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ABSTRACT
Reducing learning time or training time in intelligent tutors
is a challenging research problem. In this study, we aim
to reduce training time while maintaining student perfor-
mance in intelligent tutors. We propose a Deep Reinforce-
ment Learning (DRL) based method to determine when stu-
dents need more training and when they don’t. We design
an adaptive pedagogical policy using the DRL method to re-
duce training time in intelligent tutors. We incorporate the
pedagogical policy within an intelligent logic tutor. Based
on the DRL method outcome, the pedagogical policy deter-
mines when to provide more training problems to students,
and when training problems can be skipped. We conduct
a study to examine the effectiveness o f the proposed policy
against a control without any adaptive interventions. We
also evaluate the proposed policy against a comparison con-
dition that provides training problems or worked examples
during training based on a DRL policy, and a non-adaptive
condition that also may provide or skip training problems
for students. Our analysis provides empirical evidence that
the proposed policy reduced training time compared to the
control condition. Results show that the proposed policy
is more effective compared t o the comparison conditions in
reducing training time and at the same time, maintaining
student performance. Overall, the study demonstrates the
efficacy of  the proposed pedagogical policy.

Keywords
Deep Reinforcement Learning, Intelligent Tutoring System,
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1. INTRODUCTION
Intelligent tutoring systems (ITS) provide personalized in-
struction, feedback, and assistance to students. Most cur-
rent research focuses on improving student performance and
learning gain in intelligent tutors. However, total tutor time
and training time or learning time are other important mea-
sures. Total tutor time refers to the total time taken to
complete a tutor. Training time or learning time refers to
the total time taken to complete the training section of a
tutor. Learning efficiency refers to the ratio of learning gain
and total tutor time. Reducing tutor time is a relatively
under-explored area.

ITSs are widely used in classrooms nowadays as they help
students learn without human instruction and intervention.
With widespread use, reducing tutor time and improving
learning efficiency in ITSs is a topic of significant impor-
tance. Students have a limited amount of time that they
devote to studying and learning different subjects. Reduc-
ing tutor time and increasing learning efficiency can help
students spend less time using an ITS while maintaining the
same learning and performance, enabling them to use their
saved time to learn something else. All the students who
use an ITS may not have the same knowledge or grasp of all
the concepts the tutor covers. If a student is good at solving
problems involving certain concepts, reducing the amount of
training problems can save students time without negatively
affecting their performance. More than necessary training
may not be helpful for a student and may not be a good
use of learning time. At the same time, a lengthy tutor may
cause frustration in students.

In this study, we aim to focus on the challenging task of
reducing training time. We develop and evaluate a peda-
gogical policy to reduce training time in an intelligent tutor
teaching the open-ended domain of logic proofs. Deep re-
inforcement learning (DRL) has been successfully used in
ITSs for inducing pedagogical policies [2, 4, 14]. In this
study, we investigate the use of a DRL-based pedagogical
policy to determine when students need more training and
when students don’t. Based on the policy, the students will
be adaptively given training problems, or a training prob-
lem may be skipped for them if the policy determines that
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the student does not need more training. Thus, the policy
attempts to provide students with an optimized and per-
sonalized training section. To the best of our knowledge,
no prior work has utilized DRL to provide training prob-
lems adaptively in such a way and evaluated the impact on
training time and efficiency on an ITS. We integrated the
DRL policy within a logic tutor’s training section and con-
ducted a controlled experiment. Our goal was to evaluate
the DRL policy’s efficacy. Therefore, we designed a number
of control and comparison conditions. We implemented 1)
A control condition where all training problems were given
to all students. 2) Adaptive condition where the proposed
DRL policy was used to adaptively provide or skip training
problems for students. 3) A comparison condition, where a
non-adaptive policy (in this case, a random policy) was im-
plemented to provide or skip training problems to students.
4) Finally, we wanted to understand the effectiveness of skip-
ping a problem compared to providing a worked example.
Therefore, we implemented another comparison condition,
where the same DRL policy was used to adaptively provide
a problem or worked exampled in the training section.

Overall, the main contributions of this study are as fol-
lows: we propose a new pedagogical policy to reduce training
time in tutors and implement the policy by utilizing a DRL
model. We investigate the impact of the proposed policy
on an intelligent logic tutor. We inspect the effectiveness of
the new adaptive policy against a control policy without the
adaptive components and also against two other comparison
policies.

