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ABSTRACT 
Research into student affect detection has historically relied on 

ground truth measures of emotion that utilize one of three sources 

of data: (1) self-report data, (2) classroom observations, or (3) sen-

sor data that is retrospectively labeled. Although a few studies have 

compared sensor- and observation-based approaches to student af-

fective modeling, less work has explored the relationship between 

self-report and classroom observations. In this study, we use both 

recurring self-reports (SR) and classroom observation (BROMP) to 

measure student emotion during a study involving middle school 

students interacting with a game-based learning environment for 

microbiology education. We use supervised machine learning to 

develop two sets of affect detectors corresponding to SR and 

BROMP-based measures of student emotion, respectively. We 

compare the two sets of detectors in terms of their most relevant 

features, as well as correlations of their output with measures of 

student learning and interest. Results show that highly predictive 

features in the SR detectors are different from those selected for 

BROMP-based detectors. The associations with interest and moti-

vation measures show that while SR detectors captured underlying 

motivations, the BROMP detectors seemed to capture more in-the-

moment information about the student’s experience. Evidence sug-

gests that there is benefit of using both sources of data to model 

different components of student affect. 
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room Observation, Self-reporting. 

1. INTRODUCTION
Research on student affect detection is beginning to mature and in-

cludes a range of affective constructs that are relevant in academic 

contexts. A fundamental step in building affect detectors is select-

ing the “ground truth” measure of emotion that will be used to 

provide class labels for training the models [15]. The quality of an 

affect detector depends in part on the robustness and reliability of 

its training data in capturing the defined construct. The importance 

of labeling ground truth in affect detection has been recognized 

widely, with discussions on advantages and pitfalls of different 

methods [62]. Differences arising from these methods of obtaining 

ground truth may influence our understanding of these phenomena, 

making it essential to examine and compare these techniques with 

each other.  

Emotion research has a long history that dates as far back as Darwin 

[20], and for many years it was heavily influenced by Ekman’s the-

ory of basic emotions: happiness, surprise, fear, disgust, anger, and 

sadness [17]. Although the EDM community rarely engages with 

that particular set of emotions, EDM researchers frequently utilize 

approaches that share some of the same implicit assumptions as Ek-

man. For example, sensor-based affective research often uses 

Ekman & Friesen’s [28] Facial Action Coding System (FACS). 

Self-report and classroom observation measures are often designed 

as if students experience one (and only one) emotion at a time and 

as if these were binary experiences (e.g., confused or not). Only a 

few self-report studies have employed Likert scales to examine the 

strength of reported emotions [47], and it is relatively rare to find 

methods that capture multiple student emotions occurring simulta-

neously, such as a student being focused yet bored, or confused yet 

happy [10, 18, 46]. 

Certainly, some simplification is necessary to produce replicable 

analyses. The human face—often the primary vehicle for affective 

expression—is a dynamic source of complex information [40]. 

Moreover, there is evidence that emotion labels are constructed lin-

guistically, making the emotion categories used in much of the 

affective modeling literature susceptible to subtle cultural differ-

ences [29, 41, 55, 56]. Yet, the shortcomings of current methods for 

obtaining ground truth measurements of student emotions are often 

overlooked in research on student affect detection. 

One measurement approach that has been widely used in the field 

is the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP; 

[55]). BROMP was initially developed for training interaction-

based affect detectors (e.g., [4, 8]), but it has also been used to train 

detectors using sensor data [11]. BROMP has been successfully 

adapted to other cultures, in a process where one of its developers 

consults with two observers to develop a new coding scheme that 

is culturally appropriate, and then interrater reliability is achieved 

between the two observers rather than with someone who was cer-

tified in a US context [55].  

This study seeks to build upon the research using BROMP to in-

vestigate Graesser et al.’s [35] questions about the relationship 

between how a student might describe their own affective experi-

ence and the observable differences that manifest when the student 

is being observed. It is possible, for example, that a student might 

not be intrinsically interested in material, but still be willing to en-

gage with the material, resulting in an outside observer coding 
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“engaged concentration” while the student internally feels “bored.” 

Likewise, a student might be unaware of how frustrated they have 

become while still manifesting a robust affective display (e.g., fa-

cial expression, body movement) that is easily observable to an 

outsider. This is to say that differences between self-reports and 

field observation measurements may not imply that one or the other 

is erroneous. There is research documenting that people do not al-

ways differentiate between two different emotions in the same way 

[30], and there is evidence that physical signals of emotion mean 

different things in different contexts [29]. As such, disagreement 

between self-report and field observations could mean that these 

methods are picking up on different parts of a signal. 

In this paper, we investigate this issue within the context of Crystal 

Island [67], a game-based learning environment for middle school 

science education. Specifically, we compare affect detectors 

trained on typical BROMP-based observations of student emotion 

to those trained on data from a novel 2-stage affect self-reporting 

tool that was integrated within the game. The BROMP-based train-

ing and testing data was resampled to mitigate the impact of the 

difference in sample size and rate when comparing both types of 

detectors. We then examine the degree to which the input feature 

space overlaps for these different detectors, and the degree to which 

their output relates to measures of student interest and learning.  

2. RELATED WORK 
Detection of students’ affective experiences is a crucial first step in 

designing affect-sensitive learning technologies, as these require a 

deeper understanding of the occurrence of affect, and its impact on 

learning [10, 25, 63], engagement, motivation [65], and self-effi-

cacy [52]. As a latent state, affect can be very challenging to 

measure. Researchers have devoted considerable energy into devel-

oping stealth measurements of affect that can run in the 

background. To date, these have typically relied on supervised ma-

chine learning [4, 38, 70, 78], which requires a “ground truth” 

measurement. As automated measures are not yet reliable enough 

for this (indeed, this is the issue these detectors are trying to solve), 

we have to rely on human measurements. Human measures of af-

fect can be made either by the subject (self-report) or by a third 

party (observer), and each approach comes with its own caveats. 

The variations in ground truth measurements stem from differ-

fences in how affective states are present internally and externally 

[15]. This variation has the potential to impact what subsequent ma-

chine-learned models are measuring. Work in EDM has typically 

focused on the effects and meaning of students’ affective states 

(e.g., [25, 59]), or the data with which a detector was trained (e.g., 

sensor vs sensor free) with less attention being paid to the theoreti-

cal implications implicit in the measurement techniques being used 

(see [66]). For example, assumptions about the consistency/univer-

sality, measurability, rate of occurrence, and salience of affective 

experiences are implicit in many machine-learned models, but 

these assumptions often go unstated and unexplored. The literature 

on these issues exists, but it often occurs outside of the EDM com-

munity (e.g., [19, 29]). 

The complexities of measuring affect are further influenced by 

frameworks used to describe affective states. For example, Izard’s 

[39] work on discrete, basic emotions has been highly influential 

(i.e., interest, joy/happiness, sadness, anger, disgust, and fear [28]), 

but the community has given considerable focus to academic or 

achievement emotions ([25, 60, 61]). This distinction is important, 

as Izard ([39], p. 262) argues that “a basic emotion does not depend 

on or include complex appraisals or higher order cognition such as 

thought and judgment.” In Izard’s theoretical framework, complex 

emotions are actually “emotion schemas” and are less fleeting than 

basic emotions.  

