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ABSTRACT 
Think-aloud protocols are a common method to study self-

regulated learning (SRL) during learning by problem-solving. 

Previous studies have manually transcribed and coded students' 

verbalizations, labeling the presence or absence of SRL strategies 

and then examined these SRL codes in relation to learning. 

However, the coding process is difficult to scale, as it is time-

consuming and laborious. This aspect potentially limits the ability 

to measure SRL comprehensively on a larger scale. Recent 

advancements in language models offer the potential to infer SRL 

from automated think-aloud transcriptions, which could enhance 

the efficiency of SRL measurement, complementing log data-based 

approaches to studying SRL. Therefore, this study explores the 

possibility of leveraging large language models (LLMs) and 

machine learning to automatically detect SRL in machine-

transcribed student think-aloud transcripts. Specifically, we 

experimented with two LLMs (Universal Sentence Encoders and 

OpenAI’s text-embedding-3-small) to predict four SRL categories 

(processing information, planning, enacting, and realizing errors) 

in students' verbalizations, collected from three intelligent tutoring 

systems, covering stoichiometry chemistry and formal logic. We 

found that these models are reliable at predicting the SRL 

categories, with AUC scores ranging from 0.696 to 0.915. Models 

that use embeddings from the text-embedding-3-short model 

performed significantly better at predicting SRL, including transfer 

from open-ended to highly scaffolded ITS systems. However, we 

note limitations in transferring models from the chemistry to logic 

domain, potentially due to the differences in domain-specific 

vocabulary. We discuss the practical implications of these models, 

highlighting the opportunity to analyze think-aloud transcripts at 

scale to facilitate future SRL research. 
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1. INTRODUCTION 
Successful use of self-regulated learning (SRL) has frequently been 

found to be positively associated with learning and learning 

outcomes [14, 23, 46, 68]. Students who are skilled in SRL are able 

to effectively set goals [37], search for information [67] , and direct 

their attention and cognitive resources to align their efforts with 

their objectives [29, 67].  

Given the importance of SRL in the learning process, prior studies 

have utilized behavioral log data to measure and facilitate 

students’ use of SRL within intelligent tutoring systems (ITSs). 

These adaptive and personalized software systems are designed to 

offer step-by-step guidance throughout problem-solving tasks [2]. 

By analyzing the patterns of behaviors from students interacting 

with an ITS, researchers can draw inferences, identifying which 

SRL strategies the students are using, how they are used, and in 

what order [3, 51, 52, 58, 59]. With this approach, previous studies 

have used behavioral log data to examine a range of SRL behaviors, 

including help-seeking behaviors [1], gaming the system (an 

ineffective use of SRL; [8]), setting goals, making plans [4, 10], 

tracking progress [10], and engaging in various cognitive 

operations, such as assembling and monitoring, during problem-

solving [31, 44, 63]. Automated detectors have been developed to 

measure these SRL behaviors in an immediate fashion, offering 

assessments that identify both the SRL behaviors students are 

employing and those they may be lacking.  

In addition to log data, think-aloud protocols (TAPs) are  another 

approach that has been frequently used in previous studies for 

measuring SRL in situ [9, 25, 26, 37]. During think-aloud activities, 

students are asked to verbalize their thinking and cognitive 

processes as they interact with an ITS while solving a problem. 

Utterances collected from think-aloud activities are then 

transcribed and segmented into clips. To assess students' use of 

self-regulation, researchers manually code students' verbalizations 

in each clip, labeling the presence or absence of SRL strategies 

[25]. Using this approach, previous studies have examined how the 

use of SRL in terms of presence, frequency, and the sequential and 

temporal order relate to the overall learning outcomes (e.g., [9, 37, 

42]) and to the moment-by-moment performance when solving a 

multi-step problem [12]. 

However, the coding process in TAPs is difficult to scale, as it is 

time-consuming and laborious. This aspect potentially limits the 

ability to measure SRL comprehensively on a larger scale in SRL 

research using the TAP approach. Having the capability to measure 

SRL at scale in think-aloud data presents an opportunity to explore 

a wide range of SRL behaviors across different contexts on a larger 

scale.  

Being able to measure SRL in think-aloud at scale is particularly 

relevant given the two approaches—behavioral log data and think-

aloud protocols—appear to complement each other rather than 

being substitutive, as noted in [19]. In their study, they show that 

SRL behaviors, such as orientation and elaboration, were more 

likely to be detected in behavioral log data than in think-aloud 

protocols. This could potentially be due to the differences in 

students’ ability to articulate their thoughts in the form of useful 

data, particularly when students are experiencing high cognitive 

demands during a think-aloud activity, in which they are learning 

while verbalizing their thoughts [19]. In contrast, SRL behaviors, 

such as planning and monitoring, were found to be more easily 
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identified through think-aloud protocols. These behaviors involve 

the engagement of metacognitive processes that are often 

challenging to detect solely through log data [17, 43]. This finding 

further highlights the unique and significant role of TAPs in SRL 

measurement.  

