
Parametric Constraints for Bayesian Knowledge Tracing
from First Principles

Denis Shchepakin, Sreecharan Sankaranarayanan, and Dawn Zimmaro
Amazon.com, Inc., USA

{dshch, sreeis, dzimmaro}@amazon.com

ABSTRACT
Bayesian Knowledge Tracing (BKT) is a probabilistic model
of a learner’s state of mastery for a knowledge component.
The learner’s state is a “hidden” binary variable updated
based on the correctness of the learner’s responses to ques-
tions corresponding to that knowledge component. The pa-
rameters used for this update are inferred/learned from his-
torical ground truth data. For this, BKT is often repre-
sented as a Hidden Markov Model and the Expectation-
Maximization algorithm is used to infer the parameters. The
algorithm, can however, suffer from issues including settling
into local minima, producing degenerate parameter values
(such as stating that learners who do not know the skill are
more likely to answer correctly than those who do), and a
high computational cost during fitting. To address these,
we take a “from first principles” approach to derive neces-
sary constraints that can be imposed on the BKT parameter
space. Starting from the basic mathematical truths of prob-
ability and using conceptual behaviors expected of the BKT
parameters in real systems, we derive succinct constraints
for the BKT parameter space. As necessary conditions, ap-
plying the constraints prior to fitting reduces computational
cost and the issues emerging from the EM procedure. We
further introduce a novel algorithm for estimating BKT pa-
rameters subject to the newly defined constraints. While the
issue of degenerate parameters has been reported previously,
this paper is the first, to the best of our knowledge, to derive
necessary constraints from first principles and also present
an algorithm that respects those constraints.
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1. INTRODUCTION
Bayesian Knowledge Tracing (BKT) [6] was introduced as
a way to model the changing knowledge states of students
who were interacting with an adaptive learning system for

skill acquisition. To this day, it remains the most widespread
way to model student learning, predominantly owing to its
sufficient complexity for many use cases [7, 11, 15, 16]. The
model considers the learner’s state of mastery as a “hidden”
or latent binary variable with two possible states – Mastery
and Non-Mastery (Sometimes called Proficient and Not-yet-
proficient [4,14], or Knows and Does-not-know [10]). It then
uses four parameters – the initial probability of mastery, the
transition probability from non-mastery to mastery over a
single learning opportunity, the probability of a correct an-
swer with the learner in the non-mastery state (guess), and
the probability of an incorrect answer with the learner in the
mastery state (slip), to “predict” (i.e., calculate) whether a
given learner is in the mastery state or not. In order to
learn the value of these parameters, BKT is most often rep-
resented as a Hidden Markov Model [3], and the parameters
are determined using an Expectation-Maximization (EM) al-
gorithm [5,8] on historical data.

As with any other EM algorithm, this may result in multi-
ple sets of (highly dissimilar) parameters that fit the data
equally well [3] which, in the case of BKT, affects inter-
pretability. Further, the parameters may be degenerate, i.e.,
fit the data but violate the conceptual meaning, such as by
stating that a learner is more likely to answer correctly if
they don’t know the skill than if they do [1]. This can lead
to incorrect decision-making in real systems. Finally, if the
algorithm needs to be re-run after it is post-hoc determined
to produce degenerate parameters, then that becomes com-
putationally expensive. Several approaches have been sug-
gested that can partially resolve the issue, including deter-
mining the starting values that lead to degenerate parame-
ters [17] (and avoiding them), computing Dirichlet priors for
each parameter and using that to bias the search [24], clus-
tering parameters across similar skills [12,21], and machine-
learned models for some of the parameters [1]. Approaches
that provably avoid degenerate parameters have also been
discussed in literature, but they instead sacrifice the preci-
sion provided by the EM algorithm [10]. Thus, in this paper,
we first derive parametric constraints for the BKT parame-
ters from first principles, that, if satisfied, necessarily avoid
degenerate parameters. Then, we present a novel EM al-
gorithm that respects the derived constraints thus allowing
them to be used in practice.

While similar constraints have previously emerged by study-
ing fixed points of the BKT model [23], here we derive them
from first principles applied to the conceptual meaning of the
modeled process. Moreover, we prove that these less strict
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constrains are sufficient compared to the ones derived in [23].
Finally, we also present a novel EM algorithm that respects
these constraints.

2. DEFINING THE BKT MODEL
BKT assumes that for each knowledge component (KC), a
learner can be in either the Proficient or Not-yet-proficient
state at a given point in time. After attempting an as-
sessment, the learner receives feedback, either explicitly or
gleans it from the fact that their response was marked cor-
rect or incorrect. Thus, this is an opportunity to become
proficient in the corresponding knowledge component. If the
learner learns successfully, they transition from the not-yet-
proficient state to the proficient state for that corresponding
KC. Once the learner becomes proficient in a KC, they can-
not transition back to the not-yet-proficient state (Note that
variations of the BKT model that incorporate“forgetting”al-
low this transition [13]). A BKT model is then constructed
and applied for each KC independently.