The rest of the paper is organized as follows. In Section
2, we discussed some related works. We provide the tutor
context and methodology in Section 3. Then, we present the
experimental design in Section 4. The results and related
discussions are presented in Sections 5 and 6. Then, the
conclusion is given in Section 7 with limitations and future
work in Section 8.

2. RELATED WORKS
2.1 Reducing Tutor Time
Reducing tutor time and improving efficiency is a relatively
under-explored area. In one study, Cen et al. [5] investi-
gated the use of Learning Factors Analysis (LFA) to improve
efficiency and reduce tutor time in a geometry tutor. Us-
ing a statistical model, LFA can identify over-practiced and
under-practiced knowledge components (KC). The authors
optimized the curriculum of the geometry tutor to improve
learning efficiency. Compared to a control group, it was
found that the optimized curriculum group saved significant
time and showed no significant difference in performance in
the posttest or retention test. To use LFA, the problems in
the tutor need to be split based on the KC. For our tutor,
the problems consist of multiple KC’s. In another study,
Shen et al. [15] proposed a data-driven framework called
Constrained Action-based Partially Observable Markov De-
cision Process (CAPOMDP) to induce effective pedagogical
policies. They developed a policy called CAPOMDPTime

using time as a reward for reducing students’ time on task.
The policy determines whether to provide students with
worked examples (WE), or they should do problem-solving
(PS) with a logic tutor. Results showed no significant dif-
ference among the high incoming competence groups. How-

ever, for the low incoming competence groups, students in
the CAPOMDPTime condition spent significantly less time
than those using the baseline policies. In [11], authors worked
with ALEKS (“Assessment and Learning in Knowledge Spaces”),
which is an adaptive learning and assessment system based
on knowledge space theory. They tried to improve the effi-
ciency of ALEKS assessment. Their goal was to develop an
algorithm to predict when the assessment should be stopped.
They developed a recurrent neural network classifier to pre-
dict the final result of each assessment. They used the clas-
sifier to develop a stopping algorithm. Results showed that
potentially the length of the assessment can be reduced by a
large amount using the stopping algorithm, thereby reduc-
ing the time taken for assessment while maintaining a high
level of accuracy.

2.2 Use of Reinforcement Learning in Intelli-
gent Tutoring Systems

Reinforcement Learning (RL) and Deep Reinforcement Learn-
ing (DRL) have been widely used in intelligent tutoring sys-
tems to induce pedagogical policies. In [3], authors used a
DRL-based pedagogical policy to determine when to provide
proactive help in an intelligent logic tutor. The proposed
policy provided next-step proactive hints based on the pre-
diction of the DRL model. Abdelshiheed et al. [1, 2] used
DRL policy to induce and deploy metacognitive interven-
tions in a logic tutor. The authors found that the DRL pol-
icy closed the metacognitive skills gap between students and
prepared the students for future learning. In another work
[6], authors proposed a pedagogical modeling framework us-
ing DRL to induce policies to provide ICAP-inspired scaf-
folding in adaptive learning environments. Results showed
that adaptive scaffolding policies induced with DRL outper-
formed the baseline policies. Ausin et al. [4] used a DRL
policy to determine when to provide worked examples and
when students should do problem-solving with an intelli-
gent tutor. They found that when combined with inferred
rewards, the DRL policy outperformed the baseline policy.
In another work [14], Ausin et al. conducted studies where
DRL was used to decide whether to provide worked exam-
ples or problems, along with simple explanations to share
the decision with students. Results demonstrated that the
DRL policy with simple explanations significantly improved
students’ learning performance compared to an expert pol-
icy. Zhou et al. [19] used a hierarchical RL policy to make
decisions at both problem and step levels in an ITS. They
found that the proposed policy was significantly more ef-
fective than the baseline policies. Ju et al. [9] proposed
a DRL framework to identify critical decisions and induce
critical policies in an ITS. They evaluated the framework in
terms of necessity and sufficiency. Results confirmed that
the framework met both criteria.

Overall, to the best of our knowledge, no prior work utilized
DRL policy to provide or skip training problems in intelli-
gent tutors to reduce training time. Researchers have inves-
tigated how to combine PS and WE to improve learning effi-
ciency, but rarely studied skipping problems, which requires
either a student knowledge model or other mastery learning
mechanism. However, in domains without such mechanisms,
the proposed approach can apply DRL to prior student data
to improve learning efficiency.



