
The orange text is the test. The green text describes the evaluation task for the LM.

Figure 16: The utility string is a Python program that shows how the post-test score of a given worksheet is computed.

https://github.com/StanfordAI4HI/ed-expert-simulator