Let L
(d)
t be an event that learner d is proficient after re-

ceiving t rounds of feedback; C
(d)
t is an event that learner

d answers assessment t correctly; G
(d)
t is an event that a

learner d guesses a correct answer for an assessment t while

not being proficient; S
(d)
t is an event that a learner d makes

a mistake (“slips”) at an assessment t while being proficient;

and R
(d)
t is an event that a non-proficient learner d transi-

tions to a proficient state after receiving t rounds of feedback.
The classic BKT model assumes that probabilities of guess,
slip, and transition events are independent of the learner and
the assessment and depend only on the learner’s proficiency

state. Moreover, the initial proficiency probability P (L
(d)
0 )

is also assumed to be independent from the learner, and,
rather, a proportion of learners in the population that are
proficient before attempting their first assessment is used.
So, we will omit redundant upper and lower indexes for G,
S, R, and L0 events and their probabilities. See Figure 1 for
an outline of the model.

The BKT model defines P (C
(d)
t+1) thus –

P (C
(d)
t+1) = P (L

(d)
t ) · (1− P (S)) + (1− P (L

(d)
t )) · P (G) (1)

Using the Bayes’ rule, we get –

P (L
(d)
t |C(d)

t+1) =
P (L

(d)
t )·(1−P (S))

P (L
(d)
t )·(1−P (S))+(1−P (L

(d)
t ))·P (G)

,

P (L
(d)
t |C(d)

t+1) =
P (L

(d)
t )·P (S)

P (L
(d)
t )·P (S)+(1−P (L

(d)
t ))·(1−P (G))

(2)

where C
(d)
t is an event complementary to C

(d)
t , i.e., an event

that learner d answers assessment t incorrectly. After an at-
tempt at the assessment and receiving a feedback, the learner
has a chance of transitioning if they are not already proficient
–

P (L
(d)
t+1) = P (L

(d)
t |·) + P (R) · (1− P (L

(d)
t |·)) (3)

where P (L
(d)
t |·) is either P (L

(d)
t |C(d)

t ) or P (L
(d)
t |C(d)

t ) de-
pending on the collected data for the learner.

Knowing the values of all parameters of the BKT model
will allow us to predict the probability of learner d being

proficient in the KC, P (L
(d)
t ) (which we will refer to simply

as “proficiency” of learner d).

3. RESTRICTIONS ON THE BKT PARAM-
ETERS

Prior to estimating the BKT parameters, we need to place
some restrictions on them to maintain the conceptual mean-
ing of the modeled process when used in real systems. All
results obtained in this section are not learner specific. Thus,
for the sake of readability, we will omit all learner-specific in-

dexes in this section, e.g., we will use Lt instead of L
(d)
t .

First, it does not make sense for P (S) and P (G) to be 0
since that would simply eliminate their use as parameters
entirely. P (G) being 1 would mean that a learner in the non-
mastery state would necessarily guess and get the question
right each time which is unrealistic. Similarity, P (S) being
equal to 1 would mean that a learner in the mastery state
would necessarily slip and get the question wrong each time
which obviates the very definition of mastery. Thus, our
first constraint is that P (S) and P (G) both vary between 0
and 1 without ever taking the extreme values exactly. Next,
P (R) is also between 0 and 1. If P (R) = 0, then learners
cannot transition, and the learning experience is a priori
useless. if P (R) = 1, then the learning experience has a
100% success rate. Both situations cannot be guaranteed.
Next, if P (L0) = 0, then from (2) - (3), all P (Lt) = 0,
which is an uninteresting scenario to consider. Moreover, if
P (Lt) = 0, then from (3), it follows that P (Lt−1|·) = 0.
And from (2), we can see it is possible only if P (Lt−1) = 0.
Therefore, by induction, P (L0) = 0. Similarly, P (Lt) = 1 if
and only if P (L0) = 1. Thus, we can assume –

1. 0 < P (G) < 1,

2. 0 < P (S) < 1,

3. 0 < P (R) < 1,

4. 0 < P (Lt) < 1 for all t = 0, · · · , T .

There are some additional restrictions we can add for the
BKT parameters. Namely, we want correct answers to in-
crease our estimate of learner’s proficiency both before and
after the transition. Similarly, incorrect answers should lower
the proficiency.

P (Lt|Ct+1) ≥ P (Lt) ≥ P (Lt|Ct+1) (4)

and

P (Lt+1|Ct+1) ≥ P (Lt) ≥ P (Lt+1|Ct+1) (5)

The inequalities in (4) yield a natural restriction on the pa-
rameters –

1− P (S) ≥ P (G) (6)

that is, the probability of answering an assessment correctly
is higher if a learner is proficient. Moreover, this restriction
is also sufficient for the left inequality in (5) to be true. Let
us prove these statements.

Proof. Let us consider the first three inequalities.



P (L0) Prior Proficiency the probability the learner is in proficient
state for the KC prior to first feedback.

P (G) Guess the probability of correct guess at
an assessment while not being proficient
at the corresponding KC.

P (S) Slip the probability of slip (mistake) at
an assessment while being proficient at
the corresponding KC.

P (R) Transition the probability of a learner becoming
proficient in KC after making an attempt
at an assessment and reading the feedback.

P (L
(d)
t ) Proficiency the probability of learner d being in a proficient

state after receiving t rounds of feedback.

P (C
(d)
t ) Correctness of the probability of learner d answering

an Attempt assessment t correctly.