3. METHOD
In this study, we propose a pedagogical policy to reduce
student training time in an intelligent tutor. We develop the
policy using Deep Reinforcement Learning and incorporate
it in the tutor to decide, for each problem, whether students
should solve it or skip it. In this section, we first discuss our
logic proof tutor. Then, we describe the proposed policy.
Finally, we present our research questions for the study.

3.1 Tutor
Our intelligent logic tutor [16, 17, 10], shown in Figure 1, is
for learning and practicing formal propositional logic proofs
in a Discrete Mathematics course. The main workspace is
on the left which contains the logic statements as nodes.
For each logic proof problem, a set of logic statements are
given as premises, shown at the top of the workspace, and
a conclusion to be derived is shown at the bottom. In the
bottom left of Figure 1, there is a ’get hint’ button which
students can click to request hints. The logic rules are given
in the middle pane. The right pane contains instructions,
guidance, and directions for the students. The tutor con-
sists of two types of problems: worked examples (WE) and
problem-solving (PS). The WE problems are solved by the
tutor; students click the next step button to see the step-by-
step solution. The PS problems are to be solved by students
by deriving new statements until the conclusion is reached.
The students can use forward, backward, or indirect strate-
gies to solve the PS problems. The forward strategy is where
the students start with the given premises and derive new
statements towards deriving the conclusion. In the back-
ward strategy, students start with the given conclusion and
derive new statements towards the premises. In the indirect
strategy, students prove by contradiction, where the tutor
places the negation of the conclusion in the proof, and stu-
dents work toward deriving a contradiction.

The tutor consists of four sections: introduction, pretest,
training, and posttest. The introduction contains two worked
examples to familiarize the students with the tutor. Then,
in the pretest section, the students are given two problems
to solve. Next is the training section, with five levels in-
creasing in difficulty and each level adding new rules. Each
training level has three training problems and a level-end
posttest problem. Finally, there is a posttest section with six
problems. Students may request hints during the training
but not in the pre-test, level-end posttest, or final posttest
problems. In total, students solve up to thirty problems in
the tutor. Each problem has a problem score based on time,
number of steps, and accuracy; problems with lower time,
lower steps, and higher accuracy have higher scores. Pretest
and posttest scores are the average of all the problem scores
in each respective section.

3.2 Proposed Policy and Model
3.2.1 Proposed Policy
Our overarching research question is whether or not a DRL
policy for choosing between PS and skipping a problem can
reduce student time while keeping learning the same or bet-
ter. Our investigation of student data showed that students
were not spending significant time interacting with the WEs
provided. Therefore, we hypothesized that we could learn a
policy from our prior data that could choose to skip problems

instead of showing them as WEs for students, and further
hypothesized that this policy could save students time when
compared with the same policy that provides WEs instead
of skipping problems. Therefore, we used our prior data, as
described in more detail below, to learn an offline, off-policy
DRL policy to decide on each problem, when students should
solve it themselves (PS) or skip it.

Students are randomly assigned to one of 4 conditions: DRL-
skip, DRL-WE, all-PS, and Random-skip. In both DRL
conditions, the same proposed adaptive DRL policy, opti-
mized for student learning and efficiency, provides interven-
tions during the tutor’s training section. For each problem,
the DRL-skip policy is used to choose between problem-
solving (PS) and skipping the problem. The DRL-WE pol-
icy chooses between PS and a WE. Students in the all-PS
condition solve all the problems using PS. The Random-skip
policy randomly assigns students to solve each problem as
PS or skip it, subject to the tutor rule that every level must
have at least one PS problem.

3.2.2 Proposed Model
Reinforcement Learning (RL), especially Deep Reinforce-
ment Learning (DRL), has been used successfully by differ-
ent intelligent tutors. The main objective of an agent in RL
is to take specific actions to maximize cumulative rewards.
In DRL, deep neural networks are used to make decisions.
Among the different RL algorithms, one of the most suc-
cessful is Q-learning, a model-free RL algorithm [18]. In the
Q-learning algorithm, a q-value is calculated which is the
expected cumulative reward for a particular action taken in
a state. Deep q-learning methods make use of neural net-
works as function approximators. DQN [12] is an off-policy
Q-learning model where the same neural network is used for
action selection and action evaluation, which can cause an
overestimation of values. Double-DQN (DDQN) [7] solves
this problem by using two different neural networks for ac-
tion selection and action evaluation. Here, two identical
neural networks are used called the online network (θ) and
the target network (θ̄). The online network is trained in each
iteration which is used to select the next action (a ∈ A) with
the highest q-value for the next state (s′ ∈ S). The target
network is updated periodically which is used for the evalu-
ation of q-value of actions. The q-values are updated using
the following equation:

