
Reexamining Learning Curve Analysis in Programming
Education: The Value of Many Small Problems

Mehmet Arif Demirtaş
University of Illinois
Urbana-Champaign

Urbana, IL, USA
mad16@illinois.edu

Max Fowler
University of Illinois
Urbana-Champaign

Urbana, IL, USA
mfowler5@illinois.edu

Kathryn Cunningham
University of Illinois
Urbana-Champaign

Urbana, IL, USA
katcun@illinois.edu

ABSTRACT
Analyzing which skills students develop in introductory pro-
gramming education is an important question for the com-
puter science education community. These key skills and
concepts have been formalized as knowledge components,
which are units of knowledge that can be measured by per-
formance on a set of tasks. While knowledge components in
other domains have been successfully identified using learn-
ing curve analysis, such attempts on students’ open-ended
code-writing assignments have not been very successful. To
understand why, we replicated a previously proposed ap-
proach, which uses abstract syntax tree (AST) nodes as
knowledge components, on data collected across multiple
semesters of a large-scale introductory programming course.
Findings from our replication show that, given sufficient
measurement opportunities, a significant subset of AST nodes
provide a viable knowledge component model for learning
curve analysis to understand student learning, contrary to
earlier findings. In addition to providing evidence for the va-
lidity of certain AST-based knowledge components, we rec-
ommend a set of conditions for programming courses that
may enable knowledge components generated using AST
nodes to be successfully observed using learning curve anal-
ysis. Our findings suggest that learning curve analysis can
yield useful insight for instructors on skills related to lan-
guage elements, and can be integrated into any environment
that collects code-writing data using our step generation
method.

Keywords
knowledge components, learning curve analysis, program-
ming syntax, computing education

1. INTRODUCTION
Understanding the skill development of students who are
learning to write programs is a key challenge in the field
of computer science education [7, 23, 32, 34, 37, 19, 10].
Learning curve analysis offers a methodology to empirically

validate domain models that describe such skills [15], how-
ever, attempts to apply learning curve analysis in the con-
text of programming education have yielded few results so
far. While programming education is rich in data collected
during code-writing, thanks to numerous learning environ-
ments that capture and automatically grade student pro-
gram submissions [8, 17, 36], applications of learning curve
analysis on such data have produced a limited number of
validated knowledge components [30], or knowledge compo-
nents that are difficult to interpret [33].

Applying learning curve analysis on code-writing data is a
difficult problem. Unlike the highly constrained and focused
problems typical of intelligent tutoring systems, where learn-
ing curve analysis is most often applied [16], programming
assignments are open-ended, leaving learners many choices
to make at once. Such problem types prevent an easy way
to define independent attempts at practicing a knowledge
component (KC). In addition to the difficulty of identify-
ing independent steps, the open-ended form of program-
ming assignments means that not all correct submissions
use the same surface-level features as the canonical solu-
tion. The open-ended nature of these questions also moti-
vate automated techniques for identifying KCs, as common
techniques such as having expert annotations for skills prac-
ticed in each question would become time-consuming and
infeasible. Thus, traditional KC modeling methods must be
modified in order to perform learning curve analysis with
programming data.

Rivers et al. [30] attempted to apply learning curve analysis
to programming data by adapting the definition of a step
and step correctness for the context of student code submis-
sions. They tested a knowledge component model of stu-
dents’ ability to use appropriate language features, which
was implemented by tracking the relevant abstract syntax
tree (AST) nodes in student programs. This enabled them
to efficiently and automatically detect KCs in each submis-
sion, although not all KCs may perfectly align with an ex-
pert’s domain model. They hypothesized that using syntax
elements correctly is a foundational skill students need to
solve programming assignments, making them an appropri-
ate model of KCs. However, their analysis resulted in very
few satisfactory learning curves that showed a decrease in er-
ror rate across attempts. They questioned whether learning
curve analysis could be applied to open-ended code-writing
data and whether their choice of the domain model (syntax
structures) was representing student skill development.

M. A. Demirtas, M. Fowler, and K. Cunningham. Reexamining learn-
ing curve analysis in programming education: The value of many
small problems. In B. Paaßen and C. D. Epp, editors, Proceedings
of the 17th International Conference on Educational Data Mining,
pages 53–67, Atlanta, Georgia, USA, July 2024. International Edu-
cational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12729774

https://doi.org/10.5281/zenodo.12729774

We perform a replication of Rivers et al.’s work in order
to address both concerns. We hypothesize that Rivers et
al.’s attempt to model knowledge components was limited
by the nature of their data, which were collected over a sin-
gle semester and included data from relatively few students
and problems. The limited number of problems may not
have provided enough clarity about student skill develop-
ment, which may be particularly important in the context
of open-ended programming problems where a single “step”
(a whole program submission) represents a large number
of KCs. The small number of students may have simply
led their earlier analysis to be underpowered. As a result,
the conclusion that syntax elements are an inappropriate or
“naive” [33] domain model for learning of introductory pro-
gramming may be premature.

In this work, we replicated the learning curve analysis from
Rivers et al. [30], using the same domain model, on a new
data set containing over twice as many problems, over four
times as many students, and data collected across an en-
tire introductory programming course from seven different
semesters. We answer the following questions:

• RQ1: Can student progression in introductory pro-
gramming be modeled with language features as knowl-
edge components using learning curve analysis?

• RQ2: Which properties of a course can affect the suc-
cess of this learning curve analysis?

• RQ3: Which language elements may be best identified
as knowledge components using AST nodes?

Our findings suggest that, in fact, a domain model focused
on students’ use of appropriate syntax structures can cap-
ture student learning in introductory programming to a con-
siderable extent, contrary to previous findings. We further
observe that students from different semesters exhibit con-
sistent performance on many of the identified KCs, providing
further evidence for the validity of this KC model. We pro-
vide suggestive evidence that having a problem set where
students have a larger number of attempts for showing their
mastery of each KC is one of the major reasons for this
finding. Moreover, these improvements are present even in
small samples with fewer students than prior works, indi-
cating that learning curve analysis with AST nodes can be
applied in any programming classroom that provides a sig-
nificant amount of practice opportunities.

2. RELATED WORK
2.1 Language elements as a domain model for

programming
A commonly proposed set of foundational skills in intro-
ductory programming is the ability to use each of the vari-
ous programming language elements to write code (e.g., to
use an if statement correctly, to use a for loop correctly).
This approach has intuitive appeal: all programs are made
up of these various syntax structures, so learners must ap-
ply them in some way. Most computing education material
also follows this principle by organizing textbook chapters
and grouping exercises to cover individual programming lan-
guage elements (e.g. if statements, for loops). Frameworks

for categorizing language-independent concepts in comput-
ing education, such as FCS1 [34], include many topics that
overlap with abstract syntax tree nodes such as variables,
logical operators and definite loops (for).

Furthermore, a domain model based on language features
reduces the need for annotation from experts with domain
knowledge as they can be automatically extracted, making
it a feasible model to apply in even small classrooms without
putting an extra load on the instructor. Language features
in student submissions, as represented by abstract syntax
tree (AST) nodes, have been automatically extracted for
providing scaffolding in programming exercises [31, 28] and
predicting student success on further exercises as a proxy of
mastery of the concept [35]. If language features, as repre-
sented by AST nodes, can be validated as a domain model,
systems that automatically extract these nodes can be used
to model student learning.

2.2 Modeling with knowledge components
Knowledge components (KC) are defined by Koedinger et
al. [15] as acquired units of skill or knowledge of that can
be measured using a set of tasks. KCs are used as a way of
representing the mental abilities required to complete unit
tasks in a domain. A successful KC model captures the
required skills and abilities in a domain and supports data-
driven instructional decisions [15].

As knowledge components are measured using performance
on a set of tasks, they constitute a framework for empiri-
cally validating domain models. A common method for this
validation is learning curve analysis [6]. Learning curve anal-
ysis is based on the power law of practice, stating that stu-
dents will achieve a lower error rate in problems related to a
KC as they have more attempts to practice the skills repre-
sented by that KC [24]. Learning curves have been shown to
be a viable method for improving domain models [20], and
platforms implementing analysis tools for knowledge com-
ponents have been successfully used to identify KCs in alge-
bra, physics, geometry, and language studies using learning
curves [16, 13]. Nguyen et al. used KC models derived
from expert knowledge to modify mathematics exercises to
address common difficulties [25]. Goutte et al. proposed
a method for tracking skill acquisition in students and ap-
plied it on geometry tutoring to categorize the difficulty of
skills [12]. Rho et al. used KC models for representational
competencies in engineering education, showing that the dy-
namic development of student ability can be tracked with
KC modeling [29]. While valid KC models for many do-
mains exist, a comprehensive KC model for programming
has not yet been identified.

2.3 KC models for programming data
KC-based learner models have been used in early tutoring
systems in programming environments, such as the LISP
tutor [3], for individualized problem selection [1]. Recently,
Alpizar-Chacon et al. used concepts extracted from text-
books to manually annotate code reading exercises as a pos-
sible domain model with promising results [2]. However,
these KC models were time-consuming and limited in scala-
bility as they required manual annotation of all problems by
an expert. Moreover, they were not compatible with open-
ended programming assignments, which require students to

show mastery of multiple skills at once to complete.