Figure 1: BKT Parameters and Notation

1. P (Lt|Ct+1) ≥ P (Lt)

P (Lt) · (1− P (S))

P (Lt) · (1− P (S)) + P (G) · (1− P (Lt))
≥ P (Lt),

1− P (S)

P (Lt) · (1− P (S)) + P (G) · (1− P (Lt))
≥ 1,

1− P (S) ≥ P (Lt) · (1− P (S)) + P (G) · (1− P (Lt)),

1− P (S)− P (G) ≥ P (Lt) · (1− P (S)− P (G)),

(1− P (S)− P (G)) · (1− P (Lt)) ≥ 0,

which is always true if and only if 1−P (S)−P (G) ≥ 0.

2. P (Lt) ≥ P (Lt|Ct+1):

P (Lt) ≥
P (Lt) · P (S)

P (Lt) · P (S) + (1− P (Lt)) · (1− P (G))
,

1 ≥ P (S)

P (Lt) · P (S) + (1− P (Lt)) · (1− P (G))
,

P (Lt) · P (S) + (1− P (Lt)) · (1− P (G)) ≥ P (S),

(1− P (Lt)) · (1− P (G)− P (S)) ≥ 0,

which is always true if and only if 1−P (S)−P (G) ≥ 0.

3. P (Lt+1|Ct+1) ≥ P (Lt):

P (Lt+1|Ct+1) = P (Lt|Ct+1)

+ P (R) · (1− P (Lt|Ct+1)) ≥ P (Lt),

P (Lt|Ct+1) · (1− P (R)) + P (R) ≥ P (Lt),

where left-hand side is

P (Lt) · (1− P (S)) · (1− P (R))

P (Lt) · (1− P (S)) + P (G) · (1− P (Lt))
+ P (R)

=
P (Lt) · (1− P (S)) + P (G) · (1− P (Lt)) · P (R)

P (Lt) · (1− P (S)) + P (G) · (1− P (Lt))
.

It follows

P (Lt) · (1− P (S)) + P (G) · (1− P (Lt)) · P (R)

≥ P (Lt)
2 · (1− P (S)) + P (G) · P (Lt) · (1− P (Lt)),

and can be further simplified to

P (Lt) · (1− P (S)) · (1− P (Lt))

+ (1− P (Lt)) · P (G) · (P (R)− P (Lt)) ≥ 0,

P (Lt) · (1− P (S)) + P (G) · (P (R)− P (Lt)) ≥ 0,

P (Lt) · (1− P (S)− P (G)) + P (G) · P (R) ≥ 0,

which is true if 1− P (S)− P (G) ≥ 0.

The final inequality in (5) yields a non-trivial restriction –

P (Lt) ≥
(1− P (G)) · P (R)

1− P (S)− P (G)
. (7)

Proof. Similar to the previous proof, from

P (Lt) ≥ P (Lt+1|Ct+1)

we have

P (Lt) ≥
P (Lt) · P (S) + (1− P (Lt)) · (1− P (G)) · P (R)

P (Lt) · P (S) + (1− P (Lt)) · (1− P (G))
,



which leads to

P (Lt)
2 · P (S) + P (Lt) · (1− P (Lt)) · (1− P (G))

≥ P (Lt) · P (S) + (1− P (Lt)) · (1− P (G)) · P (R),

and further simplifies to

P (Lt) · P (S) · (1− P (Lt))+

(1− P (Lt)) · (1− P (G)) · (P (R)− P (Lt)) ≤ 0,

P (Lt) · P (S) + (1− P (G)) · (P (R)− P (Lt)) ≤ 0,

P (Lt) · (1− P (G)− P (S)) ≥ (1− P (G)) · P (R).

Note that 1 − P (G) − P (S) ̸= 0, otherwise P (G) = 1 or
P (R) = 0. Therefore,

P (Lt) ≥
(1− P (G)) · P (R)

1− P (S)− P (G)
.

Let us define the value in the right-hand side of (7) as P ∗. It
can be shown that if P ∗ < P (Lt∗) < 1, then P ∗ < P (Lt) < 1
for any t > t∗ and any sequence of attempts. Namely, the
following is true –

Theorem 1. In a sequence of all failed attempts P (Lt) will
asymptotically approach P ∗ from the right, and in a sequence
of all successful attempts P (Lt) will asymptotically approach
1 from the left.

Proof. Let us consider a sequence of only failed attempts
F = (F1, F2, · · · , FT ). And let

P (Ft) = P ∗ +
ε

(1− P (S)− P (G))

for some 0 < ε < (1− P (S)− P (G)) · (1− P ∗) and some t.
Note that using definition for P ∗ we get

P (Ft) =
(1− P (G)) · P (R) + ε

(1− P (S)− P (G))
. (8)

Next, we write P (Ft+1) in the following form

P (R) +
P (Ft) · P (S) · (1− P (R))

P (Ft) · P (S) + (1− P (Ft)) · (1− P (G))

=P (R) +
P (Ft) · P (S) · (1− P (R))

−P (Ft) · (1− P (S)− P (G)) + (1− P (G))

=P (R) +

(1−P (G))·P (R)+ε
1−P (S)−P (G)

· P (S) · (1− P (R))

−(1− P (G)) · P (R)− ε+ (1− P (G))

=P (R)

+
((1− P (G)) · P (R) + ε) · P (S) · (1− P (R))

(1− P (S)− P (G)) · ((1− P (G)) · (1− P (R))− ε)

=P (R)

+
P (S)

[
P (R) · ((1− P (G)) · (1− P (R))− ε) + ε

]
(1− P (S)− P (G)) · ((1− P (G)) · (1− P (R))− ε)

=P (R) +
P (R) · P (S)

1− P (S)− P (G)

+
ε · P (S)

(1− P (S)− P (G)) · ((1− P (G)) · (1− P (R))− ε)

=P ∗

+
ε

(1− P (S)− P (G))
· P (S)

(1− P (G)) · (1− P (R))− ε
,

where it can be easily shown from (8) and the fact that
P (Ft) < 1 that

0 <
P (S)

(1− P (G)) · (1− P (R))− ε
< 1.