Q(s, a; θ) = r + γQ(s′, argmaxa∈AQ(s′, a′; θ); θ̄)

Here, Q(s, a; θ) is q-value which is calculated using θ in state
s after taking action a. The reward r is defined below, and
γ is the discount factor that determines the importance of
future rewards. Our study uses an off-policy and offline
version of the DDQN model for our experiments.

To train the DRL model, we used tutor data from random
PS/WE conditions from the previous four semesters (Fall
2019, Spring 2019, Spring 2022, Spring 2023). We look at
the time taken for WE problems and based on that, set a
threshold of 100 seconds. If a student takes less than the
threshold in a WE problem, we consider it as a skipped
problem. We formulate the problem of determining when to
give a problem and when to intervene as a Markov Decision



Figure 1: Tutor user interface

Figure 2: Problem organization in the training levels for the four training conditions



Table 1: Number of participants in different conditions

Condition Number of students assigned Number of students who completed the tutor

DRL-skip (C1-Skip) 63 52

All-PS (C4-all-PS) 64 58

DRL-WE (C2-WE) 60 49

Random-skip (C3-Random) 63 53

Total 250 212

Process with a specific state, action, and reward.
State: The state consists of 75 student log features that de-
scribe students’ interaction with the tutor. Some example
features include those related to time (totalTime, totalP-
STime, totalWEtime, idleTime), actions (actionCount, for-
wardActionCount, backwarddActionCount, directProofAc-
tionCount, indirectProofActionCount), rule scores for each
rule, accuracy (rightApp, wrongApp, RightAppRatio, Wron-
gAppRatio), and steps (stepCount, avgStepTime).
Action: At a training problem of the tutor, there are two
possible actions: 1) provide a PS problem and 2) intervene
to skip or show WE.
Reward: We want to reduce training time and, at the same
time, maintain student performance. Therefore, we formal-
ize our reward as defined below. The reward is a combina-
tion of the post-test score and the problem time using the
following equation:

Reward = posttestScore ∗ (1− problemTime)

The reward will be high when the posttestScore is high, and
problemTime will be low, and vice versa. The problemTime
is 0 when a problem is skipped. We conducted hyperpa-
rameter tuning using a grid search strategy to select the
parameters. The final model contained three hidden layers
with 32, 64, and 32 neurons, respectively. The learning rate
was 0.001, and the value of γ was 0.99.

3.3 Specific Research Questions
• RQ1: How is the performance of students who got a

high number of interventions in the adaptive DRL-skip
condition?

• RQ2(a): Do the adaptive condition students have
similar posttest performance compared to the control
all-PS condition?

• RQ2(b): Does the adaptive DRL-skip condition take
less time compared to the control condition?

• RQ3: How effective is the DRL-skip policy compared
to a DRL-WE policy providing worked examples (WE)
instead of skipping problems?

• RQ4: How effective is the proposed adaptive policy
compared to a non-adaptive Random-skip policy that
also skips training problems?

• RQ5: How does the adaptive policy impact students’
problem-solving behavior?

To answer these research questions, we will examine stu-
dents’ post-test performance and time taken in different con-
ditions. We will look at their learning gain and learning ef-
ficiency as defined in Section 4.3. We will do significance
analysis to compare the conditions. We will also investigate
the impacts of the policies on students’ problem-solving be-
haviors, such as hint usage.

4. EXPERIMENT
4.1 Experimental Design
We designed four training conditions to measure the pro-
posed policy’s effectiveness. The conditions are as described
below:
Control all-PS condition: Students assigned to the control
condition will receive only PS problems in the training lev-
els.
Adaptive DRL-skip condition: Students assigned to this con-
dition will receive PS problems in the training levels. How-
ever, some PS problems can be skipped as determined by
the DRL policy.
Adaptive DRL-WE condition: Students assigned to this con-
dition will receive PS problems or WE problems as deter-
mined by the DRL policy in the training levels.
Random-skip condition: Students assigned to this condition
will receive PS problems at the training level. However,
some PS problems will be skipped using a non-adaptive pol-
icy, which is in this case a random policy.
Figure 2 shows the problem organization in the training lev-
els for the four training conditions. Students in all condi-
tions can request hints on the training level PS problems.
The hints are shown as messages at the bottom of the tutor
interface.