Rivers et al. [30] was the first work that applied learning
curve analysis on code-writing data from open-ended pro-
gramming assignments to empirically validate an automat-
ically extracted KC model for programming. Their data
was collected from 40 introductory programming practice
problems and submissions from 89 students. The goal of
their analysis was to identify which language concepts were
more challenging for students by using AST nodes in pro-
gram submissions as a KC model. Since AST nodes could be
automatically extracted from a given program, this model
could be scaled to larger classrooms more easily and recog-
nize solutions partially correct implementations. However,
they failed to observe learning curves that show a decrease
in error rate for a large portion of AST nodes and attributed
it to inadequate KC modeling.

Shi et al. [33] used a neural network to generate knowl-
edge components from scratch. They attempted to inter-
pret them afterwards by reviewing the student submissions
including identified KCs. They tested their model using
submissions from 410 students on 50 programming prob-
lems. While their KCs show the expected learning curves
by construction, they cannot be interpreted as easily as a
KC model based on syntax elements. In particular, it weak-
ens their utility for informing curricular decisions, such as
focusing on skills that are more difficult to students.

Our replication addresses the limitations of these two stud-
ies by applying the interpretable AST-based KC model on
a dataset to more students and more problems to analyze
which conditions can lead to a better evaluation of language
features as a domain model.

3. METHOD
We replicate the learning curve analysis from Rivers et al. [30]
on a dataset of programming problem submissions that was
collected in classrooms with more students, includes more
questions, and has submissions from the entirety of multiple
semesters. Through this replication, we revisit the question
of whether the ability to use syntax structures correctly is
an appropriate model of the skills acquired when learning to
program, and further, examine the conditions under which
this skill model is validated by learning curve analysis.

In this section, we first review the method of Rivers et al. [30]
for preparing code-writing data to be used in learning curve
analysis where usage of particular syntax structures serve as
knowledge components. Then, we highlight the differences
between our implementation and the original work. Finally,
we explain the properties of our dataset that differentiate
our analysis from prior work.

3.1 Step generation for code-writing data
Writing code is an important learning activity in introduc-
tory programming, but code-writing data presents unique
challenges for learning curve analysis. In most domains,
items that are used to assess knowledge components con-
sist of atomic steps that test a single KC at a time, such
as entering a value in one short-answer box for a subpart
of a problem in an intelligent tutoring system. This allows
a straightforward way of analyzing attempts made for each

knowledge component, e.g. by extracting the steps a student
takes while interacting with an intelligent tutoring system.
However, such systems are less common in programming
learning. Instead, students are expected to practice many
skills at once in each submission of a code-writing assign-
ment. This requires an alternative method to break the
submission into smaller steps, where each step represents an
attempt the student made at exercising a KC, and the out-
come of the attempt at that KC (whether the KC is used
correctly or not). A step generation algorithm that breaks
assignment submissions into steps compatible with learning
curves is required to track each KC independently in open-
form programming assignments.

In this analysis, we follow the step generation algorithm pro-
posed by Rivers et al. [30]. Figure 1 shows the overall pro-
cess for step generation. The algorithm starts by computing
the AST of the student submission, and ASTs of all the
student submissions that passed all test cases and the in-
structor solution, using Python’s AST library (Figure 1.a).
While there might be a large number of correct submissions,
this process maps all solutions that have the same syntax
structure to a single AST, reducing the size of the solution
space. By including correct student submissions in addition
to the instructor solution, we end up with a set of ASTs that
capture different valid implementations that satisfy the test
cases for the given problem. Moreover, this method can be
used without an instructor solution to automatically anno-
tate KCs required in a programming problem by only using
the set of student submissions that pass the test cases.

Then, we compare the student submission AST to the set
of correct ASTs to find the solution that is most similar to
what the student submitted (Figure 1.b). Ideally, we are try-
ing to find the implementation the student envisions, even
if their program is not complete at the time of submission.
In this step, Rivers et al. use the ITAP algorithm [31] to
search a solution space and find the correct solution that
is most similar to the student submission. The ITAP al-
gorithm computes the set of edits to transform the student
submission into the correct solution, and the correct solu-
tion with the least number of required edits is selected as
the most similar.

In our implementation, we followed a different method for
identifying the most similar solution as we did not have
access to the ITAP algorithm. Instead, we compared the
student submission AST to the correct ASTs in the solu-
tion space using TF-IDF distance, as proposed by Mokbel
et al. [22]. If the student submission could not be parsed,
an empty AST is used as a substitute. For the distance cal-
culation, each AST is represented by a vector, containing
frequencies of each node type in the tree. Then, by com-
paring the vectors, we find the correct solution that has the
most similar distribution of nodes to the student submission.

After identifying the correct solution that is most similar
to the student submission, ASTs from the student submis-
sion and the correct solution are compared using depth-first
search. Both trees are traversed starting from the root node,
which is the same AST node in all trees by construction. If
trees diverge at a node, all nodes traversed so far are consid-
ered correctly used. Nodes from the subtree rooted at the

KC Outcome

✓

✗

✗

Student
submission

Correct
submissions

Instructor
solution TF

-ID
F

si
m

ila
rit

y

All AST nodes
used

Edit set

Transaction data

(a) Extracting ASTs (b) Finding the
 most similar solution

(c) Comparing trees (d) Computing
 steps

A
ST

_1
A

ST
_2

A
ST

_3

1 2 3
AST_2

Comparing
student

submission to
the solution

space

St
ud

en
t

A
ST

Student
AST

AST_2

vs

Figure 1: Step generation algorithm from code-writing submissions. (a) First, abstract syntax trees (AST) for the student
submission, all correct submissions for the given problem, and the instructor solution are extracted. (b) Second, the student
submission AST is compared against all the correct ASTs using the TF-IDF metric, identifying the most similar correct solution.
(c) Then, the ASTs from the student submission and the identified correct solution are compared to form an edit set of the AST
nodes that have to be inserted or removed in order to correct the student submission. (d) Finally, incorrectly used KCs (nodes
from edit set) and correctly used KCs (rest of the nodes) are recorded as the transaction data.

divergent node are added to an edit set : nodes that need to
be either inserted in or removed from the student submission
to reach the AST of the correct solution (Figure 1.c).

We identify the outcome of a step using the modified step
generation rules suggested in Rivers et al. [30]:

• Attempt at KC is classified as INCORRECT if the
node occurs in the edit set

• Attempt at KC is classified as CORRECT if the node
is included in the student submission and not in the
edit set

• Other KCs are skipped

Using this criteria, we create a transaction table that in-
cludes a separate step for each KC included in the submis-
sion, or missing in the submission and present in the edit set
(Figure 1.d). By combining transaction tables from student
submissions to all of the problems, we obtain steps repre-
senting student attempts made at all of the KCs, across all
homeworks. Note that we only use data from the first sub-
mission of each student for a given problem, as suggested
by Rivers et al. [31]. This eliminates the the impact of im-
provements made by following hints or other feedback from
the learning environment (e.g., results of test cases), which
may not necessarily demonstrate mastery of the underlying
knowledge components.1

3.2 Additive factor modeling for learning curve
analysis

After generating the transaction data, consisting of each KC
associated with each problem and whether it is correctly
used or not in a given attempt by a student, learning curves
were generated on DataShop [14]. DataShop is an online

1We provide our implementation’s source code at:
https://github.com/marifdemirtas/ast-kc-step-generation

data repository that allows researchers to upload interac-
tion data and compute learning curves. Each learning curve
plots the average error rate of students at each attempt at
practicing a knowledge component, as shown in Figure 2.
DataShop also fits a curve that represents the overall trend
in the learning curve using additive factor modeling (AFM).
We opted to use DataShop instead of implementing our own
AFM algorithm to avoid introducing differences in model
fitting compared to the analysis in Rivers et al. [30].

Name Error Rate Obs

Opportunity 1
Name Error Rate Obs
problemConcatStr 69.821 388
problemConcatList 72.25 12

Opportunity 2

problemPrintBook 89.914 347
problemConcatList 67.735 32
problemConcatStr 75.48 21

Er
ro

r R
at

e
(%

)

And (Category: Still High)
100

60

80

40

20

0
1 2 3 4 5 6

Attempt

AST-KC (Predicted)Data

Figure 2: An example learning curve from DataShop. The
learning curve generated from interaction data (red) and the
fitted AFM curve (blue) is plotted. This curve is categorized
as ‘Still high’ based on the AFM values (shown at top). On the
right, information about the data used to generate the first
two points on the curve is shown, including a list of problems
testing this KC and average error rate on the each problem.

DataShop assigns knowledge components into one of five
categories based on the results from observed error rates
and slopes from fitted learning curves using AFM:

• Too little data. Criteria: Fewer than three attempts
are made at this KC.

• Low and flat. Criteria: All attempts at this KC have
an error rate lower than 20%. Interpretation: Students
have mastered the concept before their first recorded
attempt.

• No learning. Criteria: The fitted curve does not have a
decreasing trend for this KC. Interpretation: Students

do not increase their mastery of the KC despite having
a significant amount of attempts.

• Still high. Criteria: The fitted curve has a decreas-
ing trend for this KC, but the error rate for the final
attempt is higher than 40%. Interpretation: Students
are still learning and need more attempts to master
the KC.

• Good. Criteria: The fitted curve has a decreasing
trend for this KC and the error rate for the final at-
tempt is lower than 40%. Interpretation: Students
have mastered the KC.