Therefore,

P ∗ < P (Ft+1) < P ∗ +
ε

1− P (S)− P (G)
= P (Ft).

This proves the statement that if P (F0) > P ∗, then the se-
quence (P (F1), P (F1), · · · , P (FT )) asymptotically approaches
P ∗ from the right.

Let us now consider a sequence of only successful attempts
U = (U1, U2, · · · , UT ). We know that the sequence of profi-
ciencies (P (U1), P (U2), · · · , P (UT )) is increasing and cannot
reach 1 from previous discussion. Let us show, that it asymp-
totically approaches 1. Let P (Ut) = 1− ϵ for some 0 < ϵ < 1
and some t. Then we can write P (Ut+1) in the following
form:

P (Ut) · (1− P (S)) · (1− P (R))

P (Ut) · (1− P (S)) + (1− P (Ut)) · P (G)
+ P (R)

=
P (Ut) · (1− P (S)) + (1− P (Ut)) · P (G) · P (R)

P (Ut) · (1− P (S)) + (1− P (Ut)) · P (G)
=

=
(1− ϵ) · (1− P (S)) + ϵ · P (G) · P (R)

(1− ϵ) · (1− P (S)) + ϵ · P (G))
=

1− ϵ · P (G) · (1− P (R))

(1− ϵ) · (1− P (S)) + ϵ · P (G))
. (9)



Note that –

(1− ϵ) · (1− P (S)− P (G)) + P (R) · P (G) > 0,

(1− ϵ) · (1− P (S))− P (G) + ϵ · P (G) + P (R) · P (G) > 0,

(1− ϵ) · (1− P (S)) + ϵ · P (G) > P (G) · (1− P (R)),

P (G) · (1− P (R))

(1− ϵ) · (1− P (S)) + ϵ · P (G)
< 1.

Using (9), gives us

P (Ut) = 1− ϵ < P (Ut+1) < 1.

Therefore, if P (U0) < 1, then the sequence (P (U1), P (U2), · · · ,
P (UT )) asymptotically approaches 1 from the left.

Finally, for any sequence of attempts L = (L1, L2, · · · , LT )
if P (L0) = P (F0) = P (U0), then sequence F is the lower
bound for L, and sequence U is the upper bound for L.

Thus, we arrive at the following succinct list of restrictions
on the BKT model parameters –

0 < P (G) < 1, (10)

0 < P (S) < 1, (11)

0 < P (R) < 1, (12)

1− P (S)− P (G) ≥ 0, (13)

(1− P (G)) · P (R)

1− P (S)− P (G)
< P (L0) < 1. (14)

4. ESTIMATING THE PARAMETERS
LetX = (X(1), X(2), · · · , X(D)) be a hidden process of learn-

ers’ states of proficiency whereX(d) = (X
(d)
1 , X

(d)
2 , · · · , X(d)

T (d))

is a sequence corresponding to learner d. X
(d)
t takes value

0 if learner d is not proficient after t rounds of feedback,
and value 1 if learner d is proficient after t rounds of feed-
back. Analogously, let Y = (Y (1), Y (2), · · · , Y (D)) be an ob-
servable process of a learner’s attempts at assessments, with

Y (d) = (Y
(d)
1 , Y

(d)
2 , · · · , Y (d)

T (d)) is a sequence of attempts cor-

responding to a learner d. Similarly, Y
(d)
t takes value 0 and

1 for incorrect and correct answers by learner d at assess-
ment t, respectively. And let y be a realization of Y , i.e.,
an available dataset. We cannot directly observe a corre-
sponding realization of the latent process X. For maximum
likelihood estimation of parameters we would need to max-
imize the marginal likelihood function with respect to X,
which is intractable. Let us consider approaches to estimate
the parameters of the BKT model for a given KC: P (L0),
P (G), P (S), and P (R).

4.1 Expectation-Maximization Algorithm
Expectation–maximization (EM) algorithm [8] is an itera-
tive algorithm to find local maximum likelihood estimates
of parameters in a model with unobserved latent variables.
EM is not guaranteed to converge to an optimal solution,
but rather to a local optimal solution. EM is used when
computation of the likelihood function is intractable due to
presence of latent variables. Starting with a random initial
guess for parameters, the algorithm improves the estimate
for model parameters in each iteration by guaranteeing that
the new parameter values correspond to higher values of the
log-likelihood function without explicitly computing it. Let
us denote θ as a vector of all model parameters, and θ∗ as
the parameter estimates at the current step of EM. During
each step, the function Q(θ) = Q(θ|θ∗) is constructed as the
expected value of log-likelihood function of θ with respect to
the current conditional distribution of X given data y and
θ∗ –

Q(θ|θ∗) = EX|y,θ∗ [logP (y,X|θ)] . (15)

EM states that –

∀θ : logP (y|θ)− logP (y|θ∗) ≥ Q(θ|θ∗)−Q(θ∗|θ∗), (16)

that is, any θ that increases value of Q over Q(θ∗|θ∗) also im-
proves the value of the corresponding marginal log-likelihood
function. EM defines the next value of θ∗ as the –

θ∗next = argmax
θ

Q(θ|θ∗). (17)

For a discrete case, like a BKT model, (15) becomes –

Q(θ|θ∗) =
∑
x∈X

log [P (y, x|θ)] · P (x|y, θ∗), (18)

where X is a set of all possible X. Because P (y, x|θ∗) =
P (x|y, θ∗) · P (y|θ∗) and P (y|θ∗) is a constant with respect
to θ, maximization of (18) is equivalent to a maximization
of –

Q̂(θ|θ∗) =
∑
x∈X

log [P (y, x|θ)] · P (y, x|θ∗). (19)

Sometimes, maximization of (19) is more convenient than
(18).