4.2 Participants
This research study was approved by the university internal
review board. The tutor was given as an assignment in an
undergraduate Discrete Mathematics course at a US Uni-
versity in the Fall 2023 semester. The students were placed
in different conditions using random sampling. As we can
see in Table 1, a total of 212 students completed the tutor.
We performed Fisher’s exact test between the adaptive DRL-
skip condition and the other conditions to check for signif-
icant differences in tutor completion, but no significant dif-
ferences were found (p− value > 0.05).

4.3 Performance Metrics
We look at the time taken to solve the problems. The time
is calculated by the total time taken to complete the dif-
ferent sections of the tutor. As the students may leave the
tutor open when inactive, we cap each action to 1 minute.



Table 2: Time comparison in the DRL-skip condition high and low intervention groups

Mean Time (Std Dev) in minutes

DRL-skip DRL-skip (upper median) DRL-skip (lower median) P-value

Training 38.54 (23.36) 25.671 (17.17) 52.43 (21.08) <0.001

Final posttest 44.84 (32.84) 39.18 (29.12) 50.95 (35.44) 0.389

Total tutor time 194.33 (88.01) 153.53 (66.14) 238.40 (87.45) <0.001

Table 3: Posttest performance in DRL-skip condition high and low intervention group

DRL-skip (upper median) DRL-skip (lower median) P-value

Posttest Score 0.746 0.622 0.002

Pretest Score .75 0.576 <0.001

NLG -0.074 0.056 0.128

LE 0.329 0.163 <0.001

We take the sum of the times of all actions to calculate the
total time. For example, training section time is the sum of
the times of all actions taken by students to complete the
training problems.
Each problem is given a problem score, calculated based on
the number of steps (fewer is better), problem solving time
(lower is better), and rule accuracy (higher is better). The
pretest and posttest scores are calculated by taking the aver-
age problem scores of the pretest and posttest section prob-
lems, respectively. We examine the Normalized Learning
Gain (NLG) to understand student learning. We calculate
students’ NLG [8] using the following function:

NLG = posttest−pretest√
1−pretest

We calculate students’ Learning efficiency (LE) by first scal-
ing the NLG scores between 0 and 1 and using the following
equation:

LE = NLG
Total tutor time (in hour)

We use hint justification as a measure of hint usage. A hint
is said to be justified if the hinted statement is derived using
the existing statements. The hint justification rate (HJR)
is the ratio of the number of hints that have been justified
and the total number of hints given.

5. RESULTS
In this section, we examine the students’ posttest scores,
normalized learning gain, and time taken in different sec-
tions of the tutor to answer our research questions. We
found the data to be non-normally distributed, therefore we
use the Mann-Whitney test to conduct significance analysis.

5.1 RQ1: How is the performance of students
who got a high number of interventions in
the adaptive DRL-skip condition?

We start by finding some statistics on the DRL-skip con-
dition students. We find the average number of problems
received by the students to be 24. The maximum number
of skip interventions (where each intervention is skipping a
problem) was 9, the minimum number of interventions was
0, and the median number of interventions was 6. We are
especially interested to learn more about the students who
got a high number of interventions and whether they had
any negative impact on the students. Therefore, we divide
the adaptive DRL-skip condition students into high and low-
intervention groups based on the median number of inter-
ventions to investigate the impact of receiving interventions.

We look at the time taken by high and low intervention
students in the different sections of the tutor. Table 2 shows
the mean time and standard deviation of time taken by the
high and low intervention group students in the DRL-skip
condition in minutes for different sections of the tutor. It
also shows the result of the Mann-Whitney test by showing
the corresponding p-values. By conducting a significance
analysis, we find that students in the upper median took
significantly less time in the training section of the tutor
and also in the total tutor.

Next, we look at the performance of the DRL-skip students
in high and low intervention groups using their posttest
problem scores and NLG. From Table 3, we find that the
upper median students had a significantly better average
posttest score compared to the lower median group’s average
posttest score. Note that upper median students also had
a significantly better pretest score compared to the lower
median group. We did not find any significant difference
in NLG between the two groups. Then, when we look at
learning efficiency (LE), we find that upper median stu-
dents had significantly better LE, implying that they could
achieve similar mastery by spending significantly less time in
training and posttest problems than the lower median group
spent. We did not find anything to suspect that getting a
high number of interventions had any negative impact on
students.