EDM research that takes a non-categorical approach to studying 

students’ affective states tends to be heavily influenced by Russel’s 

paradigm, which attempts to measure on the dimensions of valence 

and arousal [68]. This model adds dimensionality to emotion labels, 

though not as many dimensions as are found outside of the EDM 

community (see discussion in [75]). For example, Gunes & Pantic 

[36] employ five dimensions: arousal, expectation, intensity, 

power, and valence.  

Interrogating the assumptions that underlie our measurement tech-

niques might help the EDM community to better understand our 

data. For example, we know that academic emotions require ap-

praisal, and that students differ in their metacognitive skills in this 

area [60]. This might mean that their appraisals should not be the 

only labeling system we employ for obtaining ground truth. How-

ever, it could also explain differences between observer-generated 

and self-reported data, since a trained observer might better under-

stand the emotional processes a student has undergone, particularly 

for younger or less-educated learners. For example, a student who 

does not expect to overcome an obstacle in a particular domain 

might immediately shift from engaged concentration to frustration 

(bypassing confusion) when met with a task that they do not fully 

understand. We should also be sensitive to the fact that an observer 

often does not have access to the same channels of information 

available to the learner, particularly when it comes to factors like 

expectation and the experience of powerlessness (e.g., [36]). There-

fore, having data from both types of measurements could provide 

us with a more complete picture of students’ affective experiences. 

2.1 Observer-Based Measurement 
Observation measurements rely on a third party who observes a stu-

dent and labels their affective state, usually based on some 

predefined coding scheme and prior training. Such an approach re-

lies upon an external presentation of affect and is unlikely to be 

influenced by biases of the student (e.g., social concerns). That said, 

observation measurements may be susceptible to self-presentation 

effects [72], in which students filter their external presentation and 

displays of emotion (typically as they get older). There also may be 

cultural differences in how emotion is displayed and interpreted 

that can influence the validity of observer-based measurements.  

Observer-based measurements also have to contend with the fact 

that there are two humans in the loop—the student and the ob-

server—meaning there are two points where bias can confound the 

measurement. Observer biases may come from varying cultural 

norms, but in most cases, it is possible to subvert these through 

training and protocols (e.g., interrater reliability).  

In the EDM community, one of the most common observation 

measurements for affect research is BROMP [55]. BROMP is a 

momentary time sampling method in which students are coded in-

dividually in a predetermined order using an app that facilitates the 

coding scheme and automatically includes metadata like time 

stamps [54]. Specifically, trained, certified observers code the first 

affective state they observe, but may take up to 20 seconds to con-

textualize that observation, resulting in codes made every 3–20 

seconds under typical classroom conditions.  

Although the manual that formalized BROMP is now nearly a dec-

ade old [55], the methods were used in a large number of 

publications leading up to its publication [4, 6, 50, 53, 64, 65, 71]. 

Coding schemes have now been developed for 7 countries, and typ-

ically include boredom, confusion, engaged concentration, delight, 



and frustration [55]. The observation method is holistic, facilitating 

greater use of contextual classroom cues than can typically be gath-

ered in sensor-based detection [8], and it has now been used to 

construct affect detectors in over 20 learning systems, including 

several for educational games [5, 6, 42, 65]. 

Observation methods have been used successfully to train several 

affect detectors, as well as subsequent validation studies of said de-

tectors. Similarly, detectors trained on observation ground truth 

data have been used to create successful interventions and adaptive 

technologies that respond to student affect [22, 24]. 

2.2 Self Report-based Measurement 
The self-reporting of educationally-relevant affective states has a 

long history that skews toward trait-level measurements, which 

have the benefit of allowing for students to be asked about their 

experiences using scales, as opposed to a single measure (see re-

view in [59]). Verbal protocols, such as think-alouds [23] have also 

been used, and are notably able to provide a continuous stream of 

data, which can then be coded for further analysis. These have 

sometimes been done retrospectively, so as not to interrupt the 

learning process (e.g., [26]). 

As computer-based learning systems become more advanced, ex-

perience sampling methods [34], during which students are either 

prompted to provide or volunteer emotions, are becoming more 

common. Examples of these in education include both the use of 

text-based reporting windows [18, 43, 74] and the use of emoticon-

based reporting systems [69, 70]. These are often employed with 

forced choice (categorical answers), although researchers have also 

employed multiple Likert scales [3]. 

The argument of many who favor self-report methods is that only 

the individual can accurately communicate their internal state. Self-

report allows us to collect data ‘direct from the source.’ Given the 

highly internal nature of affect, it is possible that self-report meth-

ods are necessary to access certain nuances of affective 

experiences. Likewise, it could potentially allow for students to ex-

press emotions in the report that they may be reluctant to display 

visually (e.g., on their face) in front of their peers—a concern that 

might be particularly important in older students (aged 12–18) or 

among students who experience social pressures. 

That said, participants may be unwilling or unable to admit their 

feelings when they want to be perceived differently. For example, 

researchers have documented self-presentation effects even in 

anonymous survey work, where respondents reply in ways that pre-

sent themselves more positively regardless of their actual behaviors 

[37]. Other researchers have documented satisficing practices, 

which involve disengagement from the task to give minimally cor-

rect answers [45]. Still others have noted that some respondents 

actively obscure their data [44] or lack the meta-cognition to accu-

rately diagnose their current affective state and accurately 

communicate it [32]. Finally, we have seen some evidence that ask-

ing students to report their affect changes their subsequent affect 

[78], which has other consequences for interpreting data. 

Despite this, affect detectors have been successfully built on learner 

self-report data [3, 13, 31, 32, 38, 78]. Self-report has also facili-

tated data collection in online environments where observation is 

not possible, and at larger scales than observation-based measure-

ments [31], due to not requiring the presence of trained 

professionals. This has meant that affect detectors can be trained on 

a larger volume of data and can be used to implement adaptability 

at scale with lower concerns regarding observer’s biases. 

2.3 Comparison across Techniques 
Affective research has long realized that there are several trade-offs 

when it comes to choosing a ground truth labeling system. Re-

searchers must balance considerations related to the validity and 

reliability of the signal in real-world environments with factors re-

lated to sampling rates, the signals’ timing, and intrusiveness [15].  

All methods of affect detection suffer from questions related to 

sampling rates [57] and the associated data loss. Classroom obser-

vation techniques invariably result in times when one student is not 

being closely observed, despite BROMP-based efforts to at least 

ensure that one student is not being oversampled [55]. Experience 

sampling methods must balance the need for high rates of training 

data with the disruption these questions might cause to the student 

[17]. In fact, some research has suggested that self-reporting alters 

the physiological response [44], which raises generalization con-

cerns in addition to those related to sampling. 