BKT can be modeled as a Hidden Markov model and, there-
fore, a special case of EM algorithm, Baum-Welch algo-
rithm [2], can be used. The Baum-Welch algorithm provides
closed forms for θ∗next based on θ∗ values. It is fully described
in Appendix A.

Note, that the Baum-Welch algorithm does not guarantee
that (13) - (14) are satisfied. To avoid cases where Baum-
Welch converges to a unsuitable parameters (i.e., degenerate
parameters), we offer to use a different approach.

4.1.1 Novel EM Algorithm using the Interior-Point
Method

We want an algorithm that will always yield meaningful pa-
rameters for the BKT model by satisfying conditions (10) -

(14). That can be achieved if instead of just maximizing Q̂
in (17), we maximize it under (10) - (14) restrictions. Note
that the corresponding log-likelihood function will increase
due to property (16). Conditions (10) - (12) and right-hand



side of (14) are satisfied automatically due to the form of

log functions in Q̂, see (30). Finally, (13) and left-hand side
of (14) can be combined into a single inequality, resulting in
the following non-linear optimization problem –

θ∗next = argmax
θ

Q̂(θ|θ∗),

s.t. (1− P (S)− P (G)) · P (L0)
−(1− P (G)) · P (R) ≥ 0,

(20)

where Q̂ has form (30). We will use the interior-point method
on (20). The goal is to find the maximum of the barrier func-
tion –

B(θ, µ) = Q̂(θ|θ∗) + µ · log c(θ), (21)

where c(θ) is the left-hand side of the constrain from (20),
and µ is a so-called barrier parameter. We will iterate through
a decreasing sequence of values for µ parameter µ1 > µ2 >
· · · > µW = 0, finding a maximum of W in each iteration.
As µ approaches 0, the maximum of B converges to the so-
lution of (20). Next, a dual variable λ is introduced, defined
as c(θ) · λ = µ. To find the extremum point of B we need to
find zero of the following vector function –

F =

[
∇B

λ · c(θ)− µ

]
. (22)

We will use a Newton’s method to find zero of F . We start
with some initial guesses θ1 and λ1 by solving and update
them by solving –

JF (θk, λk)×
[

∆θ
∆λ

]
= −F (θk, λk), (23)

where JF is a Jacobian of F ; and updating –

θk+1 = θk + ν ·∆θ,
λk+1 = λk + ν ·∆λ,

(24)

where ν is a value small enough, so updated θk+1 and λk+1

satisfy c(θk+1) ≥ 0 and λk+1 ≥ 0. Next,

F =



∂Q̂

∂P (L0)
+ λ · (1− P (S)− P (G))

∂Q̂

∂P (G)
+ λ · (P (R)− P (L0))

∂Q̂

∂P (S)
− λ · P (L0)

∂Q̂

∂P (R)
− λ · (1− P (G))

λ · (1− P (S)− P (G)) · P (L0)
−λ · (1− P (G)) · P (R)− µ



, (25)

where partial derivatives of Q̂ are given by (31) - (35). And
the Jacobian JF has the following form

∂2Q̂

∂P (L0)2
−λ −λ 0 1− P (S)− P (G)

−λ
∂2Q̂

∂P (G)2
0 λ P (R)− P (L0)

−λ 0
∂2Q̂

∂P (S)2
0 −P (L0)

0 λ 0
∂2Q̂

∂P (R)2
−1 + P (G)

λ · ∂c

∂P (L0)
λ · ∂c

∂P (G)
λ · ∂c

∂P (S)
λ · ∂c

∂P (R)
c,



(26)

where –

∂c

∂P (L0)
= 1− P (S)− P (G),

∂c

∂P (G)
= P (R)− P (L0),

∂c

∂P (S)
= −P (L0),

∂c

∂P (R)
= −1 + P (G).

(27)

Note from (31) - (35) that each first partial derivative of Q̂
has the following form –

∂Q̂

∂P (·) =
A

P (·) − B

1− P (·) (28)

with some values of A and B independent of P (·). There-
fore, all corresponding second partial derivatives have the
following form –

∂2Q̂

∂P (·)2 = − A

P (·)2 − B

(1− P (·))2 . (29)

To summarize, we begin with µ = µ1 and find zero of func-
tion F (µ1) starting with some random initial guesses (θ1(µ1), λ1(µ1))
and update them using rule (24) and formulae (23), (25) -
(29), (31) - (35) until it converges to values (θk(µ1), λk(µ1))
for some k. Then we apply the same procedure to find zero of
function F (µ2) using (θk(µ1), λk(µ1)) as initial guesses. We
continue until we converge to (θk′(µW ), λk′(µW )), the solu-
tion of F (µW ) = 0, which maximizes (21) and is solution of
(20).