Given the importance of using TAPs to measure and understand 

SRL and the limitations with analyzing TAPs at scale, the current 

study explores the possibilities of leveraging large language models 

(LLMs) and machine learning to automatically detect SRL 

behaviors in machine-generated student think-aloud transcripts. 

Specifically, we collected students’ think aloud data from three 

intelligent tutoring systems covering stoichiometry chemistry and 

formal logic. The audio was transcribed using Whisper, a state-of-

the-art speech-to-text software. After analyzing the transcripts, we 

operationalized four SRL categories—Processing Information, 

Planning, Enacting, and Realizing Errors—grounded in Winne 

and Hadwin’s four-stage model [60], representing key behaviors in 

each step. We then conducted a round of coding, labeling the 

presence or absence of the four SRL categories using a coding 

scheme. Two sentence embedding models (Universal Sentence 

Encoders v5 [13] and Open AI’s text-embedding-3-small [45]) 

were applied respectively to vectorize the text. Using the outputs 

from the embedding models as features, we trained machine 

learning models that predict the presence or absence of the four 

SRL categories.  

While theoretical models of SRL are agnostic to ITS systems and 

their domain of instruction, the generalizability of machine-learned 

models of SRL trained on think-aloud transcriptions is an open 

research question. Specifically, models trained on sentence 

embeddings might pick up on semantics specific to a domain (e.g., 

finding the reactant in a chemistry problem compared to planning 

to learn a transformation in formal logic). However, it is desirable 

for a language-based SRL model to be domain-independent, not 

only because theoretical SRL models are domain-agnostic but also 

because a domain-general SRL model could be adapted and 

plucked into novel learning contexts in a low-cost manner. In other 

words, if a general SRL model based on think-aloud data is highly 

generalizable, no new training data needs to be labeled for new ITS 

environments and domain contexts. While that is desirable from an 

economic standpoint (as labeling data and training models is costly) 

past work in educational data mining and learning analytics has also 

described domain transfer as a grand challenge of the field [7]. 

Therefore, we systematically evaluated our trained model across 

the domains of chemistry and formal logic. Similarly, domain 

transfer might depend on the similarity of tutoring system 

interfaces and architectures [49]. To investigate this possibility, we 

evaluated the robustness of our model across open-ended, formula-

based ITSs compared to a highly structured ITS with fraction-based 

input. 

The present study’s contributions are twofold. We hope to 1) 

demonstrate the possibility of automating SRL measurement in 

think-aloud data, and 2) examine the transferability of these models 

across subject areas and platform designs Having the capability to 

measure SRL at scale in think-aloud data presents an opportunity 

to explore a wide range of SRL behaviors across different contexts 

on a larger scale. 

2. BACKGROUND 

2.1 Self-regulated Learning 
Self-regulation, a critical component in learning, is where learners 

take active control of their learning by monitoring and regulating 

their attention and effort in pursuit of goals [69]. During this 

process, learners may set goals, monitor progress, and adjust 

strategies when goals are not met. A range of cognitive, 

metacognitive, affective, behavioral, and motivational processes 

are involved in SRL. Engaging in these processes effectively enable 

learners to become more independent and effective in their learning 

[67]. In general, students who effectively self-regulate their 

learning tend to perform better than those who do not [68] and are 

more likely to have deep conceptual understanding on the topic [5, 

24, 36]. 

In the last three decades, several theoretical models have been 

proposed from different perspectives to depict the process of SRL 

[47]. For example, based on socio-cognitive theories, Zimmerman 

[67] describes the process of SRL as three cyclical phases (i.e., 

forethought, performance, and self-reflection), in which learners 

analyze a task, execute the task, and assess and evaluate the 

performance respectively. Grounded in information processing 

theory, Winne and Hadwin [60] characterize the process of SRL as 

four interdependent and recursive stages, in which learners: 1) 

define the task, 2) set goals and form plans, 3) enact the plans, and 

4) reflect and adapt strategies when goals are not met. A range of 

SRL behaviors may be involved in each stage of the cycle. 