AFM values are also used for evaluating how well a KC
model explains data using AIC (Akaike information crite-
rion), BIC (Bayesian information criterion), and RMSE val-
ues based on two types of cross-validation, where the model’s
predictive capability on unseen students and unseen trans-
actions are measured [16]. A lower AIC/BIC score means
the model explains the data better with less parameters,
whereas a lower RMSE means that the model can general-
ize to a new dataset from the same tutoring environment.

Note that some prior work utilized the power law of prac-
tice to compare calculated learning curves to an ideal curve
with exponential decay [33]. In our work, we follow Rivers
et al. [30] and look for decline trends in the fitted AFM
curves, representing a decrease in error rate and a process
of ‘mastering’ the KC in further attempts instead of calcu-
lating the deviation from an exponential curve. While this
is a more relaxed constraint for evaluating learning curves,
we found it to be more meaningful on code-writing data as
the step generation process differs from traditional learn-
ing curve calculation and the generated curves rarely show
clear exponential decay. For completeness, we provide the
model fit R2 and the slope of the curve for all knowledge
components in Appendix A.

3.3 Dataset
We hypothesize that limitations in enrolled student count
and number of problems hampered previous applications of
AST nodes. Therefore, we used a large dataset collected
from homework in an introductory Python course for non-CS
majors from a large Midwestern research university. With
IRB approval, data was collected from 7 semesters starting
from Fall 2019 to Fall 2022, with 400 to 700 students each
semester. Students from 9 to 11 unique academic colleges
were enrolled in the course, with a majority of students com-
ing from Business and Liberal Arts and Sciences. Enrolled
students were mostly in their first or second year of under-
graduate. Furthermore, the sample was diverse in terms of
gender, with females comprising, on average, 42.6% across
7 semesters. In terms of race/ethnicity, on average, 21.3%
were Asian, 4.4% were Black/African American, 11.9% were
Hispanic, 16.6% were International, 3.2% were Multi-race,
41.8% were White, and 0.9% were unknown.

To have comparable samples for all semesters and to not ex-
ceed the computational requirements of DataShop, we cre-
ated two random samples from our dataset with 400 students
and 40 students respectively for all semesters. Unless explic-
itly mentioned, we use the larger sample in our experiments.

We opted not to create samples including students from dif-
ferent semesters. This is because students in each semester
go through different experiences during each offering of the
course, and so their learning opportunities are distinct. In
particular, the dataset features three sets of co-instructors,
as well as semesters where the course was primarily to en-
tirely online due to the COVID pandemic: entirely online
from halfway through Spring 2020 through Spring 2021 and
retaining online meetings for lectures until Fall 2022.

Our analysis is focused on the programming questions from
the class. These consist of auto-graded programming exer-
cises where students write a function for a small task, such as
summing all the numbers in a list. As the grading is based on
the outcome of test cases, these open-ended questions could
have multiple valid solutions. The students’ homework was
hosted on the PrairieLearn platform, from which student
submission data was collected [36]. The dataset includes stu-
dent submissions from 129 unique questions and 80 isomor-
phic variants [4, 18], questions generated from other existing
questions to test the same underlying concepts following the
strategy proposed by Fowler and Zilles [11]. These questions
appeared on homework during the 7 semesters from which
data was gathered. Critically, among these questions are
multiple opportunities to assess the same underlying KCs.
However, not every question was used in every semester as
assignments were modified between course offerings2 and not
every student necessarily attempted every question.

The dataset also included curated, instructor written solu-
tions for all questions. These served as a baseline solutions
with which to compare student submissions to for the classi-
fying KC attempts (see Section 3.1). Our analysis of instruc-
tor solutions showed that an average solution has 5.16 lines
and contains 40 tokens. A problem involves 14.44 knowl-
edge components on average as measured by the number of
unique AST nodes in the solution. However, some of these
AST nodes do not map to a meaningful language element
as they appear in all submissions that satisfy a trivial set
of conditions. These are “Module” which is the root node
for any AST in Python, “Name” and “Load” which appear
in the AST for any operation that involves a variable, and
“FunctionDef”, “arg”, and “arguments” which appear in the
ASTs for any program that includes a function signature.
We retain these 6 elements in our analysis to be comparable
with the original study by Rivers et al. [30]. Figure 3 shows
how many problems test each KC in each semester, as repre-
sented by the instructor solution of a problem. We see that
all semesters have similar distributions of problems per KCs,
and more than half of KCs are tested by more than 10 prob-
lems. More detailed explanations for each AST node can be
found in the Python documentation3 and in Appendix B.

4. RESULTS
In this section, we describe the results of our replication of
the learning curve analysis of Rivers et al. [30], as well as
additional analyses that explore the fit of the model and the
conditions under which valid learning curves are generated.

2The exact number of questions that appear on homework
in a given semester varies between 90 and 98.
3https://docs.python.org/3/library/ast.html

Fu
nc

tio
nD

ef
Lo

ad
arg

um
en

ts
Mod

ule
Nam

earg
Re

tur
n

Co
ns

tan
t

Ca
ll

Sto
re

As
sig

nFo
r

Co
mpa

re
Att

rib
ute If

Ex
prAd
d

Bin
Op

Su
bs

cri
ptLis
t

Au
gA

ssi
gn Eq In

Un
ary

Op
US

ubSli
ce Lt Gt

Bo
olO

p
Su

b
ModAn

d
GtE

Joi
ne

dS
tr

Fo
rm

att
ed

Va
lueLtEDictDiv

Cla
ssD

ef Or
Mult

NotE
q

NotI
n

ali
as

Im
po

rt
Tup

le
Flo

orD
iv

Po
w

Whil
e

ke
yw

ord

Knowledge Components

0
10
20
30
40
50
60
70
80
90

Nu
m

be
r o

f P
ro

bl
em

s

Problems Testing Each Knowledge Component
F19
S20
F20
S21
F21
S22
F22
Average KCs

Figure 3: Number of problems that test a KC, measured by
the number of instructor solutions that use the KC.

4.1 Evaluating AST nodes as a domain model
To understand how well a knowledge component model where
KCs are represented by AST nodes (which we term the AST-
KC model) can represent student skill development, we eval-
uate the learning curve fit for the seven semesters of our
data. We generate two types of learning curves: those for
all KCs in the model, and those for individual KCs.

4.1.1 Validity of the domain model
To evaluate the overall fit of the domain model, we first
look at learning curves that incorporate all knowledge com-
ponents. These curves are generated by first creating indi-
vidual learning curves of all KCs and then taking the average
error value across KCs at each attempt. As with any learn-
ing curve, these curves are expected to start higher (repre-
senting the high error rate of students who are beginners)
and decrease steadily as students master individual KCs.

Learning curves for all KCs combined across the seven semesters
on the large sample (n=400) are shown in Figure 4. Table 1
shows the initial error rate, final error rate, and the slopes
of the AFM curves fitted to these averaged learning curves
for both small (n=40) and large (n=400) samples.

Table 1: Error rates at initial and final attempts, and the
estimated slope of the AFM curves across all KCs, showing a
clear decline in all semesters compared to previous work [30]
with no remarkable difference between our sample sizes.

Large sample (n=400)
F19 S20 F20 S21 F21 S22 F22

Initial
Error

51.507 45.386 41.957 40.687 44.781 41.557 47.831

Final
Error

27.463 19.983 24.401 25.99 25.057 28.761 27.788

Slope -0.273 -0.273 -0.197 -0.162 -0.208 -0.136 -0.216
Small sample (n=40)

F19 S20 F20 S21 F21 S22 F22
Initial
Error

52.544 47.853 43.079 39.482 45.562 39.685 48.464

Final
Error

28.194 21.836 22.965 26.174 28.095 26.42 21.031

Slope -0.277 -0.280 -0.226 -0.146 -0.184 -0.141 -0.312
∆ Slope -0.003 -0.007 -0.029 0.015 0.024 -0.005 -0.096

Rivers et al. [30] (n=89)
Initial
Error

29.697

Final
Error

40.611

Slope 0.341

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(x)

100

60

80

40

20

0

AST-KC (Predicted)Data

All Knowledge Components (Averaged)

Attempt

100

60

80

40

20

0

100

60

80

40

20

0

100

60

80

40

20

0

100

60

80

40

20

0

100

60

80

40

20

0

100

60

80

40

20

0

100

60

80

40

20

0

Er
ro

r R
at

e
(%

)

60 8040200

60 8040200

60 8040200

60 8040200

60 8040200

60 8040200

60 8040200

3020100

Figure 4: Learning curves showing average error rate on all
KCs from each semester between Fall 2019 to Fall 2022 (a-g),
and from Rivers et al. [30] (x, highlighted yellow).

Our learning curves for all KCs combined show a steady
decrease in the error rate in all seven distinct semesters
(see Figure 4). This indicates that students increase their
mastery of knowledge components from the AST-KC model
as they get more attempts, in contrast to the results from
Rivers et al. [30] (see Figure 4(x)). Table 1 also shows that
the combined curves for every semester have a negative slope
greater than 0.1 in magnitude, confirming the decrease visi-
ble in Figure 4. The decrease in error rate varies between 13
percentage points and 24 percentage points, as opposed to
the increase in error rate observed in the data from Rivers et
al. [30]. Moreover, the same decrease is visible in the small
sample, with an average difference of only -0.014 compared
to the large sample’s slope. This indicates that the larger
number of students in our dataset is not the main reason for
the improvement in learning curve analysis.