5. DEMONSTRATING THE EM-NEWTON
ALGORITHM ON SIMULATED DATA

The simulated data used in this section is made available
along with the paper [22]. In this section, we compare the
performance of the method proposed in this paper, which we
call EM-Newton algorithm, with the classical Baum-Welch
algorithm. First, let us provide an example where the Baum-
Welch algorithm yields degenerate parameters, i.e., the ones
not satisfying (10) – (14). We simulated 100 datasets using
the following parameter values: P (L0) = 0.45, P (R) = 0.3,
P (S) = 0.1, and P (G) = 0.25 (the same values for all
datasets). All simulated datasets contained 300 learners an-
swering 10 questions each. We fit each dataset using both
EM-Newton and Baum-Welch algorithms starting from the
same random initial parameter guesses. The Baum-Welch al-
gorithm yielded two clusters of fitted parameters: the “good
estimates”, the ones close to the true parameters (80 cases),



and the “”bad estimates”, the ones far from the true pa-
rameters (20 cases). Moreover, the true parameters and all
“good estimates” satisfied the conditions (10) – (14), while
all “bad estimates” violated at least one of the conditions.
Interestingly, EM-Newton algorithm was able to rescue the
“bad estimates” for the corresponding “bad datasets” and
produce valid parameter estimates. While both algorithms
yielded very similar values of the parameters for the “good
datasets”, which were close to the true parameter values and
satisfied the conditions, EM-Newton algorithm estimates did
not fail even for“bad datasets”by forcing the parameters into
a non-degenerate space. See Fig. 2.

Next, we repeated the same experiment but instead of fitting
100 dataset once, we randomly selected one of the “good
datasets” and fitted it 100 times with both algorithms using
100 random initial parameter guesses (again, using the same
initial guesses between two algorithms). Again, Baum-Welch
algorithm produced two clusters of the parameter estimates
with the same properties as in the previous experiment (80
“good estimates”, 20 “bad estimates”), and the EM-Newton
algorithm was able to rescue the “bad” cluster. See Fig. 3.
Interestingly, this experiment indicates that the simulated
datasets are likely not inherently “bad” or “good”, since the
same dataset produced both “good” and “bad” estimates at
the same rate as a series of different datasets. Although
the conditions under which Baum-Welch algorithm produces
degenerate results are out of scope of this work, it seems to
be dependent on the initial parameter guesses. That makes
a lot of sense due to the local nature of the Baum-Welch
algorithm. It also explains prior work that attempts to solve
this problem by determining the starting values that lead to
degenerate parameter values in order to avoid them [17].

After providing some examples of situations when Baum-
Welch algorithm produces degenerate results, we looked to-
wards more systematic analysis of the comparison between
two algorithms for different combinations of the true pa-
rameter values. We randomly sampled 100 different sets of
parameters from the space of non-degenerate parameters,
defined by conditions (10) – (14), see Fig. 4. Then, for each
set of parameters we repeated the first experiment of the sec-
tion. We compared the Sum of Squared Errors (SSE) for the
estimates yielded by the EM-Newton and Baum-Welch al-
gorithms. As expected, the distribution of EM-Newton SSE
was shifted to the left compared to the Baum-Welch algo-
rithm: the outputs of EM-Newton were either similar to the
Baum-Welch ones (for “good” cases) or closer to true param-
eter values (for rescued “bad” cases), see Figure 5, Left. This
logic was further supported by EM-Newton SSE having lower
variability than Baum-Welch SSE: a single-clustered output
of EM-Newton algorithm had lower range of SSE for each
given dataset than a potentially multiple-clustered output
of Baum-Welch algorithm, see Figure (5), Right. This ex-
periment demonstrated that EM-Newton algorithm has both
higher average accuracy (SSE distribution is shifted to the
left) and higher precision (SSE have lower variation within
a dataset).

6. DISCUSSION
The paper first derives a list of constraints on the BKT pa-
rameter space following from the conceptual meaning of the
modeled process. One question that may arise in the reader’s
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Figure 2: BKT model fit to 100 simulated datasets using clas-
sical Baum-Welch algorithm (× and +) and proposed EM-
Newton method (# and ◦). The true parameter values were:
P (L0) = 0.45, P (R) = 0.3, P (S) = 0.1, and P (G) = 0.25.
Baum-Welch algorithm produced two clusters of estimates:
the ones satisfying conditions (10) – (14) and close to the true
parameter values (×; Baum-Welch [C]), and the degenerate
ones not satisfying the conditions and far from the true pa-
rameter values (+; Baum-Welch [D]). The same datasets were
used to produced parameter estimates using EM-Newton al-
gorithm (#; EM-Newton [C] and ◦; EM-Newton [D], respec-
tively). Note that EM-Newton algorithm produced only one
cluster of the parameter estimates, that are all close to the
true parameter values. Also note that all EM-Newton pa-
rameter estimates satisfied conditions (10) – (14), i.e., not
degenerate, by design.
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Figure 3: Experiment similar to the one on Fig. 2, but instead
of 100 different datasets, the same dataset was fit 100 times
using different initial parameter guesses. The outcome of the
experiment is virtually identical, with the difference of the
estimates grouped much closer. Nevertheless, it is easy to
see that the “bad cluster” consists exclusively of a subset of
Baum-Welch estimates not satisfying (10) – (14) conditions
(+; Baum-Welch [D]) (and, which is harder to see, it is the
only cluster where they are present).
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Figure 4: The non-degenerate parameter space defined by
(10) – (14). Note that there are four parameters, so a 4D
plot would be required to actually display the space. Instead,
we can rewrite condition (14) with respect to P (R)/P (L0),
and utilize a 3D plot instead. The non-degenerate parame-
ter space is underneath the shown surface depicted from two
angles (with additional restriction of all parameters being be-
tween 0 and 1). The straight lines on the surface are the
contour lines. The sampled non-degenerate parameters are
marked as dots.
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Figure 5: Left. Distribution of SSE for parameter estimates
produced by Baul-Welch and EM-Newton algorithms. Right.
For each dataset and algorithm we found the range of pro-
duced SSE (minimum SSE subtracted from maximum SSE).
Note that the variation in SSE is always lower for EM-Newton
than for Baum-Welch.