Despite the differences in theoretical groundings and focuses, most 

of the models describe SRL as a cyclical process consisting of 

phases where learners understand tasks, make plans, enact the 

plans, and reflect and adapt [37, 57, 58]. These theoretical models 

are frequently adopted in recent SRL research as foundations that 

guide the conceptualization and operationalization of SRL in SRL 

measurement [57, 66]. Recent work in educational data mining and 

learning analytics has provided empirical support for cyclical 

models of SRL by relating cyclical SRL stages to learner 

performance data [9, 12, 27, 29]. 

2.2 Using Think-aloud Protocols to Measure 

and Understand SRL 
Grounding the analysis and operationalization in these SRL 

theories, previous studies have used think-aloud protocols to 

measure and understand SRL behaviors and processes. In think-

aloud activities, students are asked to verbalize their thinking and 

cognitive processes while they solve a problem [25]. Utterances 

collected from think-aloud allow researchers to measure and 

examine SRL behaviors that are contextualized in the problem-

solving process and are approximately concurrent with their 

occurrences. 

To engage students in think-aloud activities, instructions are often 

given prior to a task, asking students to verbalize their thinking 

while working on a task, as if they are speaking to themselves [18]. 

Once the task begins, researchers or the learning software may use 

simple prompts such as “please keep talking” to remind participants 

to continue to talk, when learners stop verbalizing [26]. These 

instructions and prompts are designed with the goal of inflicting a 

minimum amount of distraction without altering a student’s 

thinking process. 

To accurately capture students’ thinking process, Ericsson & 

Simon [18] provide guidelines on the TAP instructions and 

prompts. In this, they contend that prompts should primarily focus 

on asking students to express conscious thoughts using language 

that directly represents those thoughts (e.g., “my plan is to complete 

the assignment”) or express thoughts in which sensory information 

is converted into words (e.g., “I see three hyperlinks here”). In 

contrast, prompts should refrain from asking students to 



 

metacognitively monitor and reflect on their thinking process, as 

this can potentially influence how students think and perform tasks, 

altering the order and nature of their cognitive processes [18, 53]. 

When prompts are carefully designed to avoid engaging students in 

metacognitive activities, studies have found that thinking aloud 

neither alters accuracy nor the sequence of operations in most 

cognitive tasks (excluding insight problems [21]). 

Once students complete the learning task, their verbalization 

collected using audio or video recordings is then transcribed to text. 

The recordings, once predominantly transcribed by humans, are 

now increasingly transcribed by automated transcription tools such 

as Whisper [50], with transcription accuracy described in their 

technical reports being satisfactory without human supervision. 

With the transcriptions, researchers code the SRL processes using 

a coding scheme (e.g., [9, 29, 37]). As a critical part in TAP, the 

coding scheme outlines the target SRL behaviors to observe in a 

transcript and provide an operationalization for each behavior. 

These schemes are typically derived from SRL theories and then 

refined and modified based on the existing task, platform, and 

dataset [26].  

For example, to examine students’ use of SRL in think-aloud 

transcript, [9] developed a coding scheme that outlines SRL 

categories corresponding to the three phases (i.e., forethought, 

performance, and reflection) in Zimmerman’s model [67]. These 

categories reflect behaviors where students are self-regulating in 

the forethought phase (e.g., orientation, planning, setting goals), 

performance phase (e.g., processing), and reflection phase (e.g., 

evaluating). By comparing the SRL activities between high and 

low-achieving students, [9] found that high achievers tended to 

demonstrate more frequent use of SRL, such as planning and 

monitoring; and they are also more effective and strategic at 

implementing SRL strategies. Using the same coding scheme, [29] 

and [37] found that successful learners were more likely to engage 

in preparatory activities (e.g., orientation and planning) before 

completing a task. In contrast, preparation and evaluation activities 

were less frequently used by less successful students.  

In addition to studying the effective use of SRL in relation to a 

student’s overall achievement, a recent study examined how the use 

of SRL inferred from TAPs is correlated to moment-by-moment 

performance when students are solving a multi-step problem [12]. 

In specific, they identified four SRL categories based on Winne and 

Hadwin’s four-stage model [60]. By coding SRL categories in 

students’ utterances in between steps, they examined how the use 

of SRL in terms of presence, frequency, cyclical characteristics, 

and recency relate to student performance on subsequent steps in 

multi-step problems. They show that students’ actions during 

process-heavy stages of SRL cycles (e.g., processing information 

and planning) exhibited lower moment-by-moment correctness 

than later SRL cycle stages (i.e., enacting) during problem-solving. 

This more granular examination between students’ use of SRL and 

intermediate success provides a lens through which to examine the 

effectiveness of SRL behaviors in a fine-grained way. 

Understanding how SRL behaviors influence the subsequent 

performance provide further evidence on when interventions could 

be provided during a problem-solving process. 