Even sensor data can have sampling problems at key learning mo-

ments. Although sensors offer a more continuous data stream, data 

may be lost if students turn their heads or leave their seats to work 

with a peer (as in video or voice-related data). Moreover, decontex-

tualized single streams of data may run counter to effective 

detection of affective states [48], particularly if we believe that stu-

dents will experience non-educational emotions related to social 

interactions (as in skin conductance sensors).  

Combining several types of sensors might improve some interpre-

tations, but dealing with missing data in multimodal sensor systems 

is still challenging [51]. Regardless of any continuity benefits that 

sensor data might be able to provide, we must also be able to (a) get 

them into classrooms and (b) label their output. This latter problem, 

as discussed in Douglas-Cowie et al. [27], deserves greater atten-

tion than is currently found in the literature. 

Classroom observations and self-report data may offer some ad-

vantages to sensor-based data in that their labels are often more 

holistic than can sometimes be generated from sensor data. For ex-

ample, BROMP observers are trained to skip data from a student 

who is clearly upset because of a social interaction rather than from 

the experience in the software [55]. This approach is possible in 

most classroom-based data collection methods, but might be diffi-

cult to discern if a researcher is retrospectively labeling video data.  

Others point out the trade-offs between self-reported data (e.g., ex-

perience sampling) and classroom observations. Self-reported data 

may prevent cultural biases from being imposed on student experi-

ences, but it may also be susceptible to gaps in students’ 

metacognitive abilities [77] and to self-presentation effects [14]. 

Moreover, the benefits that come with students' own interpretation 

of their emotional experience (individualized interpretation) may 

also come with a cost from that same variability [76]. That is, stu-

dents might use different labels to describe the same experience, 

whereas trained classroom observers work to ensure more con-

sistency [55].  

In some cases, self-report data represents additional challenges. Re-

search has suggested that students are not always able to label their 

peer’s emotions [35], or even their own. Afzal and Robinson [1], 

for example, report that students were so uncomfortable with retro-

spective self-labeling of video data, that the researchers had to 

abandon the procedure altogether. 

2.4 Novelty of the Current Study 
Whereas previous research [62] has suggested that researchers 

should ensure that self-report and external observer data align in 



order to establish convergent validity, we take a different position. 

Specifically, we point to social constructivist research, which sug-

gests that emotions are experienced as constellations of features 

that people learn to label as their experience with them grows [29]. 

This research paradigm would suggest that self-reporters have ac-

cess to information that external observers do not have.       

As such, we argue that the EDM community should more carefully 

consider the implications of theoretical underpinnings of our label-

ing processes. For example, students may process internal 

emotional signals in a way that is intrinsically entwined with their 

motivational levels or with their past experiences with the topic, 

and self-reporting may give us more direct access to that infor-

mation. On the other hand, external observers who do not have 

access to that information can only label the affective displays be-

ing enacted in the moment. In some cases, they may be able to pick 

up more immediate, affective responses that the student has not yet 

reflected upon. In this way, observer-generated labels may provide 

us with a less-filtered set of labels about a students’ affective expe-

rience.  

This study offers a unique opportunity to compare detectors trained 

on both types of data, since researchers rarely deploy both labeling 

methods in the same study. Specifically, we look at what kinds of 

features are selected by each suite of detectors, how detectors 

trained using self-reported data are correlated with those trained us-

ing BROMP observations, and which outcome measures these 

detectors are associated with. In this way, we are able to compare 

the performance of different ground truth measures, providing in-

sights into the strengths and limitations of self-reported versus 

observed (BROMP) data in specific educational research contexts. 

3. METHODS 

3.1 Context of Study 
This study investigates student affective states within Crystal Island 

[67], an open-world, single-player science mystery game promot-

ing inquiry-based learning in microbiology. Students are assigned 

the role of an investigative scientist with a mission to identify an 

illness that has spread across a research station. They must find the 

disease, the associated pathogen causing its outbreak, and the 

source of its transmission on a virtual remote island. In the learning 

environment, students can explore several virtual locations, while 

interacting with non-player characters (NPCs), reading educational 

materials and testing game objects for viruses and bacteria to make 

this determination. Students may carry objects with them for testing 

and keep track of their work with a concept matrix and an additional 

worksheet to help organize their hypotheses and results.  

In this study, we examine the data from 124 middle school students 

who played Crystal Island in an urban school in the southeastern 

US. Data were well balanced for gender, and population statistics 

from the school show that 44% come from economically-disadvan-

taged backgrounds and more than 75% represent ethnic minority 

backgrounds (43% Black, 24% Latinx, 5% Asian, and 4% racial)  

The study took place during their regular science instruction (ap-

proximately 1 hour/day) over a 2-day period. All study procedures 

were approved by the respective IRBs of both partner institutions. 

3.2 Data Collected 

3.2.1 Survey Data Pre and Post Test 
Identical pre and post-tests of domain knowledge (which scaled 

from 0 to 17) were used to calculate learning gains normalized char-

acterized here as the maximum improvement or decline that the 

student would have in the post-test. Normalized learning gains were 

calculated using the equation below, proposed in previous work 

[73], where pre and post refer to the percentage of correct answers 

in the pre and post-tests, respectively: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐺𝑎𝑖𝑛 =

{
 

 
𝑝𝑜𝑠𝑡 − 𝑝𝑟𝑒

1 − 𝑝𝑟𝑒
   if  𝑝𝑜𝑠𝑡 > 𝑝𝑟𝑒

𝑝𝑜𝑠𝑡 − 𝑝𝑟𝑒

𝑝𝑟𝑒
   if  𝑝𝑜𝑠𝑡 ≤ 𝑝𝑟𝑒

 

Alongside these knowledge assessments, we also administered sur-

veys for motivational constructs, including a self-efficacy scale 

[12], a situational interest [49], and subscales from the Intrinsic 

Motivation Inventory (IMI; [21]). 

3.2.2 Trace Data 
Traces of students’ interactions with Crystal Island were logged au-

tomatically as students played the game. Each row of the trace logs 

includes the action the student takes, the time stamp when the ac-

tion occurs, the location in the game, and the duration of time the 

student spends on that action. There are other pertinent details about 

the action stored in the row; for example, when a student opens a 

book, the book title is logged. Additionally, students' interactions 

with the 2-stage emotion self-report survey are logged through this 

system because the self-report is embedded in the game. This al-

lows us to understand what students are enacting in the game prior 

to the self-report. 

3.3 Development of Affect Detectors 
Two approaches were used to develop two different sets of affect 

detectors. These methods, described below, include both a novel 

self-report tool that was embedded into Crystal Island, as well as 

standard BROMP classroom observations [55], which are now 

well-established in the field. Typical BROMP affect categories 

were adapted to the self-report tool, as described in greater detail 

below. 

3.3.1 BROMP 
Standard BROMP-based observations [55] were collected by two 

coders, who applied labels independently over the duration of stu-

dent gameplay. As part of the certification process, those being 

certified in BROMP must achieve a Kappa higher than 0.6 with 

their trainer.  Both coders were certified prior to this study’s data 

collection. To maximize data collection, these coders did not ob-

serve the same student simultaneously (as advised in the BROMP 

manual [55]).  In this study, a total of 1,716 individual affective 

observations were made using BROMP (Avg=14.07 per student, 

SD=8.02). These were made using a typical BROMP coding 

scheme of boredom, engaged concentration, con-fusion, delight, 

and frustration. 