The decrease in averaged KC error rates shows that a major-
ity of components from AST-KC model produce satisfactory
learning curves. The consistency of the result across seven
semesters implies that AST-KC can be a valid domain model
that explains the skills developed in introductory program-
ming to an extent.

Figure 4 also shows how all of the curves exhibit a smooth
decrease in contrast to the jumps seen in other works ap-
plying KC models using AST nodes [30, 33]. Note that the
red lines oscillate or increase in the last section of the plots.
As some KCs are practiced across more problems than oth-
ers, later attempts in the aggregated curve have fewer KCs
averaged in comparison to earlier attempts, leading to the
oscillation. While the AFM curve (blue dashed line) com-
pensates for this to some extent, this visualization may not
be an optimal way to model domains where the number
of opportunities for each KC differs. Therefore, while these

curves have been used to compare KCmodels in the study we
replicate, we present other comparison methods that might
produce more informative results.

To further validate the AST model, we compare our results
to two generic baselines from prior work. Single-KC defines
a single KC for all problems, representing the mastery of
programming in general [27]. Random-KC randomizes the
set of KCs associated with all the questions so each question
has a new set of KCs assigned to it [33].

Table 2: Means and standard deviations for AIC, BIC
and RMSE values of AST-KC and baselines Single-KC and
Random-KC across all semesters (lower is better).

Mean SD

AIC ↓
AST-KC 543,477.73 26,650.51
Single-KC 581,475.19 29,631.02
Random-KC 579,877.72 25,475.15

BIC ↓
AST-KC 549,578.24 26,674.01
Single-KC 585,915.64 29,647.67
Random-KC 585,978.22 25,495.69

RMSE
(student) ↓

AST-KC 0.458 0.008
Single-KC 0.476 0.009
Random-KC 0.472 0.010

RMSE
(item) ↓

AST-KC 0.448 0.009
Single-KC 0.468 0.010
Random-KC 0.473 0.010

We compare AST-KC and the generic baselines using mean
AIC/BIC scores, item-blocked RMSE and student-blocked
RMSE across all semesters in Table 2. The results show that
our KC model outperforms both Single-KC and Random-
KC, as it achieves a lower AIC/BIC score. A lower score
was achieved in all semesters using AST-KC. The model
also has a lower RMSE in all semesters for both predicting
unseen students and unseen items.

4.1.2 Validity of individual knowledge components
As a more fine-grained look into which KCs are being learned
well by the students, Figure 5 shows the categories of KCs
observed in Rivers et al. [30] across all semesters in our
dataset. All three KCs identified to have ‘Good’ learning
curves in the original study (usage of function arguments,
usage of function definition, and comparison operator) are
also consistently identified as ‘Good’ in our study. Moreover,
we observe ‘Good’ learning for language elements that were
categorized as ‘No learning’ or did not have enough data in
the previous work.

Out of 48 knowledge components pictured in Figure 5, we
observed 39 KCs that had enough data in all semesters to
be successfully analyzed. 22 of these KCs were either ‘Good’
or ‘Still high’ in all semesters, indicating a decrease in error
rate. Since the difference between ‘Good’ and ‘Still high’
categories depends on the final error rate, learning curves
with the same decrease in error may be classified in either
category due to a variance in initial ability. Thus, we argue
that both ‘Good’ and ‘Still high’ categories indicate satisfac-
tory learning. The complete results on model fit (R2) and
the slope, representing the learning rate, can be found in
Appendix A.

F19 S20 F20 S21 F21 S22 F22 Rivers et al.
arg
arguments
Dict
FunctionDef
Module
Tuple
BoolOp
Compare
Or
In
For
Return
And
If
Eq
Constant
Call
Mod
GtE
Expr
BinOp
Div
LtE
List
Attribute
Add
Name
Gt
Assign
Store
Sub
Load
Lt
Mult
NotIn
Import
NotEq
While
Subscript
JoinedStr
alias
Slice
UnaryOp
USub
FloorDiv
Not
Pow

Good Good Good Good Good Good Good No learning
Good Good Good Good Good Good Good Good
Good Good Good Good Good Good Good Too little data
Good Good Good Good Good Good Good Good
Good Good Good Good Good Good Good Low and flat
Good Good Good Good Good Good Still high Too little data

Still high Good Good Good Good Good Good No learning
Good Good Good Good Still high Good Still high Good
Good Good Good Good Good Still high Still high Too little data
Good Good Good Still high Good Good Still high Too little data
Good Good Still high Good Good Still high Good No learning
Good Still high Still high Good Good Good Good No learning

Still high Still high Good Good Good Good Good No learning
Good Still high Good Still high Still high Good Good Low and flat

Still high Still high Good Good Still high Good Good Still high
Good Good Good Still high Still high Still high Still high No learning
Good Still high Still high Good Still high Still high Good Still high
Good Still high Still high Good Good Still high Still high No learning

Still high Good Still high Still high Still high Good Good Too little data
Still high Still high Still high Good Good Good Still high Too little data

Good Still high No learning Good Good Good Good No learning
Still high Still high Still high Still high Still high Still high Still high Too little data
Still high Still high Still high Still high Still high Still high Still high Too little data
Still high Still high Still high Good No learning Good Still high Too little data
Still high Still high Still high Still high No learning Good Good No learning

Good Good Good No learning No learning Good Good No learning
Good Still high Still high Still high No learning No learning Good No learning

Still high Still high Still high Still high No learning No learning Still high No learning
Good Still high Good No learning No learning No learning Still high No learning

Still high Still high Good No learning No learning No learning Good No learning
No learning Still high No learning Still high Still high Good No learning Too little data

Good Still high Still high No learning No learning No learning No learning No learning
Still high Still high No learning No learning Good No learning No learning No learning
Still high Still high Too little data Too little data Too little data Too little data No learning No learning

No learning Good No learning Low and flat No learning No learning Good Too little data
No learning Too little data Too little data Still high Still high No learning No learning Too little data
No learning Good Good No learning No learning No learning No learning Too little data

Too little data Too little data Too little data Too little data Good Too little data Too little data Too little data
Still high Good No learning No learning No learning No learning No learning No learning

No learning Too little data Too little data Too little data Too little data No learning Still high No learning
No learning Too little data Too little data No learning Still high No learning No learning Too little data
No learning No learning No learning No learning No learning No learning Still high Too little data
No learning No learning No learning No learning No learning No learning No learning Too little data
No learning No learning No learning No learning No learning No learning No learning Too little data

Too little data Too little data Too little data Too little data Too little data Too little data Too little data No learning
Too little data Too little data Too little data Too little data Too little data Too little data Too little data Too little data
Too little data Too little data Too little data Too little data Too little data Too little data Too little data No learning

Figure 5: KCs observed in Rivers et al. [30] and their cate-
gory, as assigned by DataShop, across the seven semesters in
our dataset.

On this note, we also present the percentage of KCs that
have satisfactory learning compared to all observed KCs in
each semester in Table 3. On average, 45.6% of AST-KC
components have learning curves with either ‘Good’ or ‘Still
high’ categories on the large sample (SD 6.2%). Similar
results are obtained on the small sample with an average of
44.4% (SD 5.9%). By contrast, in previous works only single
digit counts of KCs with satisfactory learning curves were
detected using AST nodes [30, 33].

In addition to the evidence for the validity of AST-KC model
on data from a higher number of students, learning curve
analysis of the code-writing data we collected shows much
more support for the AST-KC model than Rivers et al. [30]
even at half the student size (40 vs 89). This further confirms
that our increased sample size was not the primary reason
for stronger evidence on the validity of the AST-KC model.

Table 3: Percentages of KCs with satisfactory learning
curves (as represented by a decreasing error rate) across all
semesters, and from previous work [30] (in yellow).

Large sample (n=400)
F19 S20 F20 S21 F21 S22 F22

%KC 50.65% 52.56% 44.00% 38.96% 45.95% 36.36% 50.67%
Small sample (n=40)

F19 S20 F20 S21 F21 S22 F22
%KC 52.17% 51.43% 43.66% 39.13% 40.30% 37.14% 47.06%
∆ % 1.52% -1.14% -0.34% 0.17% -5.65% 0.78% -3.61%

Rivers et al.[30] (n=89)
%KC 10.41%

4.2 Examining the impact of course proper-
ties on learning curves

Our analysis found significant fit of a knowledge component
model based on AST nodes, in contrast to prior work. Since
our results show this improvement is present even in small
samples of our dataset, in this section we focus on a key
property of our dataset and explore how its large problem
set interacts with the success of learning curve analysis.

To understand to what extent having more code-writing
problems in our data set may explain our improvements
over previous work, we explored the relationship between
the number of problems that test a particular KC and the
amount of learning seen on those KCs. To find the number of
problems that test a given KC, we counted how many prob-
lems contained that KC somewhere in the solution space.
Then, we looked at the distribution of numbers of problems
for KCs with a ‘Good’, ‘Still high’, and ‘No learning’ cate-
gorization (see Figure 6).

We see that students have a lot more opportunities to prac-
tice knowledge components categorized as ‘Good’ and ‘Still
high’, with median values of 68 and 64 problems, respec-
tively. On the other hand, AST nodes with less practice
opportunities tend to be in the ‘No learning’ category with
a median of 30 problems per knowledge component.