2.3 Using Natural Language Processing to 

Scale Up SRL Measurement 
Six years ago, the position papers published by McNamara et al. 

[40] discussed the significant impact of natural language processing 

(NLP) in understanding and facilitating learning, emphasizing that 

natural language is fundamental to conveying information. Recent 

advancements in NLP continue to reveal new opportunities for 

supporting learning through analytics. 

One emerging application using natural language in the domain of 

education is predicting students’ cognitive processes from learner 

text artifacts with the goal to provide real-time feedback and to 

measure these constructs at scale. For example, to understand how 

students engage in SRL and to provide timely scaffolds in math 

problem-solving, using NLP and machine learning, Zhang et al [63] 

developed detectors that measure SRL in students’ open-ended 

responses. Specifically, they extracted features that resemble the 

linguistic characteristics found in students’ text-based responses 

and trained machine learning models that detect SRL constructs, 

reflecting how students assemble information, form mental 

representations of a problem, and monitor progress. Similarly, 

Kovanovic et al [35] developed machine learning models that 

automatically identify the types of reflection in students’ reflective 

writing. In their work, NLP methods, including n-grams, LIWC 

[54], and Coh-Metrix [15] were used to extract features from 

students' reflective writing which were then used to train models 

and make predictions.  

Since then, more advanced models have been developed to process 

human language. Large language models (LLMs) and sentence 

embeddings as the most recent breakthrough in NLP have advanced 

the state of the art in language models. These models, based on deep 

learning architectures such as transformer neural networks, are 

trained on massive amounts of text data to understand and generate 

human language in a contextually coherent and meaningful manner 

[56]. Sentence encoders play a crucial role within LLMs by 

transforming sentences into embeddings within a high-dimensional 

vector space. This process is accomplished by leveraging the 

learned relationships between words from previously encountered 

sentences. Specifically, these sentence encoders convert text to N-

dimensional embeddings by considering each word within a 

sentence and its context with surrounding words. (e.g., N = 1536 

for Open AI’s text-embedding-3-short model, N = 768 for BERT-

base, N = 512 for Universal Sentence Encoders v5). Consequently, 

these contextually rich embeddings, expressed in numerical format, 

capture the semantic meaning and contextual information of the 

text.  

Given these advancements, particularly with LLMs showing 

promising performance in text comprehension, studies have 

explored integrating them into detectors to scale up measurement, 

predicting cognitive constructs in textual artifacts. This includes 

detecting attributes and relatedness of peer feedback [16, 64], as 

well as detecting gaming the system (a failure to engage in SRL) in 

open-ended responses [65]. 

However, the transferability of detectors has commonly been 

mentioned as a limitation in EDM and related fields in previous 

work [7]. The models developed in these papers are mainly 

designed and evaluated within one platform ([48] represents one of 

the few exceptions). Being able to evaluate the performance of a 

detector across systems will allow us to understand the limitations 

of these models, as well as to investigate how the 

language/communicative expression may differ when students’ 

working in different subjects and systems, albeit capturing the same 

cognitive attributes. 



 

3. METHODS 
To develop models that automatically detect students’ use of SRL 

in think-aloud data, we collected students’ think-aloud transcripts 

while working within three intelligent tutoring systems (ITSs). In 

this section, we first describe the three ITSs, summarizing the 

content and design of each system, and comparing how they differ 

from each other (see section 3.1). We then describe the study 

sample and study procedure, highlighting the environment in which 

think-aloud was collected (see section 3.2). After analyzing the 

think-aloud transcription, we operationalized four SRL categories 

grounded in the Winne and Hadwin four-stage model [60], and 

developed a coding scheme to code the utterances accordingly (see 

section 3.3). Two embedding models were then applied 

respectively to vectorize the text. Using the outputs from the 

embedding models as features, we trained machine learning models 

that predict the presence or absence of the four SRL categories (see 

section 3.4). Finally, we examined how well these models transfer 

across subject areas and platforms (see section 3.5). 

3.1 Study Materials 
The present study's sample features student interactions from three 

intelligent tutoring systems, covering the domains of stoichiometry 

chemistry and formal logic. All tutoring systems provide students 

with step-level tutoring, including correctness feedback and as-

needed instructions in the form of hints, as is common in ITSs. 

However, the degree of structure varies across these systems, from 

an open-ended, formula-based ITS to a highly structured ITS with 

fraction-based input. 

Our first system, Stoichiometry Tutor, is an ITS based on example 

tracing [2]. Stoichiometry Tutor has significantly improved high 

school students' stoichiometry skills [38, 39]. The most recent 

version of the Stoichiometry Tutor incorporates insights from 

previous design experiments, including the use of polite language 

in hints [38]. The Stoichiometry Tutor utilizes a structured, 

fraction-based problem-solving method to guide students toward 

target values (see Figure 1.top). 