3.3.2 Self-report 
Self-reporting of affective states used categories similar to those in 

BROMP, but made nomenclature changes in order to be more age 

appropriate. These included focused (cf. engaged concentration) 

and happy (cf. delight), as well as bored, confused, and frustrated 

(which are all labeled the same in typical US-based BROMP obser-

vations). In addition to these standard affect labels, we also include 

the option of “nervous,” as recent EDM research has begun to ex-

plore categories related to anxiety [2], which are some-times more 

difficult to capture in direct classroom observations. 

The self-reporting tool for this study was embedded within the 

storyline of the game (Figure 1). Students were told during the in-

troduction to the mystery that an NPC in the game would text them 

periodically to ask them how they were feeling. They would then 



ask them for potential causes for those affective states. (The analy-

sis of this second stage question is beyond the scope of the current 

analysis). Both questions (what are you feeling vs. why) were op-

erationalized in a virtual cell phone with forced choice options. 

Students received requests to report their feelings when they hit 

certain milestones within the game, but they could also voluntarily 

self-report. A total of 547 self-reports were collected, 520 of which 

were triggered by in-game milestones, and 27 of which were vol-

untary. This resulted in a range of 1 to 9 self-reported affective 

states per student over the course of the study (avg=4.68, SD=1.56). 

 

Figure 1. Implementation of the novel 2-stage self-report meas-

ure. Students first report their affective state (stage 1, left) and 

then report a cause (stage 2, right, not analyzed in this work). 

Note: Images have been cropped for publication; cell phone ap-

pears in the middle of the student’s screens. 

3.3.3 Feature Engineering 
A total of 220 features were then engineered for developing the de-

tectors. These included features from a 1-minute game time 

window, as well as features that occurred prior to the given time 

window, often operationalized as occurring within the last five ac-

tions. Ultimately, 98 features were derived for this study, falling 

into nine categories. 

Table 1. Examples of Features by Type. 

Feature Type N Example 

General 11 Duration. Duration of last action. 

Reading 26 RepeatedReadings. Number of articles that 

the student has read more than once. 

Conversations 20 ConversationTime. Cumulative duration of 

all the conversations with NPCs 

Hypotheses 39 HypothesisTimeLastMinute. Cumulative 

time that the student has been testing hy-

potheses during the last minute. 

Worksheet/ 

Concept Matrix 

22 CorrectConceptMatrix. Average of correct 

responses in concept matrixes. 

Outside 39 MovementOutside. Number of times the 

student went outside any specific location. 

Bryce’s Quar-

ters  

10 BryceLast5. Cumulative time that the stu-

dent has been in Bryce's Quarters within 

the last 5 actions.  

Location-  

specific 

45 CurrentDining. Is the student in the dining 

hall? 

Video Game 

Preference 

8 GamePreference. Does the student enjoy 

action, adventure, role playing, simulation, 

or sports-themed video games. 
 

Table 1 provides a breakdown of the number of features in each 

category and accompanying examples. General features repre-

sented features that were not specific actions taken in the game but 

described actions taken in the game, like Duration, or PlotPoints. 

Other features (i.e., CorrectConceptMatrix or WorksheetTi-

meRatio) were related to the students' use of in-game functions that 

help students to organize their ideas and track their progress. Others 

were related to the time students spent with reading material (i.e., 

PosterTime and RepeatedRead-ings), their conversations with 

NPCs more generally (ConversationTime), or their testing of Hy-

potheses (HypothesisTimeLastMinute). Location-related features 

included those that were specific to individual buildings in the vir-

tual world (i.e., CurrentDining) or features that divided student 

actions to “inside” or “outside” behaviors (i.e., MovementOutside-

TimeRatio or OutsideLast5). Finally, some features included 

information embedded from an in-game survey that students an-

swered at the start of their gameplay, including students’ 

preferences for video game types (i.e., ActionGame, Adventure, 

Role-playing, Simulation, or Sports). 

3.3.4 Sampling 
As Table 2 shows, raw data from the two labeling techniques re-

vealed major differences in the rates at which the various affective 

states were observed. Specifically, BROMP-based observations re-

sulted in engaged concentration/focused rates of over 80%, with 

rates for boredom, confusion, and frustration much closer to 5%. 

These results mirror previous rates that have been observed with 

BROMP (e.g., [4, 6, 53]). In contrast, self-report-based (henceforth, 

SR-based) data for this label, was far less frequent and tied to much 

more specific points in the game (as per the study design). It 

showed only a 28.9% rate for engaged concentration/focus, and 

higher rates for boredom (31.7%). These results are also in line with 

previous rates that have been observed in self-reporting using ex-

perience sampling methods [69]. In order to ensure that the 

comparison was not confounded by the number of samples, base 

rate, and subsequent statistical power, the BROMP-based data was 

resampled for each detector to match the base rate with the SR-

based data (prior to train/test split). In this case, resampling was 

conducted separately by specifically undersampling the majority 

class for each affective state. The resulting detectors of this process 

will be referred to as BROMPRS-based detectors. This allows for 

more of a “like to like” comparison where the differences in results 

can be more conclusively related to the data collection mechanism 

rather than being confounded by data distribution differences. 

Table 2. Total Reported Affect Labels by Sampling Method. 

 
SR BROMP BROMPRS  

N % N % N % 

Boredom 147 31.7 81 4.7 81 32.0 

Conc./Focus 134 28.9 1411 82.2 125 29.1 

Confusion 62 13.4 113 6.6 113 13.0 

Delight/Happ. 78 16.8 23 1.3 23 17.0 

Frustration 35 7.6 88 5.1 88 8.0 

Nervousness 7 1.5 NA NA NA NA 

 

3.3.5 Detector Building Using Cross-Validation 
For this work, we constructed two detectors: (1) BROMP-based 

and (2) Self-Report-based (SR-based). To ensure comparability, 

each were used to label 20 second clips and the same feature set 

was used as input for both detectors. However, the models were 

trained and tested independently.  



We performed a nested 4-fold student-level cross-validation, with 

the inner fold used for feature selection. Features were selected 

through a forward feature selection process, using the Area Under 

the Receiver Operating Characteristic Curve (AUROC; AUC for 

short) and Kappa as the performance metrics. Because each set of 

detectors has multiple affective states, we trained these models as a 

one vs. rest classification for each detector. This is standard practice 

for affect detection in the EDM community [4, 8, 11]. To evaluate 

the performance of both detectors, we explored 4 machine learning 

algorithms from the SciKit Learn Library for Python [58]: Logistic 

Regression, Random Forests, Gradient Boosting, Support Vector 

Machines. We used default hyperparameters for all models. 