Finally, we separate the DRL-skip students who got the



Table 4: Comparing student data from the first problem in each level for students with the highest number of interventions and
students with the lower number of interventions

Data from first problem in the level

Student with highest intervention Student with lowest intervention

Training level stepCount totalTime rightApp wrongApp stepCount totalTime rightApp wrongApp

2 5 72 2 0 12 650 6 37

3 10 189 6 0 18 459 15 6

4 5 148 5 1 17 254 13 12

5 7 93 5 1 6 95 3 0

6 7 128 4 1 7 228 4 0

Table 5: Posttest performance in DRL-skip condition and the
control (all-PS) condition

Condition

Metric DRL-skip (C1) Control (C4) P-value

Posttest Score 0.686 0.685 0.855

Pretest Score 0.667 0.659 0.876

NLG -0.011 -0.037 0.659

LE 0.261 0.251 0.797

Table 6: Time comparison in DRL-skip condition and the
control (all-PS) condition

Mean Time (Std Dev) in minutes

DRL-skip(C1) Control(C4) P-value

Training 38.54 (23.36) 59.99 (32.18) <0.001

Final posttest 44.84 (32.84) 46.37 (38.36) 0.681

Total tutor time 194.33 (88.01) 213.34 (99.99) 0.424

highest number of interventions and students who got the
lowest number of interventions. We examine the data from
the first problem of each training level to determine the rea-
son behind the difference in the number of interventions.
Table 4 shows some key student features for the first prob-
lem in each training level for the DRL-skip students with
the highest number of interventions and the students with
the lowest number of interventions. Here, stepCount refers
to the total number of steps taken to complete the problem,
totalTime is the total time taken to complete the problem,
rightApp is the number of times students correctly applied
the rules, and wrongApp is the number of times students in-
correctly tried to apply the rules. We find that the DRL-skip
students with the highest number of skipped problems gen-
erally had good values for the features in the first problem
in the levels, which were used as features for the DRL-skip
policy. Therefore, it makes sense that the policy decided
that for this student, more problems can be skipped. Mean-
while, the DRL-skip students who had the lowest number
of skipped problems had lower performance metric values in
the first problem in most of the levels. Therefore, the policy
decided not to skip the next problem, since metrics show a

Table 7: Posttest performance in adaptive DRL-skip condi-
tion and the DRL-WE condition

Condition

Metric DRL-skip (C1) DRL-WE(C2) P-value

Posttest Score 0.686 0.671 0.444

Pretest Score 0.667 0.657 0.841

NLG -0.011 -0.100 0.981

LE 0.261 0.224 0.488

Table 8: Time comparison in adaptive condition and the DRL-
WE condition

Mean Time (Std Dev) in minutes

DRL-skip (C1) DRL-WE (C2) P-value

Training 38.54 (23.36) 38.04 (16.51) 0.721

Final posttest 44.84 (32.84) 59.47 (38.05) 0.028

Total tutor 194.33 (88.01) 217.49 (59.61) 0.091

need for more training and practice.

5.2 RQ2(a): Do the DRL-skip adaptive condi-
tion students have similar posttest perfor-
mance compared to the control condition?

Here, we examine the performance of the adaptive DRL-skip
condition students compared to the control all-PS condition
students. In the control all-PS condition, students received
all the PS problems.

Students’ performance in terms of posttest score, pretest
score, NLG, and LE are presented in Table 5. We conducted
a significance analysis and found no significant difference in
the posttest scores of the two groups. We also did not find
any significant difference between the two groups in terms
of pretest score, NLG, and LE.

5.3 RQ2(b): Does the adaptive DRL-skip con-
dition take less time compared to the con-
trol condition?



Here, we examine the time taken by adaptive DRL-skip con-
dition students in different sections of the tutor and compare
it to the control All-PS condition.

The mean and standard deviation of time taken by the adap-
tive DRL-skip and control all-PS condition students in the
training, posttest, and total tutor is given in Table 6. The
training time in the adaptive DRL-skip condition is signifi-
cantly less compared to the control all-PS condition. We do
not find any significant difference in post-test or total tutor
time between the two conditions.