Good Still high No learning
Learning curve category

20

0

20

40

60

80

100

120

No
. p

ro
bl

em
s t

es
tin

g
a

KC

Practice Opportunities for KCs from Different Categories

Figure 6: Distribution of number of practice opportunities for
KCs from ‘Good’, ‘Still high’, and ‘No learning’ categories.

This relationship suggests that a larger number of mea-
surement opportunities may increase the chances to observe
learning on a given AST-based KC. Without enough mea-
surement opportunities, we are more likely to observe no de-
crease in error rates (‘No learning’), but once given enough
opportunities to practice a KC, we are more likely to observe
some decrease in error rates (‘Still high’ or ‘Good’). This
could explain why our learning curve analysis produces much
better results compared to prior works that used AST nodes
as knowledge components, as our dataset includes twice as
many problems for each semester.

4.3 Case studies of successful knowledge com-
ponents

Our application of the AST-KC model showed learning on
a large variety of components represented by AST nodes.
When we look more deeply at some of these KCs, we see
patterns along the lines of different types of syntax struc-
tures. We present two case studies below that may help

explain which language elements are more appropriate to be
measured using AST nodes as a KC model.

Note that the red lines often oscillate towards the end of
the curve, as they include data from fewer students who
attempted more problems than the majority of the class.

4.3.1 Control flow structures
We found that KCs representing control flow structures,
such as for loops, if statements, and return statements, show
a decrease in error rates across all semesters in our dataset.
(A notable exception is while, which was not covered in this
course.) The large number of attempts on these skills as
well as the nature of the relevant AST nodes may explain
this result. To gain more insight, we look more closely at
the “For” and “If” KCs.

Students have many attempts to practice the use of “For”
and a decreasing error rate is achieved in all semesters (see
Figure 7). This KC has learning curves categorized as either
‘Good’ or ‘Still high’ in all semesters. This is in stark con-
trast to the findings of Rivers et al. [30], which placed “For”
in the ‘No learning’ category with only 4 attempts.

Loops are heavily emphasized in the introductory curricula
of this course, as on average half of the coding problems in a
given semester test “For” (see Figure 3). Students have over
45 attempts at this KC each semester.

KC: For

Er
ro

r R
at

e
(%

)

Attempt

(f)

60

80

40

20

0

100

0 10 20 30 40

(e)

60

80

40

20

0

100

0 10 20 30 40

(g)

60

80

40

20

0

100

0 10 20 30 40

(d)

60

80

40

20

0

100

0 10 20 30 40

(c)

60

80

40

20

0

100

0 10 20 30 40

(b)

100

60

80

40

20

0
0 10 20 30 40

(a)
100

60

80

40

20

0
0 10 20 30 40

Figure 7: Learning curves from Fall 2019 (a) to Fall 2022 (g)
for the KC “For” show ‘Good’ learning in five semesters and
is ‘Still high’ in two semesters (c, f).

Another control flow structure, “If”, also shows consistent
learning with 3 semesters in ‘Good’ and 4 semesters in ‘Still
high’ learning. Similarly to “For”, “If” also has a large num-
ber of practice opportunities in each semester, with 43 prob-
lems on average testing it. Moreover, “If” was categorized
as ‘Low and flat’ in the analysis of Rivers et al. [30], indicat-
ing that students had already mastered the concept by the
first recorded attempt. With a dataset that includes more
opportunities to observe mastery early in the semester, we
also see that we can capture the initial learning period with
a decrease in error rates.

In addition to the large number of opportunities, we at-
tribute the satisfactory learning in control flow structures to
the nature of AST tree construction. Since AST nodes for
these elements appear at the start of a block, a student may
master the KC for one of these structures even if they make
small mistakes in the body of the control flow statement.
For example, the KC “For” measures the ability to identify
where an iteration is needed to be applied, and not the cor-
rectness of the body of the loop. The ability to write a for
loop in an accurate location in a program is a more specific

skill than the ability to write correct for loops in general,
and this constrained KC seems likely to reflect a discrete
skill where learning can be measured.

4.3.2 Data structure declarations
In our analysis, we found that data structure AST nodes,
such as“Dict”,“Tuple”, and (to a lesser extent)“List”, tend to
show satisfactory learning. However, in contrast to control
structures, there are many fewer measurement opportunities
for each of these KCs.

Learning curves for “Dict” show consistently strong evidence
of learning, even though students only practice this KC
for few attempts (see Figure 8). “Dict” is measured by
2.57 problems on average in a given semester, and other
data structure AST nodes such as “Tuple” (1.14) and “List”
(17.14) are used in many fewer problems compared to control
flow structures, but also show satisfactory learning curves
(see Figure 5).

KC: Dict

Er
ro

r R
at

e
(%

)

Attempt

(a)

60

80

40

20

0

100

0 2 4

(c)

60

80

40

20

0

100

0 1 32

(e)

60

80

40

20

0

100

0 2 4

(d)

60

80

40

20

0

100

0 1 32

(f)

60

80

40

20

0

100

0 3 6

(b)

60

80

40

20

0

100

0 2 31

(g)

60

80

40

20

0

100

0 3 6

Figure 8: Learning curves from Fall 2019 (a) to Fall 2022 (g)
for the KC“Dict”show ‘Good’ learning in all seven semesters.

While this is surprising, the construction of AST trees pro-
vides a potential explanation. In Python, the node for a
data structure only appears for the declaration of that data
structure in the AST. In other words, the KC “Dict” in the
AST-KC model measures whether or not a student declares
a dictionary correctly, not whether they perform other dic-
tionary operations correctly, such as updating a value or
removing a key. It appears that students master the skill of
declaring a data structure in rather few attempts, making
this a KC with a satisfactory learning curve.

5. DISCUSSION
5.1 AST nodes as knowledge components
In this section, we answer RQ1: Can student progression in
introductory programming be tracked using language features
as knowledge components?

Our results show that language features, represented by AST
nodes, can model student learning as knowledge components
to a significant extent. Both the overall model fit (see Sec-
tion 4.1.1) and the fit of many of the individual KCs (see
Section 4.1.2) show that students’ error rates decrease as
they practice these KCs during the course of the semester.
Furthermore, these results are consistent across seven dif-
ferent semesters. Students do improve at using many in-
dividual AST nodes as they get more attempts to practice
them, confirming that AST nodes are a viable candidate for
modeling students’ domain knowledge in programming.

This finding is contrary to the results of previous attempts to
use AST nodes as knowledge components. Rivers et al. [30]

failed to observe a decreasing trend in their averaged knowl-
edge component curves, and the baseline results from Shi et
al. [33] that used AST nodes as KCs also could not obtain
decreasing trends in learning curves. Furthermore, in Ta-
ble 3 we see that between 35% to 55% of the KCs in each
semester have satisfactory learning rates, compared to only
5 KCs showing satisfactory learning out of 48 in Rivers et
al. [30] and “only a small subset” with valid learning rates
in Shi et al. [33]. Our results from Table 2 also confirm
the validity of the AST-KC model on the basis of model fit
(AIC/BIC) and predictive power (RMSE), in contrast with
Shi et al. [33] who observed lower scores for model fit com-
pared to the randomized baseline.

5.2 Course properties that support learning
curve analysis

Our finding that AST nodes can serve as viable knowledge
components in the analysis of code-writing data is in stark
contrast to prior work. This motivates RQ2: Which proper-
ties of our course lead to successful learning curves?

There are two key features of our dataset that differenti-
ate our analysis from prior work. First, our student sam-
ples include 400 students, which is approximately 5 times
larger than the sample of Rivers et al. [30] (89 students) and
comparable to the sample of Shi et al. [33] (410 students).
Second, our question pool includes at least 90 unique prob-
lems each semester, compared to 40 problems from Rivers
et al. [30] and 50 problems from Shi et al. [33].

Initially, we hypothesized that increasing the student sam-
ple size might improve learning curve analysis and address
the jagged, highly varying behavior of AST-based learning
curves in previous works [30, 33]. However, we observed that
the size of the student sample does not have a remarkable
affect on our learning curves (See Section 4.1). These results
indicate that a large number of students in a course is not a
prerequisite for learning curve analysis of code-writing data.

Based on this, we believe having a large number of questions
to test knowledge components is a more important condition
for successful learning curve analysis. Our data supports this
argument in a few ways. Section 4.2 shows how KCs with
declining error rates have a larger number of practice op-
portunities compared to ‘No learning’ KCs. Moreover, some
KCs with no learning in Rivers et al. [30] were consistently
observed to have a positive learning rate in our data, such as
“For” (Figure 7). We see that these KCs are tested through
more attempts in our course compared to previous works.

While we did not have access to problems and instructor so-
lutions from previous studies, we were able examine a partial
set of student submissions used in Rivers et al. [30], avail-
able on DataShop. In an analysis of these submissions, we
observed that more than two thirds of KCs included in the
study of Rivers et al. were tested by less than 10 problems.
In comparison, our dataset had more than 10 problems for
over 60% of KCs.

Based on these observations, we hypothesize that a larger
question pool with more attempts for each KC may support
learning curve analysis on code-writing problems because it
mediates the impact of other features of each problem. In

code-writing problems, where many skills must be combined
in a single submission, a confusing or challenging aspect of
a problem may cause the student to submit an incorrect
program, even if they understand some relevant KCs. How-
ever, with more attempts, our learning curve analysis may
become more resistant to such outliers.