4. RESULTS 
As Table 3 shows, 3 algorithms outperformed all the others. Lo-

gistic regression (LR) performed best for 9 detectors, including all 

3 boredom detectors (SR-based, BROMP-based, and BROMPRS-

based) all 3 delight/happiness detectors, 2 confusion detectors (SR-

based and BROMPRS-based), and the BROMP-based concentration 

detector. Random Forests (RF) performed best for 5 detectors: the 

SR-based focus detector and its corresponding BROMPRS-based 

concentration detector, 2 of the frustration detectors (SR-based and 

BROMP-based), and the SR-based detector of nervousness. (As 

readers recall, BROMP does not code for nervousness, so BROMP-

based nervousness detectors were not built.) Finally, Extreme Gra-

dient Boosting (XGB) performed best for 2 detectors: BROMP-

based confusion and BROMPRS-based frustration. 

 

Table 3. Algorithms and Performance Metrics by Detector 

 SR BROMP BROMPRS 

  Algo AUC 𝚱 Algo AUC 𝚱 Algo AUC 𝚱 

Bored LR 0.67 0.21 LR 0.8 0.2 LR 0.8 0.47 

Conc/Focus RF 0.67 0.21 LR 0.67 0.19 RF 0.6 0.19 

Confused LR 0.67 0.21 XGB 0.67 0.19 LR 0.66 0.21 

Del./Happ. LR 0.76 0.25 LR 0.75 0.11 LR 0.84 0.47 

Frustration RF 0.67 0.26 RF 0.7 0.12 XGB 0.78 0.27 

Nervousness RF 0.79 0.17 NA NA NA NA NA NA 

 

Performances across the three types of detectors (SR-based, 

BROMP-based, and BROMPRS-based) were comparable. SR-

based detectors ranged from AUC=.67–.79 and Kappa=.21–.26. 

BROMP-based detectors ranged from AUC=.67–80 and Kappa 

=.11–.20 before resampling. BROMPRS-based detectors performed 

similarly to the original BROMP-based detectors for AUC (.60–

.84) and performed slightly better for Kappa (.19–.47). 

 

These results show that BROMPRS-based detectors performed 

slightly better than SR-based detectors, particularly for boredom 

(AUC=0.8, Kappa=0.47 compared to AUC=0.67. Kappa=0.21). 

The performance of the BROMPRS-based delight and frustration 

detectors was also higher compared to SR-based detectors. In con-

trast, after controlling for the affect distributions, the performance 

of engaged concentration detectors was slightly higher for SR. 

Given that BROMP data was resampled to control for the affect 

distribution when comparing both types of ground truth, these re-

sults suggest a higher consistency in the affect categorization of 

human observers compared to students’ self-reports for boredom, 

confusion and frustration. On the other hand, these results also sug-

gest that human observers may have categorized some instances of 

other affective states as engaged concentration.  

Moreover, the increase in performance between original BROMP 

observations and the BROMPRS-based detectors is explained by the 

higher imbalance in the original distribution of BROMP observa-

tions. This also explains the reduction in performance for engaged 

concentration after reducing its rate during resampling. These re-

sults do not imply that the BROMP-based detectors are worse than 

the BROMPRS-based detectors. In fact, BROMP-based detectors 

could arguably perform better because they use more samples for 

the training process, and therefore, our analysis will be focused on 

these detectors using the original data BROMP observations. 

4.1 Feature Comparisons 
Table 4 shows how the 9 types of features described in Table 1 

emerge in these detectors. Specifically, it compares the features se-

lected by the SR-based detectors to those selected by the original 

BROMP-based detectors and the BROMPRS-based detectors. In 

general, this table shows there is little overlap between the features 

selected for SR-based detectors and those selected by the two 

BROMP-based detectors. Overall, 25 of 45 instances in this com-

parison (highlighted in grayscale) show no overlap in feature type 

between the SR-based detectors and either BROMP-based detector. 

Three groups of features included in this study describe students' 

most basic interactions with the game, and these show little overlap. 

For example, general features were selected 8 times by these de-

tectors, and this category is most common in the boredom detectors. 

There is some overlap in the two BROMP-based boredom detec-

tors, where both the original detector and the BROMPRS-based 

detector use the same feature (i.e., duration), but this is not the gen-

eral feature selected by the SR-based boredom detector. No other 

overlap was shown between SR-based detectors and BROMP-

based detectors for this feature.  

For reading features, the results are very similar. Most reading fea-

tures were selected by BROMP-based or BROMPRS-based 

detectors, and the two features that were selected by the SR-based 

delight detector were different from the reading feature selected by 

the BROMPRS-based delight detector. 

Results for conversation features were slightly different, but over-

lap was still minimal. For three affective states, a conversation 

feature was selected both by the SR-based detector and by the 

BROMPRS-based detector (i.e., boredom, concentration and confu-

sion). As with the reading features, these features were not identical 

to one another. 

Two other sets of features (concept matrix/worksheet and hypothe-

ses) encode information about students' scientific activities in the 

game. These also show minimal overlap between SR-based and 

BROMP-based detectors. For the first category, only the boredom 

and confusion detectors showed this feature type appearing in an 

SR-based detector and a BROMP-based detector, and these were 

not identical features. The second category contains an exception 

to this overlap. Although one feature (HypothesisTesting-to-Read-

ing) appears in both the SR-based concentration detector and the 

BROMPRS-based concentration detector, the only other overlap is 

between the two BROMP-based detectors of boredom. 

Three feature sets are related to locations in the game. These in-

clude outside, Bryce’s quarters, and other location specific 

features. The outside category shows overlap between SR-based 

and BROMP-based detectors for three affective states. For concen-

tration and frustration, the features are not identical, but for 

confusion one feature (MovementOutsideLastMinute) was selected 

by both the SR-based and BROMPRS-based detector. 

 



Table 4. Summary of Feature Type by Detector (SR vs. BROMP vs. BROMPRS). Grayscale indicates cases where there is no overlap 

between the SR-based detectors and either of the BROMP-based detectors. 

Feature Type 

Boredom 

Concentration 

/ Focus Confusion 
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Happiness Frustration Grand Total 
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General 1 1 2 0 2 0 0 0 0 0 0 0 0 0 2 1 3 4 

Reading 0 1 0 0 1 1 0 0 2 2 0 1 0 0 1 2 2 5 

Conversations 1 0 1 1 0 1 1 0 2 1 0 0 0 1 0 4 1 4 

Hypotheses 0 1 1 1 0 1 2 2 0 1 0 0 1 0 1 5 3 3 

Conc.Mx/Wrksht 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 3 1 2 

Outside  0 1 0 1 1 0 1 1 1 0 3 2 2 0 2 4 5 5 

Bryce’s Quarters 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 2 1 

Other Locations 2 1 0 1 1 3 2 2 2 0 2 2 3 3 2 8 10 9 

Video Game Pref. 1 0 0 0 0 0 1 0 0 3 2 1 1 1 0 6 3 1 

subtotal 6 6 5 5 5 6 9 6 7 7 7 7 7 6 9 34 30 34 

Only four features related to Bryce’s quarters—the location in the 

game that contains the most academic content—were selected for 

any of the detectors. These four appeared in the BROMP-based de-

tector of boredom, the SR-based detector of confusion, the 

BROMPRS-based detector of delight, and the BROMP-based detec-

tor of frustration. In other words, the SR-based and BROMP-based 

detectors of the same affective state showed no overlap. 