mind is around the validity of the constraints imposed on the
BKT parameters in practice. While the justifications for the
constraints are mentioned in the text, they also assume that
the questions are “well-designed”. It follows, therefore, that
using this process, it is possible to address the complemen-
tary issue of identifying poorly performing KCs as those for
whom these constraints are violated and flag them to learn-
ing designers with appropriately recommended fixes. For
example, P (R) = 1 being true could mean that the learning
experience is not connected to the KC since it is leading to
proficiency regardless of mastery. While 1 − P (S) < P (G)
could tell us the question is worded in such a way that leads
to overthinking, i.e., skillful learners are less likely to answer
it correctly than unskillful learners guessing the answer by
chance.

Ultimately, we derived an algorithm that converges to a set of
parameters that are guaranteed to meet the constraints. Ad-
ditionally, we compared our algorithm to the classic Baum-
Welch algorithm used to estimate parameters of Hidden Markov
Models, including BKT. We demonstrated that both algo-
rithms converge to similar values of parameters in cases where
the values satisfy the derived conditions. We also demon-
strated that Baum-Welch algorithm occasionally converges
to the values of parameters than are neither close to the
true values nor satisfying of the conditions, with our al-
gorithm being able to rescue those cases. Although a sin-
gle run of the Baum-Welch algorithm is less computational
heavy than a single run of our algorithm (ours requires the
Newton method to converge on each iteration), the Baum-
Welch algorithm is often run multiple times with different
initial conditions after post-hoc finding degenerate parame-
ters. Our algorithm can be run once and, therefore, be less
computational heavy overall.

Finally, let us also notice that the derivation approach de-
scribed in the paper can be followed to devise an algorithm
subject to a different set of constraints as well, so long as the
set of constraints remain tractable. The approach can, there-
fore, be extended to BKT extensions such as the addition of
individual item difficulty [19], individualization [18,25], time
between attempts [20], or forgetting [13].

7. CONCLUSION AND FUTURE WORK
This paper derives succinct constraints that can be imposed
on the BKT parameter space from first principles. Then, a
new Expectation-Maximization algorithm using the Interior-
Point Method is introduced that produces parameters sub-
ject to those constraints and is, therefore, guaranteed to pro-
duce valid, i.e., non-degenerate parameters. While the com-
putational cost savings may not be dramatic for 4-parameter
BKT, as presented, they become increasingly more so for ex-
tensions to BKT that can still use Expectation-Maximization
such as the addition of individual item difficulty [19], individ-
ualization [18,25], time between attempts [20], or forgetting
[13] parameters which we will present in future work. Exper-
iments with real-time adaptive learning systems is also cur-
rently in progress and will be reported in future work. More
complex extensions such as BKT+ [4] incorporate many of
these, but, start to commensurately require more complex
methods such as Markov Chain Monte Carlo (MCMC) or
even deep learning [9] which could make such first principles
derivation untenable.
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APPENDIX

A. BAUM-WELCH ALGORITHM
We have –

P (y, x|θ) =
D∏

d=1

P (y(d), x(d)|θ)

=

D∏
d=1

(
(1− P (L0))

(1−x
(d)
1 ) · P (L0)

x
(d)
1

×
T (d)∏
t=1

{ [
P (G)y

(d)
t · (1− P (G))1−y

(d)
t )
]1−x

(d)
t

×
[
P (S)1−y

(d)
t · (1− P (S))y

(d)
t

]x(d)
t

}

×
T (d)−1∏

t=1

{ [
(1− P (R))1−x

(d)
t+1 · P (R)x

(d)
t+1

]1−x
(d)
t

×
[
x
(d)
t+1

]x(d)
t

})
.