5.3 Language elements that are better repre-
sented by AST-based KCs

Finally, we answer RQ3: Which language elements may be
best identified as knowledge components using AST nodes?

Some types of AST nodes were consistently learned by stu-
dents in all semesters. While our dataset includes seven
semesters with similar instructional material, the course fea-
tured different instructors, the enrolled student cohort var-
ied in prior experience, and some semesters were affected
by the COVID pandemic. Thus, the consistency of learning
curve analysis across semesters gives us additional insight
into which KCs best represent student skills. Looking into
the language elements with consistently successful learning
curves, we observe that language elements that usually are
used in similar contexts tend to have satisfactory learning
curves, whereas elements that can be used in many different
contexts are harder to track with AST-based KCs.

The most appropriate language elements to be KCs may be
control flow structures. We noticed these structures, such
as if statements, for loops, and return statements, are easily
and accurately detected from ASTs. As control flow struc-
tures are practiced in a fairly large portion of opportunities,
students are likely to show satisfactory learning on these
KCs. Moreover, these structures are likely to be used in sim-
ilar contexts in small programs. The mix of copious practice
opportunities and the ease with which correct control flow
structure can be drawn from ASTs may make them ideal
language features to use in this type of learning curve anal-
ysis.

A second class of consistently good KCs comes from data
structures such as dictionaries and tuples. These KCs are
good despite the small number of practice opportunities.
These may be less useful KCs to use, as a deeper inspection
showed that AST nodes for these structures only measured
the mastery of declaring a data structure and did not cap-
ture the use of data structures elsewhere in the program,
limiting the various contexts a data structure could be used
in. Therefore, it is important to note that AST nodes for
data structures cannot be interpreted as a sign of mastery in
all the skills required for the underlying language element.

Some language elements did not show consistent validity as
KCs. Operators are a surprisingly inconsistent source of
KCs, with some high-quality curves (e.g. “BoolOp”) and
some consistently underperforming curves (e.g. “UnaryOp”,
“Not”). We attribute this to the flexibility of these elements
as they can be used in various contexts that have less surface-
level similarity, preventing students from transferring their
knowledge to new problems.

Thus, while the methodology of KC generation based on
AST nodes enables automatic labeling of KCs, it also presents
challenges in how the resulting KCs should be interpreted.

Most importantly, AST-KC should not be seen as a com-
plete domain model that can explain all skills relevant to
programming, but as a promising approximation to some
of the key skills related to using fundamental structures in
programming in some contexts without time-consuming ex-
pert annotations. Developing KCs that can capture context-
independent skills is grounds for future study.

5.4 Implications for practice
5.4.1 Teaching
The evidence we found for the AST-KC model during in-
troductory programming learning implies that instructors
can track student skill development in terms of individual
programming language features—with some caveats. The
nature of the AST-based methodology for measuring suc-
cessful use of language features requires that we use caution
when interpreting what this type of learning curve analysis
tells us about student skill development.

For instance, our analysis shows that students do improve
their ability to use individual control structures like for, if,
and return over time. Instructors should not over-interpret
this finding, however. More specifically, we found that across
the course of a semester, students improve their ability to
put for loops, if statements, and return statements in correct
locations in their code. The AST-KC model does not tell us
about students’ ability to implement the internals of such
control structures correctly.

When computing instructors colloquially describe students
as “learning for loops”, they mean that students not only
learn when to use a for loop, but also how to use it accu-
rately in various situations. Our results suggest that stu-
dents’ ability to use a variety of language features in appro-
priate locations are valid KCs even if they do not capture
all the skills related to the language features. Instructors
may find it useful to teach and assess the skill of knowing
when to use a language feature independently of the skills
of knowing how to use the language feature.

Further, learning curve analysis serves as a potentially use-
ful diagnostic tool for understanding where a given course
succeeds and where improvements may be necessary. Learn-
ing curves may identify KCs that are taught consistently
well or insufficiently. This comes with a caveat, in that our
KCs are based on ASTs and thus skills that do not directly
involve the use of syntactic elements cannot be diagnosed
with AST-based KCs. Regardless, KCs with consistently
good curves can provide instructors with some confidence
that the related syntactic elements are well covered in the
course, while KCs with underperforming curves can identify
possible rooms for improvement.

5.4.2 Learning Environments
We have shown that our step generation algorithm can in-
deed support learning curve analysis on open-ended code-
writing data. As many programming learning environments
already collect the necessary data from code-writing exer-
cises (students’ code and its correctness), and the step gen-
eration process and step labeling for AST-based KCs can be
entirely automated, our approach to learning curve analy-
sis can be readily added to existing programming learning

environments. Automatically generating learning curves for
AST-based KCs as part of learning environments already
in use would make learning curve analysis accessible to all
programming instructors, without the need to develop po-
tentially costly intelligent tutoring systems.

Our finding that learning curve analysis with the AST-KC
model can provide evidence of skill development even at
small student samples implies that such systems may be
beneficial even for small classrooms. However, our findings
also suggest that a large number of small programming prob-
lems may be necessary to support learning curve analysis in
introductory programming. Given this, it is important that
learning environments contain a sufficient number of code-
writing exercises that measure each KC.

One mechanism for creating many small problems that mea-
sure the same KC is the creation of isomorphic questions.
Isomorphic questions are question variants designed to test
the same programming concepts while modifying surface-
level details [4, 18]. Isomorphic questions have been used
in computing education both to assess learning and expand
the size of question pools for assessments [5, 38, 26, 21, 11].

5.5 Limitations and future work
While our work is a replication of Rivers et al. [30] and
follows the assumptions from that original work, our imple-
mentation differs in the method of finding the most similar
AST for step generation. We use a metric based on node fre-
quencies, while Rivers et al. used the ITAP algorithm [31]
(see Section 3.1). Since node frequencies may not be as
sensitive as the ITAP path construction while determining
the most similar correct submission, our method may mark
some KCs that students use correctly as incorrect. How-
ever, this difference is likely to cause false negatives, that
is, KCs that were practiced correctly and classified as in-
correct, rather than false positives, KCs that were practiced
incorrectly and classified as correct. Thus, future work may
explore other similarity measures with a higher sensitivity to
observe even better learning curves by detecting these false
negatives that underestimate student mastery.

Another limitation of applying learning curve analysis on
only code-writing data is the possibility of missing learning
opportunities in different forms. The course we analyzed
includes many other learning opportunities beyond coding
activities in homework, such as online textbook activities,
quizzes, exams, and non-coding activities in the homework.
Devising an updated step generation model to capture the
increase in mastery in these other activities (e.g. multiple
choice questions, Explain in Plain English tasks [9]) in addi-
tion to code-writing attempts could result in learning curves
that capture a more accurate picture of the student progres-
sion while mastering these KCs.

An interesting avenue for future work could be generating
and validating AST-based KCs that contain more contex-
tual information. We show that the most straightforward
construction of an AST-based KC model, where individual
AST nodes represent KCs, does show partial validity as a
model for programming learning. However, some of these
KCs are difficult to interpret, or are used in a variety of
contexts. More sophisticated KCs that represent combina-

tions of AST nodes (e.g., an if statement inside a for loop,
or an if statement with a modulo operator inside) may yield
additional insight about what skills students develop as they
learn programming.

6. CONCLUSION
We replicated a previously proposed approach to apply learn-
ing curve analysis to open-ended code-writing data, and,
contrary to prior results, we found that abstract syntax tree
nodes can model skill acquisition in introductory program-
ming education to a certain extent. While interpretation
of the meaning of these skills should be done with caution,
we observe that students increase their mastery in many
language elements across the course of a semester, such as
for loops, if statements, return statements, declarations of
data structures, and boolean operators. Analysis of learn-
ing curve results across different slices of our dataset sug-
gests that having many measurement opportunities for a KC
leads to learning curves that show a decrease in error rate.
The viability of this method for automatically extracting in-
formation about students’ successful or unsuccessful use of
language elements for use in learning curve analysis means
that such analysis could be used as a diagnostic tool in any
programming course to observe if students are learning to
use language elements correctly and modify the curriculum
based on topics students have difficulties with.

7. ACKNOWLEDGMENTS
We thank the University of Illinois Urbana-Champaign Com-
puter Science Department for funding that contributed to
this work. We also thank Cindy Tipper from the Datashop
development team for their support.

8. REFERENCES
[1] V. Aleven and K. R. Koedinger. Knowledge

component (KC) approaches to learner modeling. In
Design Recommendations for Intelligent Tutoring
Systems, volume 1, chapter 15, pages 165–182. US
Army Research Laboratory, 2013.

[2] I. Alpizar-Chacon, S. Sosnovsky, and P. Brusilovsky.
Measuring the Quality of Domain Models Extracted
from Textbooks with Learning Curves Analysis. In
N. Wang, G. Rebolledo-Mendez, N. Matsuda, O. C.
Santos, and V. Dimitrova, editors, Artificial
Intelligence in Education, pages 804–809, Cham, 2023.
Springer Nature Switzerland.

[3] J. R. Anderson and B. J. Reiser. The LISP tutor.
Byte, 10(4):159–175, 1985.

[4] P. D. Bliese, D. Chan, and R. E. Ployhart. Multilevel
methods: Future directions in measurement,
longitudinal analyses, and nonnormal outcomes.
Organizational Research Methods, 10(4):551–563, 2007.