5.4 RQ3: How effective is the DRL-skip pol-
icy compared to a DRL-WE policy pro-
viding worked examples (WE) instead of
skipping problems?

Here, we compare the adaptive DRL-skip condition to the
DRL-WE policy, where students either received PS problems
or WE problems based on the same learned DRL policy, but
provided WEs instead of skipping problems.

First, we investigate the student performance and learning
in both conditions. Table 7 shows the posttest score, pretest
score, NLG, and LE in two conditions. We conduct signif-
icance analysis using the Mann-Whitney test for compari-
son, and corresponding p-values are also provided in Table
7. We do not find any significant difference in post-test
score, pretest score, NLG, or LE between the conditions
(p− value > 0.05).

Next, we look at the time taken by students in both the DRL
conditions. The mean and standard deviation of time can be
found in Table 8 for the two conditions. We find that there
is no significant difference between the two conditions in
terms of training time or total tutor time. We note that the
training time of DRL-WE is 38.04 minutes, which is similar
to the DRL-skip condition; however, some of that time is
spent on worked examples instead of problem-solving. We
further examine the time students spent on problem-solving
during training in the DRL-WE condition, and find that
students spent on average 30.31 minutes on problem-solving,
and 7.72 minutes on worked examples. Interestingly, we
find that there is a significant difference in posttest section
time, where the adaptive DRL-skip condition students did
significantly better than the DRL-WE condition students.

5.5 RQ4: How effective is the proposed adap-
tive policy compared to a non-adaptive pol-
icy that also skips training problems?

Here, we compare the adaptive condition to a non-adaptive
policy that randomly provided students with either a PS
problem or skipped the problem in the training levels.

First, we analyze the performance and learning of students
in the two conditions. Table 9 provided the posttest score,
pretest score, NLG, and LE of the students in the two condi-
tions. We do the Mann-Whitney test for significance analy-
sis, and the corresponding p-values are given in Table 9. We
do not find any significant difference between the two con-
ditions for posttest score, pretest score, and NLG. However,
we find that there is a significant difference in LE between

Table 9: Posttest performance in adaptive condition and the
random-skip condition

Condition

Metric DRL-skip (C1) Random-skip (C3) P-value

Posttest Score 0.686 0.644 0.181

Pretest Score 0.667 0.659 0.913

NLG -0.011 -0.129 0.347

LE 0.261 0.180 0.002

Table 10: Time comparison in adaptive condition and the
random-skip condition

Mean Time (Std Dev) in minutes

DRL-skip (C1) Random-skip (C3) P-value

Training 38.54 (23.36) 40.19 (20.89) 0.59

Final posttest 44.84 (32.84) 50.29 ( 29.44) 0.13

Total tutor 194.33 (88.01) 219.00 (113.94) 0.5

the two conditions, with the adaptive condition having sig-
nificantly better LE.

Next, we compare the time taken by the students in the two
conditions. Table 10 shows the mean and standard devi-
ation of time for the two conditions. We do not find any
significant difference between the two conditions in training
time, posttest time, or total tutor time.

5.6 RQ5: How does the adaptive policy im-
pact students’ problem-solving behavior?

Here, we look at the problem-solving behavior of students
in the adaptive condition and compare it to the other condi-
tions. First, we look at the hint usage of students in different
conditions. Table 11 provides the number of hints per prob-
lem, the number of hints justified, and the hint justification
rate for the different conditions. When comparing the num-
ber of hints per problem, we find that there is a marginal
difference between the adaptive condition and the control
condition (p−value = 0.057). We do not find any significant
difference in the number of hints in the adaptive condition
compared to the other conditions. Next, we compared the
hint justification rate of the adaptive condition to the other
conditions, and there were no significant differences.

6. DISCUSSION
When we examined the high and low intervention groups in
the adaptive DRL-skip condition, we found that the upper
median group took less time in the training section and the
overall tutor. They had better posttest scores and pretest
scores compared to the lower median group. It can be con-
cluded that receiving a high amount of intervention (skip-
ping a training problem) did not seem to show any nega-
tive effect on their posttest performance. Also, as the high
intervention group had higher average pretest scores, it is
possible that the DRL policy could identify the students
with good prior proficiency and provided them with more



Table 11: Hint usage in different conditions

Mean hints per problem (Std Dev)

DRL-skip (C1) Control (C4) DRL-WE (C2) Random-skip (C3)

Number of Hints 0.35 (0.42) 0.54 (0.62) 0.31 (0.38) 0.36 (0.42)

Number of hints justified 0.31 (0.39) 0.49 (0.59) 0.29 (0.35) 0.32 (0.39)

Hint justification rate 0.90 0.91 0.92 0.89

Figure 3: Time comparison among all the conditions

Figure 4: Posttest and pretest performance in all the conditions

interventions.