Among the 27 other location-specific features, Table 4 shows the 

greatest potential of identical features appearing in SR-based and 

BROMP-based detectors of the same affective state. For example, 

8 of these features are distributed among the three confusion detec-

tors, but no identical features are found across SR and BROMP-

based confusion detectors or for any other affective states. 

Finally, we look at video game preference features. These were 

unique in that they were extracted from a survey that students took 

at the beginning of the game as opposed to their behaviors within 

the game. These features typically appeared in SR-based detectors 

(i.e., boredom, confusion, happiness, frustration, and nervousness), 

though they also appeared in BROMP-based detectors of delight 

and frustration. Only one answer appeared as a feature across de-

tectors from different data sources. Specifically, SR-based, 

BROMP-based and BROMPRS-based detector of delight included 

a feature for students who preferred role-playing games. 

4.2 Detector Comparisons 
Next, we consider differences between predictions made by the two 

sets of detectors when labeling the same 20-second clips. For these 

comparisons, we use the original distributions for both detectors 

(i.e., not BROMP resampled). The original distributions allow us 

to further analyze the varying signals collected by these two mech-

anisms (including varying base rates in the data) and how that 

influences future detection. We correlated the detector predictions 

for aligned 20-second clips (across students, N=15,964) for the two 

types of detectors (SR and BROMP-based) for each construct pair.  

The correlation matrix (shown in Table 5) shows a positive trend 

along the diagonal (e.g., the two boredom detectors were positively 

correlated), but low correlations overall (rho=-0.42 to rho=.24). 

Significance values are not reported due to the lack of independ-

ence between samples, however we report the magnitude of the 

correlations as this can still be informative. 

Table 5. Correlations between SR-based and BROMP-based 

detector outputs at the clip-level. (rho>.05 in bold; note that 

BROMP does note code for nervousness). 

    BROMP-based detectors 

    Bor. Conc. Conf. Frus. Del. 

S
R

-b
a

se
d

  

Bored 0.09 -0.02 0.17 -0.36 -0.42 

Focused -0.19 0.2 -0.13 0.06 0.13 

Confused 0.01 0.2 0.01 -0.09 -0.21 

Frustrated 0.09 -0.11 0.02 0.16 0.07 

Happy -0.05 -0.14 0.04 -0.07 0.24 

Nervous 0.03 0 -0.01 -0.02 0.08 

 

It should be noted that the correlations indicate only a weak align-

ment between the two detectors. Of particular note, when detectors 

based on the students’ self-report say that the student is happy, ob-

server-based detectors of delight most often concur (rho=0.24). 

Likewise, when SR-based detectors predict that a student is fo-

cused, BROMP-based detectors are most likely to agree (rho=0.2), 

but they may also predict that the student is frustrated (rho=0.06) 

or delighted (rho=0.13). 

 

Other detector relationships are not as strong. When SR-based de-

tectors predict that a student is bored, BROMP-based detectors 

sometimes agree (rho=0.09) but they more often predict that the 

student is confused (rho=0.17). Likewise, when SR-based detectors 

identify frustration, BROMP-based detectors often agree 

(rho=0.16), but sometimes predict that the student is bored 

(rho=0.09). When SR-based detectors predict that a student is nerv-

ous (an affective experience with no correlation in current 

BROMP-coding schemes), BROMP-based detectors are most 

likely to predict delight (rho=0.08). 



Table 6. Correlations of Detector Output with Learning and Interest Measures. Statistically significant correlations (p≤ 𝟎. 𝟎𝟓) that 

are still significant after the B&H correction are marked with an asterisk.  

Detector 

Self Efficacy 

(N=122) 

Situational Interest 

(N=122) 

Pre-Test 

(N=122) 

Norm. Learning Gains 

(N=46) 

Boredom 

 

SR -0.29 (p=0.00)* -0.31 (p<0.00)* 0.02 (p=0.86) -0.23 (p=0.12) 

BROMP -0.143 (p=0.12) -0.27 (p=0.00)* -0.15 (p=0.10) -0.39 (p=0.01)* 

Concentration/Focus 

 

SR 0.17 (p=0.06) 0.18 (p=0.05) 0.13 (p=0.17) 0.24 (p=0.09) 

BROMP 0.11 (p=0.22) 0.14 (p=0.14) 0.09 (p=0.35) 0.19 (p=0.20) 

Confusion 

 

SR -0.19 (p=0.04) -0.04 (p=0.65) -0.21 (p=0.02) -0.03 (p=0.86) 

BROMP -0.05 (p=0.57) -0.06 (p=0.53) -0.11 (p=0.25) -0.21 (p=0.14) 

Delight/Happiness 

 

SR -0.08 (p=0.37) 0.09 (p=0.34) -0.18 (p=0.05) 0.28 (p=0.05) 

BROMP 0.16 (p=0.07) 0.29 (p=0.00)* 0.03 (p=0.77) 0.22 (p=0.14) 

Frustration 

 

SR 0.12 (p=0.18) 0.13 (p=0.89) -0.02 (p=0.82) -0.12 (p=0.42) 

BROMP 0.13 (p=0.15) 0.14 (p=0.13) 0.02 (p=0.80) -0.03 (p=0.84) 

4.3 Correlation with Learning and Interest  

4.3.1 All SR-based & BROMP-based detectors 
Our next analysis compares the relationship between these two 

suites of detectors (SR-based and BROMP-based) and learning and 

interest measures. Table 6 presents the Spearman correlations of 

each detector (aggregated at the student level) against measures of 

self-efficacy, interest, prior knowledge, and learning as collected 

with pre- and post-test surveys. Three subscales of surveys are not 

given here, as they were not significantly correlated with any de-

tector (the IMI’s value-utility, pressure-tension, and emotion-

attention). Significance levels in the table reflect a Benjamini-

Hochberg post hoc correction (B&H; [9]) that was applied to each 

scale to correct for multiple comparisons. 

Results in Table 6 show that boredom detectors show more statis-

tically significant relationships with the four learning and interest 

measures than any of the other detectors. Specifically, the SR-based 

boredom detector was negatively associated with Britner & Pa-

jares’ [12] self-efficacy measure (rho=-0.29; p=0.00) and 

Linnenbrink-Garcia et al.’s [49] situational interest scale (rho=-

0.31, p=0.00). Meanwhile, the BROMP-based boredom detector 

was negatively associated with situational interest (rho=-0.27, 

p=0.00) and normalized learning gains (rho=-0.39, p=0.01). The 

last statistically significant relationship was between the BROMP-

based delight detector and situational interest (rho=0.29, p=0.00). 

4.3.2 Analysis of Detector Agreement/Disagreement 
To further examine the impacts of how ground truth measurement 

influences future detection, we considered specifically the in-

stances where the detectors disagreed (as described in Table 6). For 

example, the positive correlation between the SR-based boredom 

detector and the BROMP-based confusion detector implies a disa-

greement. We anchor this analysis with instances where the two 

detectors agreed (i.e., both detectors predict the student is bored), 

and we normalize instances of agreement and disagreement based 

on the number of clips per student (dividing instances of agreement 

or disagreement between detectors for each student in the total 

number of student’s clips). We then calculate the Spearman corre-

lation between the number of instances per student where each of 

these disagreements (and agreements) appear and the students’ 

learning and interest measures.  