Thus, (19) becomes –

Q̂ (θ|θ∗) =∑
x∈X

[
D∑

d=1

(
(1− x

(d)
1 ) · log(1− P (L0))

+x
(d)
1 · logP (L0)

)
+

T (d)∑
t=1

(
(1− x

(d)
t ) · y(d)

t · logP (G)

+(1− x
(d)
t ) · (1− y

(d)
t ) · log(1− P (G))

)
+

T (d)∑
t=1

(
x
(d)
t · (1− y

(d)
t ) · logP (S)

+x
(d)
t · y(d)

t · log(1− P (S))

)
+

T (d)−1∑
t=1

(
(1− x

(d)
t ) · (1− x

(d)
t+1) · log(1− P (R))

+(1− x
(d)
t ) · x(d)

t+1 · logP (R)

)
+

T (d)−1∑
t=1

x(d) log x
(d)
t+1

]
· P (y, x|θ∗)

(30)

The maximum of the function can be found by finding ex-

tremum of Q̂(θ|θ∗). For P (L0) we have

∂Q̂

∂P (L0)
=

∂

∂P (L0)

[∑
x∈X

D∑
d=1

(
(1− x

(d)
1 ) · log(1− P (L0))

+ x
(d)
1 · logP (L0)

)
· P (y, x|θ∗)

]
(31)

=
∂

∂P (L0)

[
D∑

d=1

log(1− P (L0)) · P (x
(d)
1 = 0, y|θ∗)

+

D∑
d=1

logP (L0) · P (x
(d)
1 = 1, y|θ∗)

]

=

D∑
d=1

P (x
(d)
1 = 1, y|θ∗)

P (L0)
−

D∑
d=1

P (x
(d)
1 = 0, y|θ∗)

1− P (L0)
. (32)

For P (G) we have –

∂Q̂

∂P (G)
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∂

∂P (G)
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x∈X
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(d)
t ) ·

(
y
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=

D∑
d=1

T (d)∑
t=1

y
(d)
t · P (x

(d)
t = 0, y|θ∗)

P (G)

−

D∑
d=1

T (d)∑
t=1

(1− y
(d)
t ) · P (x

(d)
t = 0, y|θ∗)

1− P (G)
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For P (S) we have –

∂Q̂

∂P (S)
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∂

∂P (S)
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And for P (R) we have –
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−
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P (x
(d)
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1− P (R)
. (35)

Setting partial derivatives (31) - (35) to zero, yields a closed
form solution for the parameters:
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(36)

Let us now describe and algorithm to find probabilities in
(36). The hidden proficiency process X is Markov, therefore

we can define a transition matrix A = {aij} = {P (X
(d)
t =

j|X(d)
t−1 = i)} for i = 0, 1 and j = 0, 1:

A =

[
1− P (R) P (R)

0 1

]
,

and a so-called emission matrix B = {bj(i)} = {P (Y
(d)
t =

i|X(d)
t = j)} for i = 0, 1 and j = 0, 1:

B =

[
1− P (G) P (G)
P (S) 1− P (S)

]
.

And a vector of initial states π = {πi} = {P (X
(d)
0 = i)} for

i = 0, 1:

π =

[
1− P (L0)
P (L0)

]
.

Starting with some random initial guess for parameters P (S),
P (G), P (R), P (L0), denoted as vector θ, we compute a so-
called Forward Procedure for d = 1, · · · , D and m = 0, 1:

α
(d)
i (t) = P

(
Y

(d)
1 = y

(d)
1 ,

Y
(d)
2 = y

(d)
2 , · · · , Y (d)

t = y
(d)
t , X

(d)
t = i

∣∣θ), (37)

by recursive formulae –

α
(d)
i (1) = πi · bi(y(d)

1 ),

α
(d)
i (t+ 1) = bi(y

(d)
t+1) ·

(
α
(d)
0 (t) · a0i + α

(d)
1 (t) · a1i

)
,

(38)

and a so-called Backward Procedure –

β
(d)
i (t) = P

(
Y

(d)
t+1 = y

(d)
t+1,

Y
(d)
t+2 = y

(d)
t+2, · · · , Y

(d)
T = y

(d)
T

∣∣X(d)
t = i, θ

)
, (39)

by recursive formulae –

β
(d)
i (T ) = 1,

β
(d)
i (t) = β

(d)
0 (t+ 1) · ai0 · b0(y(d)

t+1)

+β
(d)
1 (t+ 1) · ai1 · b1(y(d)

t+1).

(40)

Then we can define

γ
(d)
i (t) = P

(
X

(d)
t = i

∣∣∣ y(d), θ
)
=

P
(
X

(d)
t = i, y(d)

∣∣∣ θ)
P (y(d)| θ)

=
α
(d)
i (t) · β(d)

i (t)
1∑

k=0

α
(d)
k (t) · β(d)

k (t)

, (41)

and

ξ
(d)
ij (t) = P

(
X

(d)
t = i,X

(d)
t+1 = j

∣∣∣ y(d), θ
)

=
P
(
X

(d)
t = i,X

(d)
t+1 = j, y(d)

∣∣∣ θ)
P (y(d)| θ)

=
α
(d)
i (t) · aij · bj(y(d)

t+1) · β
(d)
j (t+ 1)

1∑
k=0

1∑
w=0

α
(d)
k (t) · akw · bw(y(d)

t+1) · β
(d)
w (t+ 1)

. (42)

Therefore, using (37) - (42), solution (36) becomes

P (L0) =
1

D

D∑
d=1

γ
(d)
1 (1),

P (G) =

D∑
d=1

T (d)∑
t=1

y
(d)
t · γ(d)

0 (t)

D∑
d=1

T (d)∑
t=1

γ
(d)
0 (t)

,

P (S) =

D∑
d=1

T (d)∑
t=1

(1− y(d)) · γ(d)
1 (t)

D∑
d=1

T (d)∑
t=1

γ
(d)
1 (t)

,

P (R) =

D∑
d=1

T (d)−1∑
t=1

ξ
(d)
01 (t)

D∑
d=1

T (d)−1∑
t=1

γ
(d)
0 (t)

.

(43)