[5] L. Butler, G. Challen, and T. Xie. Data-Driven
Investigation into Variants of Code Writing Questions.
In 2020 IEEE 32nd Conference on Software
Engineering Education and Training (CSEE&T),
pages 1–10, Nov. 2020. ISSN: 2377-570X.

[6] H. Cen, K. Koedinger, and B. Junker. Learning
Factors Analysis – A General Method for Cognitive
Model Evaluation and Improvement. In M. Ikeda,
K. D. Ashley, and T.-W. Chan, editors, Intelligent

Tutoring Systems, Lecture Notes in Computer Science,
pages 164–175, Berlin, Heidelberg, 2006. Springer.

[7] M. Corney, R. Lister, and D. Teague. Early relational
reasoning and the novice programmer: Swapping as
the ”hello world” of relational reasoning. In Proceedings
of the Thirteenth Australasian Computing Education
Conference - Volume 114, ACE ’11, pages 95–104,
AUS, Jan. 2011. Australian Computer Society, Inc.

[8] S. H. Edwards and M. A. Perez-Quinones. Web-CAT:
Automatically grading programming assignments. In
Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’08, page 328, New York, NY,
USA, June 2008. Association for Computing
Machinery.

[9] M. Fowler, B. Chen, and C. Zilles. How should we
‘explain in plain english’? voices from the community.
In Proceedings of the 17th ACM conference on
international computing education research, pages
69–80, 2021.

[10] M. Fowler, D. H. Smith IV, M. Hassan, S. Poulsen,
M. West, and C. Zilles. Reevaluating the relationship
between explaining, tracing, and writing skills in CS1
in a replication study. Computer Science Education,
32(3):355–383, July 2022.

[11] M. Fowler and C. Zilles. Superficial code-guise:
Investigating the impact of surface feature changes on
students’ programming question scores. In Proceedings
of the 52nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’21, page 3–9, New York,
NY, USA, 2021. Association for Computing
Machinery.

[12] C. Goutte and G. Durand. Confident Learning Curves
in Additive Factors Modeling. International
Educational Data Mining Society, 2020.

[13] K. Koedinger, K. Cunningham, A. Skogsholm, and
B. Leber. An open repository and analysis tools for
fine-grained, longitudinal learner data. In Educational
Data Mining 2008. Citeseer, 2008.

[14] K. R. Koedinger, R. S. J. d. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A Data
Repository for the EDM Community: The PSLC
DataShop. CRC Press, 2010.

[15] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
Knowledge-Learning-Instruction Framework: Bridging
the Science-Practice Chasm to Enhance Robust
Student Learning. Cognitive Science, 36(5):757–798,
2012.

[16] K. R. Koedinger, E. A. McLaughlin, and J. C.
Stamper. Automated Student Model Improvement.
Technical report, International Educational Data
Mining Society, June 2012.

[17] M. Z. Last, M. Daniels, V. L. Almstrum, C. Erickson,
and B. Klein. An international student/faculty
collaboration: The Runestone project. ACM SIGCSE
Bulletin, 32(3):128–131, July 2000.

[18] F. Lievens and P. R. Sackett. Situational judgment
tests in high-stakes settings: Issues and strategies with
generating alternate forms. Journal of Applied
Psychology, 92:1043–1055, 2007.

[19] M. Lopez, J. Whalley, P. Robbins, and R. Lister.
Relationships between reading, tracing and writing

skills in introductory programming. In Proceedings of
the Fourth International Workshop on Computing
Education Research, ICER ’08, pages 101–112, New
York, NY, USA, Sept. 2008. Association for
Computing Machinery.

[20] B. Martin, A. Mitrovic, K. R. Koedinger, and
S. Mathan. Evaluating and improving adaptive
educational systems with learning curves. User
Modeling and User-Adapted Interaction,
21(3):249–283, Aug. 2011.

[21] R. Millar and S. Manoharan. Repeat individualized
assessment using isomorphic questions: a novel
approach to increase peer discussion and learning.
International Journal of Educational Technology in
Higher Education, 18(1):22, Apr 2021.

[22] B. Mokbel, S. Gross, B. Paaßen, N. Pinkwart, and
B. Hammer. Domain-independent proximity measures
in intelligent tutoring systems. In S. K. D’Mello, R. A.
Calvo, and A. Olney, editors, Proceedings of the 6th
International Conference on Educational Data Mining,
Memphis, Tennessee, USA, July 6-9, 2013, pages
334–335. International Educational Data Mining
Society, 2013.

[23] G. L. Nelson, B. Xie, and A. J. Ko. Comprehension
First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. In Proceedings of
the 2017 ACM Conference on International
Computing Education Research, ICER ’17, pages 2–11,
New York, NY, USA, Aug. 2017. Association for
Computing Machinery.

[24] A. Newell and P. S. Rosenbloom. Mechanisms of skill
acquisition and the law of practice. In Cognitive Skills
and Their Acquisition, pages 1–55. Psychology Press,
2013.

[25] H. Nguyen, Y. Wang, J. Stamper, and B. M.
McLaren. Using Knowledge Component Modeling to
Increase Domain Understanding in a Digital Learning
Game. Technical report, International Educational
Data Mining Society, July 2019.

[26] M. C. Parker, L. Garcia, Y. S. Kao, D. Franklin,
S. Krause, and M. Warschauer. A pair of aces: An
analysis of isomorphic questions on an elementary
computing assessment. In Proceedings of the 2022
ACM Conference on International Computing
Education Research - Volume 1, ICER ’22, page 2–14,
New York, NY, USA, 2022. Association for
Computing Machinery.

[27] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance Factors Analysis – A New Alternative to
Knowledge Tracing. In Proceedings of the 14th
International Conference on Artificial Intelligence in
Education, 2009.

[28] T. W. Price, Y. Dong, and T. Barnes. Generating
Data-Driven Hints for Open-Ended Programming.
Technical report, International Educational Data
Mining Society, 2016.

[29] J. Rho, M. Rau, and B. Vanveen. Investigating
Growth of Representational Competencies by
Knowledge-Component Model. In Proceedings of the
15th International Conference on Educational Data
Mining, page 346, 2022.

[30] K. Rivers, E. Harpstead, and K. Koedinger. Learning

Curve Analysis for Programming: Which Concepts do
Students Struggle With? In Proceedings of the 2016
ACM Conference on International Computing
Education Research, ICER ’16, pages 143–151, New
York, NY, USA, Aug. 2016. Association for
Computing Machinery.

[31] K. Rivers and K. R. Koedinger. Automating Hint
Generation with Solution Space Path Construction. In
S. Trausan-Matu, K. E. Boyer, M. Crosby,
K. Panourgia, D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
D. Terzopoulos, D. Tygar, and G. Weikum, editors,
Intelligent Tutoring Systems, volume 8474, pages
329–339. Springer International Publishing, Cham,
2014.

[32] K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney,
J. E. Moström, L. Thomas, and C. Zander. Threshold
concepts and threshold skills in computing. In
Proceedings of the Ninth Annual International
Conference on International Computing Education
Research, ICER ’12, pages 23–30, New York, NY,
USA, Sept. 2012. Association for Computing
Machinery.

[33] Y. Shi, R. Schmucker, M. Chi, T. Barnes, and
T. Price. KC-Finder: Automated Knowledge
Component Discovery for Programming Problems.
Technical report, International Educational Data
Mining Society, 2023.

[34] A. E. Tew and M. Guzdial. Developing a validated
assessment of fundamental CS1 concepts. In
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pages
97–101, New York, NY, USA, Mar. 2010. Association
for Computing Machinery.

[35] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
Represent Student Knowledge on Programming
Exercises Using Deep Learning. Technical report,
International Educational Data Mining Society, June
2017.

[36] M. West, G. L. Herman, and C. Zilles. PrairieLearn:
Mastery-based online problem solving with adaptive
scoring and recommendations driven by machine
learning. In 2015 ASEE Annual Conference &
Exposition, pages 26–1238, 2015.

[37] B. Xie, D. Loksa, G. L. Nelson, M. J. Davidson,
D. Dong, H. Kwik, A. H. Tan, L. Hwa, M. Li, and
A. J. Ko. A theory of instruction for introductory
programming skills. Computer Science Education,
29(2-3):205–253, July 2019.

[38] D. Zingaro and L. Porter. Tracking student learning
from class to exam using isomorphic questions. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, SIGCSE ’15, page
356–361, New York, NY, USA, 2015. Association for
Computing Machinery.

APPENDIX
A. ADDITIONAL RESULTS
This appendix includes the full results for the knowledge
components included in Figure 5, including the fit of the
AFM model to the underlying data (R2) and the slope pa-
rameter representing the learning rate.