Descriptive states for these correlated clips are given in Table 7, 

which presents how often these correlated clips occurred for each 

student. It also includes the number of students for whom the over-

lapping labels occurred. The relationship between the clip labels 

and the learning and outcome measures is given in Table 8. 

Table 7. Descriptive Stats for Correlated SR-labeled and 

BROMP-labeled Clips. Only students for whom the overlap-

ping labels occurred are considered. 

SR 

Label 

BROMP 

Label Students Min Max Avg SD 

Bored Bored ← 7 9 121 35.0 36.4 

Conf. 58 1 65 9.2 13.9 

Conf. Conf. ← 20 1 25 6.7 6.3 

Conc. 104 1 78 15.4 15.8 

Frus. Frus. ← 11 1 24 5.6 6.8 

Bored 4 24 79 45.0 20.7 

 

We first look at clips that were labeled as boredom by the SR-based 

detectors, where BROMP detectors sometimes agreed (rho=0.09, 

Table 5), but more often produced a confusion label (rho=0.17, Ta-

ble 5). As the data in Table 8 show, both sets of clips are correlated 

with self-efficacy at the same rate (rho=-0.19). In other words, stu-

dents with low self-efficacy are more likely to label themselves as 

boredom more generally (rho=-0.29, Table 6), but this may present 

as either boredom or confusion to external observers. Situational 

interest, which was significantly correlated with SR-based boredom 

detectors more generally (and at approximately the same level as 

for self-efficacy, i.e., rho=-0.31, Table 6) were still marginally sta-

tistically significant once this further division was applied. 

Table 8. Participant-level correlations of Learning and Interest 

Measures, based on detector type labelling agreement. 

Detector Prediction Self  

Efficacy 

Sit  

Interest Pre-Test 

Norm. 

LG SR BROMP 

Bored Bored ← -0.19 -0.15 -0.13 0.05   
(p=0.04) (p=0.09) (p=0.16) (p=0.74)  

Conf. -0.19 -0.17 -0.11 -0.03   
(p=0.04) (p=0.06) (p=0.23) (p=0.86) 

Conf. Conf ← 0.13 0.01 -0.04 -0.4   
(p=0.14) (p=0.97) (p=0.70) (p-0.00)  

Conc. 0.02 0.18 -0.06 0.11 

    (p=0.82) (p=0.05) (p=0.49) (p=0.45) 

Frus.  Frus. ← 0.05 -0.03 -0.01 -0.03   
(p=0.55) (p=0.72) (p=0.91) (p=0.86)  

Bored -0.18 -0.1 0.06 -0.11 

    (p=0.05) (p=0.29) (p=0.51) (p=0.45) 

 

We next look at the clips that were labeled as confused by the SR-

based detectors, where BROMP detectors rarely agreed (rho=0.01, 

Table 5), and instead were more likely to produce a concentration 

label (rho=0.2 Table 5). Despite the infrequency of agreement 



between these two detectors (rho=-0.40, Table 8) among a low 

number of students (N=20, Table 7), agreement between the two 

detectors produces one of the strongest correlations with outcome 

measures that we see in this entire study. Namely, clips that are 

labeled as confused by both SR-based and BROMP-based detectors 

are significantly correlated with normalized learning gains at rho=-

0.40 (Table 8). However, when the SR-based detector labels a clip 

as confused and a BROMP-based detector labels the clip as con-

centrating, the correlation with learning gains disappears and 

instead we find a significant correlation with situational interest 

(rho=0.18). This suggests that students with different levels of in-

terest may be presenting their confusion in different ways. 

Finally, we look at clips that were labeled as frustration by the SR-

based detectors. Our prior analysis (Table 5) showed that these clips 

were most often correlated with a matching frustration label from 

the BROMP-based detectors (rho=0.16), but that they were also 

frequently labeled with boredom (rho=0.09). Our analysis in Table 

8 shows that the clips with matching labels are not significantly 

correlated with any of our learning and outcome measures, but clips 

where there is disagreement (i.e., the SR-based detector predicts 

frustration while the BROMP-based detector predicts boredom) are 

negatively correlated with self-efficacy (rho=-0.18) at about the 

same rate that is found for the SR-boredom clips that are also in-

cluded in this table. 

5. DISCUSSION 

5.1 Study Goals 
This study seeks to better understand how our modeling methods 

impact our understanding of students’ affective experiences. Spe-

cifically, it compares the impact of using two different kinds of 

ground truth measurements (self-report vs. BROMP observation) 

commonly used supervised machine learning for developing affect 

detectors. In order to ensure fair comparisons, we first report on the 

construction and performance of these detectors, including control-

ling for different distributions between the datasets through 

resampling. 

Comparison of raw measurements in this study (i.e., the training 

labels obtained through self-reports or BROMP observations) is 

challenging because the sampling rates of momentary time sam-

pling methods (that used in BROMP) are susceptible to different 

biases than other kinds of sampling methods (e.g., the triggers used 

for our self-report data). These sampling differences are hard to ad-

just for [57]. That said, the results from these two measures are 

consistent with previous research, where self-report tends to report 

much higher rates of boredom than classroom observations [7]. 

These large differences in the rates of boredom and focus/engaged 

concentration in the raw training data support the conjecture that 

the two methods record different signals of the internal states. One 

hypothesis for this is that observations might be picking up on more 

of the in-the-moment affective expressions while self-report may 

be picking up on affect influenced by trait-like internal qualities 

(e.g., motivation, interest, game preference, and prior knowledge). 

Instead, our study focuses on comparing the output of the two suites 

of detectors, which can be applied at the same sampling level. We 

then compare the constituent features of corresponding detectors 

and their co-correlations. Both of these analyses also suggest that 

corresponding SR-based and BROMP-based detectors are picking 

up on different signals, as do the results of our correlational study, 

which compares the detector output to motivational and learning 

constructs. 

5.2 Main Findings 
Feature analyses (section 4.1) support the hypothesis that SR and 

BROMP-based detectors are picking up on different signals, as do 

the correlations between the two suites of detectors in section 4.2. 

Notably, we show minimal overlap in types of features selected, 

and even less in the specific features selected when comparing SR-

based detectors to BROMP-based detectors of the same state. 

While feature interpretability is challenging with such complex 

models, the emergence of video game preferences as more common 

feature in SR-based detectors than in BROMP-based or 

BROMPRS-based detectors also suggests that the SR-based detec-

tors are more likely to be picking up on trait-like qualities of 

students emotional experience, while the BROMP and BROMPRS-

based detectors may be reflecting more transient experiences that 

the observers are focused on. For example, a student might appear 

to be confused to the outside observer, but unable or unwilling to 

apply that label because of low interest in the game (resulting in 

self-reported boredom). 