As we compared the posttest performance of the adaptive
condition to the control (all PS) condition, we did not find
any significant difference in any of the performance met-
rics. When comparing time, we found that the adaptive
condition had reduced training time compared to the control
condition, suggesting that the adaptive policy worked well
and reduced training time while maintaining performance,
as seen from the comparison with the control condition.

When we compared the posttest performance of the adap-
tive condition with the DRL-WE condition, we did not find
any differences in posttest scores. We also did not find any
difference in training time, indicating that students spend a
very short time with WE-type training problems. The in-
teresting finding was that the posttest time of the adaptive
condition was significantly better compared to the DRL-WE

condition. When students are given WEs, they may skip
them quickly without learning. Therefore, although they
needed a short time in training, it is possible that they did
not learn to solve problems effectively, which is why they
needed more time in the posttest.

Based on the comparison of the adaptive DRL-skip condi-
tion and the non-adaptive random-skip condition, we find no
difference in posttest scores or time; however, the adaptive
condition had significantly better learning efficiency. This
demonstrates the effectiveness of the proposed DRL policy.

Figure 3 shows the time taken in different sections of the tu-
tor for the different conditions. We can see that the adaptive
condition took less or similar time in the training section,
posttest section, and the total tutor compared to the control
condition and the other conditions. From Figure 4 we find
that the adaptive condition had a similar posttest or better



posttest score compared to the other conditions. Overall,
it can be said that for the adaptive condition students, the
training time was reduced while maintaining the posttest
performance. The results show that our proposed adaptive
DRL policy can be an effective intervention to reduce train-
ing time in intelligent tutors. The proposed adaptive DRL-
based policy can be easily adopted in other problem-solving
domains as well to reduce training time.

7. CONCLUSIONS
In this paper, we proposed a pedagogical policy to deter-
mine when to provide training problems and when to skip
them in intelligent tutors in order to reduce training time
while maintaining student performance. The pedagogical
policy utilized a DRL-based method to make decisions. We
incorporated the proposed policy in an intelligent logic tu-
tor and conducted a study to evaluate the impact of the
policy against three different conditions: a control policy
without any adaptive components, a comparison policy that
provided worked examples using a DRL policy to reduce
training time, and a non-adaptive random policy that also
skipped training problems. The study showed that the adap-
tive policy reduced training time while maintaining student
performance compared to the control policy. The findings
show that the proposed policy performed better in the posttest
in terms of time against the policy that provided worked
examples in training using a DRL policy, and had better
learning efficiency than the non-adaptive policy that skipped
problems in training. Overall, these findings provide in-
sights into the effectiveness of the proposed policy in re-
ducing training time in intelligent tutors.

8. LIMITATIONS AND FUTURE WORK
One limitation of the study is that the results were not cor-
rected for multiple tests. Also, the impact of skips on stu-
dent motivation was not measured. However, since the tutor
always decides how or whether problems are shown to stu-
dents, skipping problems should not adversely affect student
motivation or confidence. An analysis of long-term knowl-
edge retention was beyond the scope of the current study.
However, prior research has shown that 50-64% of students
completing the tutor average over 80% on a delayed posttest
[13]. Another limitation is that DRL-skip policy was not
compared to a simpler hand-coded skip policy. However,
a hand-coded policy must skip problems for students with
high accuracy and/or lower problem-solving times, primarily
benefiting students with high prior knowledge. But learn-
ing is not a linear process. Using a DRL policy optimized
for learning by the end of the tutor allows for variation in
the policies to meet individual student needs and potentially
save time for more students. The study was done using an
intelligent logic tutor. Utilizing only one ITS does not pro-
vide further information about the generalizability of the
proposed pedagogical policy. Therefore, in the future, we
would like to incorporate the pedagogical policy in ITSs in
other domains. Additionally, in the future, we plan to ex-
tend our study and perform further analyses among the stu-
dents of different proficiency in the proposed condition and
the other conditions in order to get a more comprehensive
understanding of the proposed policy’s effectiveness across
a spectrum of proficiency levels.
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