F19 S20 F20 S21 F21 S22 F22

R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope
arg 0.178 0.010 0.363 0.014 0.148 0.007 0.108 0.007 -0.140 0.004 0.001 0.003 0.103 0.006
arguments 0.273 0.011 0.428 0.014 0.135 0.007 0.137 0.005 -0.075 0.003 0.004 0.002 0.091 0.005
Dict -0.061 0.140 -0.522 0.311 -0.381 0.248 0.033 0.461 -0.173 0.261 0.782 0.480 0.583 0.295
FunctionDef 0.273 0.011 0.428 0.014 0.135 0.007 0.139 0.005 -0.075 0.003 0.005 0.002 0.089 0.005
Module 0.641 0.014 0.605 0.018 0.502 0.012 0.399 0.009 0.305 0.010 0.384 0.008 0.429 0.011
Tuple 0.894 0.278 0.735 0.400 -1.557 0.134 0.667 0.315 0.081 0.086 0.256 0.190 0.228 0.107
BoolOp -0.797 0.087 -0.762 0.046 0.816 0.099 0.823 0.206 0.797 0.135 0.544 0.102 -0.062 0.155
Compare 0.596 0.026 0.364 0.027 0.154 0.015 -0.104 0.018 0.082 0.009 0.013 0.015 0.595 0.020
Or 0.613 0.217 0.531 0.041 0.799 0.171 0.942 0.633 0.473 0.445 0.438 0.203 -0.001 0.243
In -0.359 0.311 0.883 0.282 -0.066 0.251 0.001 0.175 -0.673 0.101 -0.199 0.065 0.579 0.137
For -0.090 0.030 0.298 0.030 0.133 0.019 0.238 0.013 0.189 0.010 0.178 0.006 0.388 0.019
Return 0.464 0.014 0.136 0.013 0.121 0.007 0.031 0.008 -0.056 0.002 0.059 0.004 0.156 0.006
And -1.129 0.047 0.160 0.149 0.900 0.219 0.806 0.137 0.436 0.052 0.514 0.092 0.180 0.242
If 0.606 0.023 0.092 0.026 0.018 0.013 0.147 0.018 -0.186 0.011 0.438 0.016 0.632 0.020
Eq -0.879 0.078 0.284 0.077 0.710 0.067 0.094 0.140 -0.754 0.082 0.669 0.130 0.302 0.087
Constant 0.284 0.015 0.181 0.018 0.354 0.012 -0.035 0.008 -0.018 0.005 0.190 0.008 0.225 0.013
Call 0.358 0.015 0.239 0.019 0.065 0.010 0.380 0.007 -0.010 0.003 -0.180 0.006 0.130 0.009
Mod -0.382 0.054 -1.591 0.417 -1.185 0.402 -0.856 0.260 0.035 0.171 -0.248 0.234 -0.164 0.243
GtE -0.015 0.055 -0.620 0.230 0.011 0.180 -1.193 0.102 -2.779 0.321 0.976 0.644 0.909 0.503
Expr -0.589 0.025 0.008 0.042 0.412 0.026 -0.134 0.020 -0.013 0.009 -0.107 0.007 0.629 0.025
BinOp 0.708 0.078 0.623 0.048 0.012 0.000 -0.072 0.004 0.084 0.007 0.569 0.035 0.293 0.023
Div -3.910 0.186 0.714 0.907 -0.435 0.293 -5.409 0.953 -2.921 0.549 -0.885 0.108 -1.153 0.333
LtE -0.582 0.124 0.589 0.178 -0.274 0.157 -0.220 0.018 -1.052 0.108 -1.908 0.234 0.719 0.183
List -0.610 0.040 0.023 0.054 -0.129 0.023 0.379 0.024 -0.010 0.000 -0.069 0.003 -0.220 0.009
Attribute 0.065 0.015 0.195 0.017 0.164 0.008 0.129 0.005 0.022 0.000 0.059 0.003 0.331 0.009
Add 0.644 0.048 0.154 0.032 0.311 0.003 -0.122 0.001 -0.291 0.000 0.155 0.025 0.128 0.008
Name 0.535 0.011 0.229 0.010 0.040 0.002 0.060 0.002 -0.016 0.000 -0.003 0.001 -0.023 0.001
Gt -0.391 0.046 -0.108 0.071 -0.108 0.040 -0.831 0.106 0.081 0.000 0.279 0.000 0.573 0.064
Assign -0.196 0.008 -0.181 0.009 0.061 0.002 0.183 0.000 0.000 0.000 -0.218 0.000 0.017 0.004
Store -0.282 0.010 -0.289 0.011 0.069 0.005 0.029 0.000 -0.075 0.000 -0.326 0.000 0.133 0.007
Sub -0.913 0.000 -1.905 0.167 -0.138 0.000 -0.057 0.031 0.295 0.154 -0.141 0.021 0.026 0.000
Load 0.542 0.011 0.225 0.009 0.041 0.002 0.075 0.001 -0.017 0.000 -0.003 0.001 -0.024 0.001
Lt -0.707 0.024 -0.023 0.030 -0.140 0.000 0.194 0.000 0.209 0.052 -0.138 0.000 0.279 0.000
Mult 0.697 0.607 -2.091 0.360 -0.162 0.000 -0.241 0.000 0.477 0.340 -1.702 0.165 -0.535 0.000
NotIn -1.033 0.000 0.741 1.141 0.004 0.000 0.917 0.481 -0.873 0.000 -0.464 0.000 -1.161 0.300
Import -0.089 0.000 0.468 0.000 0.997 0.150 -1.128 0.031 -0.250 0.088 -0.353 0.000 -1.093 0.000
NotEq -0.176 0.000 -0.418 0.100 -0.061 0.043 0.467 0.000 0.009 0.000 -0.534 0.000 -0.167 0.000
While -0.945 0.000 -0.531 0.000 -0.515 0.000 0.357 0.158 -0.907 0.197 0.633 0.548 0.635 0.624
Subscript -0.441 0.006 -0.269 0.008 0.171 0.000 0.091 0.000 -0.097 0.000 0.063 0.000 0.043 0.000
JoinedStr N/A 0.000 -0.210 0.000 -3.949 1.000 N/A 0.000 -0.836 0.000 0.368 0.000 -0.739 0.010
alias -0.089 0.000 -0.219 0.000 0.485 0.000 -0.816 0.000 -0.250 0.088 -0.297 0.000 -1.069 0.000
Slice -0.043 0.000 -0.159 0.000 -0.357 0.000 0.061 0.000 -0.764 0.000 -0.167 0.000 -0.759 0.086
UnaryOp 0.146 0.000 -0.045 0.000 -0.049 0.000 -0.210 0.000 -0.199 0.000 -0.293 0.000 -0.647 0.000
USub -0.753 0.000 0.006 0.000 -0.263 0.000 -0.193 0.000 -0.185 0.000 -0.177 0.000 -0.256 0.000
FloorDiv -0.731 0.000 -0.844 0.000 -0.723 0.000 -0.246 0.000 -0.877 0.000 0.160 0.000 0.053 0.000
Not 1.000 46.230 -0.906 0.000 -0.231 0.000 -0.904 0.000 -1.190 0.000 -Inf 0.000 -0.956 0.000
Pow -1.124 0.000 N/A 0.000 N/A 0.000 N/A N/A N/A N/A N/A 0.000 N/A N/A

B. AST NODE DESCRIPTIONS
This appendix includes descriptions for all AST nodes used
in Figure 5, along with an example usage of the given node
in a code piece. In all examples, language elements that are
represented by the given node are given in italics.

Name Description Code Example
arg Each single function argument. f(a, b)
arguments Argument list for a function. f(a, b, c)
Dict Declaration of a Dictionary object. {”a”:1, ”b”: 2}
FunctionDef A function definition. f(a, b): ...
Module The Python module that is the root node for all ASTs. N/A
Tuple Declaration of a Tuple object. (1, 2, 3)
BoolOp Expressions with the boolean operations ’Or’ or ’And’. x or y
Compare Expressions with a comparison operation. x < y
Or The boolean operator ’Or’. x or y
In The comparison operator ’In’. ’x’ in [’x’, ’y’]
For The control flow structure ’For’. for x in y: ...
Return The return statement in a function. def f(a, b): return 4
And The boolean operator ’And’. x and y
If The control flow structure ’If’. if x: ... / else: ...
Eq The comparison operator ’Eq’ (equal). x == y
Constant Constant literal objects. 123
Call A function call. x = f(a)
Mod The binary operator for modulus. 15 % 3
GtE The comparison operator ’GtE’ (greater than or equal to). 5 >= 3
Expr An expression that is not assigned to any variable. -5
BinOp Expressions with a binary operator. 5 - 3
Div The binary operator for division. 10 / 2
LtE The comparison operator ’LtE’ (less than or equal to). 3 < 5
List Declaration of a List object. [1, 2, 3]
Attribute Accessing the attribute of an object. object.name
Add The binary operator for addition. 1 + 2
Name A named variable. a
Gt The comparison operator ’Gt’ (greater than). 1 > 2
Assign An assignment. a = 5
Store A context node that shows the value of a variable is being modified. a = 5
Sub The binary operator for subtraction. 5 - 2
Load A context node that shows the value of a variable is being accessed. b = a
Lt The comparison operator ’Lt’ (less than). 1 < 2
Mult The binary operator for multiplication. 5 * 3
NotIn The comparison operator ’NotIn’. 2 not in [4, 5, 6]
Import An import statement. import ast
NotEq The comparison operator ’NotEq’ (not equal). 5 != 3
While The control flow structure ’While’. while True: ...
Subscript The indexing operator for a collection. my list[0]
JoinedStr A f-string (formatted string). f”Hello {name}”
alias The aliasing operator ’as’. import x as y
Slice The slicing operator for a collection. my list[1:3]
UnaryOp Expressions with an unary operator. not x
USub The unary operator for minus sign (-). -5
FloorDiv The binary operator for floor division. 10 // 2
Not The unary operator for negation. not x
Pow The binary operator for exponentiation. 5 ** 3