Validity and generalizability concerns related to machine-learned 

detectors should also be closely considered in the interpretation of 

the correlations we present in 4.2, as any machine-learned model is 

likely to demonstrate statistical noise. However, our analyses in 

section 4.3 shows that these two suites of detectors—like those in 

previous research using the same well-established methods—are 

both associated with important learning and interest measures. Spe-

cifically, section 4.3.1 shows that both SR-based and BROMP-

based detectors are associated with situational interest, but only the 

SR-based detector of boredom is associated with self-efficacy and 

only the BROMP-based detector of boredom is associated with 

learning. These findings offer evidence that both types of detectors 

are related to constructs that are important to student learning ex-

periences, as opposed to suggesting that neither is useful. 

Finally, we considered how the agreement and contradictions be-

tween the two suites of detectors might tell us about the students’ 

broader learning experience (section 4.3.2). These analyses seek to 

answer Graesser et al.’s [35] call to better understand what it means 

when self-reports and external observations do not agree by focus-

ing on the strongest positive correlations found in 4.2. Namely, we 

focus on data where the SR-based detectors labeled clips as bore-

dom, confusion, or frustration. In some cases, the output of these 

detectors was strongly correlated with the corresponding affective 

state from the BROMP-based detectors, but in other cases there 

were discrepancies that deserve consideration. 

5.3 Interpretations 
Research on the differences between self-report and observational 

measurements points to the availability of different signals. For in-

stance, an observer might see a student who has reached an impasse 

as experiencing confusion or frustration, but self-reported confu-

sion requires some metacognitive recognition on the part of the 

student. If the student does not believe they are wrong (e.g., if they 

decide the system is providing them with incorrect feedback), their 

motivation to continue may evaporate quickly, leading them to ac-

curately report internal feelings of boredom. Similarly, a student 

who knows that they are wrong but has low motivation to continue 

(e.g., because they have low self-efficacy) may also process the ex-

perience as boredom. In contrast, a student with high motivation 

(e.g., high situational interest) might hit a minor impasse and rec-

ognize internal feelings of confusion without visibly demonstrating 

it to the observer.      



The kinds of overlap that this study shows in its comparison of self-

report and observational models requires a more complex approach 

than has been found in many previous EDM studies that have 

sought to model student affect. In many cases, more simple ap-

proaches may be desirable. However, we show that there are cases 

where differences between the two sets of detectors are related to 

distinct learning and interest measures. For example, SR-based 

confusion is correlated with learning gains when BROMP-based 

detectors agree, but with situational interest when BROMP-based 

detectors predict that the student is concentrating. From these re-

sults, we might infer that students’ experience of confusion is 

different depending on their situational interest levels, and that 

these differences were likely manifesting in observably different 

ways during the BROMP data collection process.  

These results suggest that having affect detectors generated from 

both sets of ground-truth measures could be potentially revealing 

in terms of better understanding the complex relationships between 

epistemic emotions and learning. These results are also in line with 

longstanding research that suggests that other affective states may 

have more than one type. For example, Gee’s proposes the notion 

of pleasurable frustration as distinct from a more canonical experi-

ence of frustration [33], and more recently Cloude and colleagues 

have suggested that both confusion and frustration may manifest in 

multiple ways [16].  

5.4 Limitations & Future Work 
One potential limitation of this study is that our results do not reveal 

a single gold standard. Because both sets of detectors correlate with 

learning and interest measures, we cannot recommend one meas-

urement strategy over another. However, as we have discussed, 

finding a single gold standard was not the goal of this project. 

Another potential limitation is that these results stem from only one 

learning environment. It is possible that different types of learning 

experiences (e.g., those from a more traditional intelligent tutoring 

system) might be different than those that we are finding in Crystal 

Island. We hope that these results might inspire future research that 

compares similar kinds of data. 

Future work should look at additional methods for exploring detec-

tor differences, such as data-driven classroom interviews [5]  

Specifically, we would like to compare instances where SR-based 

and BROMP-based detectors contradict one another within Crystal 

Island (e.g., when SR-based detectors predict confusion but 

BROMP-based detectors predict concentration) to the times in 

which they agree (e.g., when both sets of detectors predict confu-

sion). In-the-moment interviews could help us to better characterize 

these affective experiences so that we can better understand how to 

support students. This approach could also help us better under-

stand students’ affective experiences during learning (even when 

only one suite of detectors is being applied) as in [2, 5]. 

6. CONCLUSIONS 
Latent states such as affect can be challenging to accurately meas-

ure, either by self-report (subject to internal biases) or observation 

(subject to observer bias and presentation effects). In this work, we 

investigate how the ground truth collection impacts the perfor-

mance of affect detectors, including how it changes the selected 

features in our models. We do so in service of better understanding 

differences in the different signals being collected.  

In contrast to previous research, which has suggested that we might 

achieve validity in affective research by demonstrating agreement 

between self-report and external observations [62], we argue the 

opposite. Namely, we suggest that students have access to different 

kinds of information about their learning experience than the per-

son observing them. Drawing upon these rich and diverse personal 

experiences can provide us with meaningful data about how stu-

dents learn. Likewise, the consistency of an established external 

observation method like BROMP, which requires training and cer-

tification before an observer can collect data, can provide stability 

that might not be found among students with various levels of mo-

tivation or metacognitive skills. 

Rather than arguing that one measure is better than the other, we 

suggest that two sets of affect detectors may be better than one. 

Specifically, we point to the strong evidence about the social con-

struction of emotions that has been more commonly discussed in 

other fields (e.g., [29]). This approach assumes that the experience 

of emotion includes a constellation of signals that are both internal 

and external to the students, and that the student and the observer 

would apply a linguistically appropriate label depending on their 

attention to how these signals manifested and where their attention 

was most closely focused. Under social constructivist assumptions 

[28], both self-report and observational labels could be simultane-

ously correct even if they sometimes showed disagreement. 

Other theoretical frameworks also argue for a more complex and 

less deterministic formation and presentation of academic emotions 

than is suggested by the frameworks that have influenced common 

categorical labeling practices in the EDM community. For exam-

ple, while Izard’s [39] theoretical framework takes a categorical 

stance for basic emotions, it argues that academic emotions are 

more constructed. This description also makes space for the possi-

bility that a single categorical label might represent more than one 

type of affective experience. 

Such possibilities have not been considered in much of the previous 

EDM research. Although the field has sometimes explored differ-

ences in valence and arousal, it has more commonly favored the 

simplicity of categorical labels applied one at a time. We see the 

present study as building off this approach, which has been very 

successful at improving our understanding of the relationships be-

tween in-the-moment affective experiences and student learning.  

At the same time, we encourage the field to consider how the theo-

retical and methodological assumptions that we are making as we 

collect data might be influencing our results. Specifically, we point 

to evidence in this study that suggests that although self-report and 

external observations appear to be modeling slightly different in-

formation about the students' experience, both are tapping into 

important signals about learning and motivation. We hope that fu-

ture work will continue to explore how these methodological 

differences could be seen as an opportunity rather than a drawback 

as we work to better understand these complex emotions. 
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