Our second system, the Open-Response Chemistry Cognitive 

Assistant (ORCCA) Tutor, is a rule-based ITS for chemistry [33]. 

As a rule-based ITS, ORCCA matches problem-solving rules with 

students' strategies, accommodating flexible problem-solving 

sequences with a formula interface (see Figure 1.middle). Rule-

based ITSs allow for more flexibility in problem-solving strategies 

while at times being unable to match errors to intended strategies, 

limiting their ability to deliver as-needed feedback.  

Our third system, the Logic Tutor, is a rule-based tutoring system 

for learning propositional logic (see Figure 1.bottom). Students are 

guided through constructing truth tables, correlating the structure 

of a formula with its meaning by assigning truth values. Students 

are tasked with manipulating propositional formulae and 

transforming them into equivalent expressions using a limited set 

of logical connectives. Additionally, students learn to apply 

transformation rules to rewrite or simplify formulas. Students 

receive hints and error feedback with dynamically generated 

counterexamples to students' formulae. A cheat sheet on the left 

reminds them about relevant logical transformations and reason 

boxes for self-explanation, which pose further scaffolding during 

problem-solving. The tutoring system has been used in remedial 

college summer pre-courses for incoming first-year university 

students. 

Stoichiometry 

Tutor1 

 

ORCCA2 

 

Logic Tutor 

 

Figure 1. Interface examples of all three ITSs employed in the 

present study. Stoichiometry Tutor and ORCCA cover the 

domain of chemistry. Logic Tutor and ORCCA are formula-

based ITS compared to Stoichiometry Tutor, which is highly 

structured, fraction-based ITS.  

3.2 Study Sample and Procedure 
Fifteen students enrolled in undergraduate (93.3%) and graduate 

degree (6.7%) programs participated in this study between 

February and November 2023. Ten students were recruited at a 

private research university (participating in person). The five other 

students were recruited from a large public liberal arts university 

(participating remotely via Zoom). All participants were enrolled 

in degree programs in the United States. Participants were 40.0% 

white, 46.6% Asian, and 13.3% multi- or biracial. The students 

were undergraduate freshmen (21.4%), sophomores (14.3%), 

juniors (35.7%) and seniors (21.4%) and one graduate student 

(7.1%). Students were recruited via course-related information 

channels via instructors and student snowball recruiting. In all 

cases, recruitment was performed via channels, ensuring that 

students were still in the process of learning the content domain 

covered by the tutoring system. All participants received a $15 

Amazon gift card for their participation.  

All students completed a session between 45-60 minutes. Students 

were distributed to conditions such that at least five students 

worked with each of the three ITSs. Six students worked on both 

tutors for stoichiometry due to finishing their first ITS early. The 

procedure started with a self-paced questionnaire assessing 

demographic information, prior academic achievement, and self-

rated proficiency in the subject domain (i.e., stoichiometry 

1https://stoichtutor.cs.cmu.edu/ 

2https://orcca.ctat.cs.cmu.edu/ 
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chemistry or formal logic). Then, students viewed a pre-recorded 

introductory video about the ITS they would work with and could 

ask questions about the video. In the case of Logic Tutor, students 

had the opportunity to read an article on formal logic symbolization 

and rules and to ask the experimental conductor, who was familiar 

with formal logic, any questions about symbolization and the 

content. Students had up to five minutes to skim both articles to 

develop relevant questions to ask the experimental conductor. Both 

articles were taken from a remedial first-year undergraduate 

summer course on formal logic in which the Logic Tutor was 

previously deployed. The articles ensure that all participants had 

the necessary prerequisite knowledge and knew the required 

symbolization for expressing logical formulae to work with the 

tutoring software. After being acquainted with the tutoring 

software, students received a brief demonstration and introduction 

to the think-aloud method and began working on tutor problems at 

their own pace for up to 20 minutes while thinking aloud. The 

experimental conductor occasionally reminded them to keep 

talking when they fell silent for more than 5 s. Think-aloud 

utterances were recorded with a 2022 MacBook Pro built-in 

microphone of the computer serving the tutoring software or Zoom 

microphones of the participating student's laptop.  

Problems were content-matched across the Stoichiometry Tutor 

and ORCCA ITS and included two content units taken from prior 

studies featuring the Stoichiometry Tutor: (a) moles and gram 

conversion and (b) stoichiometric conversion. Both content units 

included a total of four problems. The ordering of problems was 

counterbalanced by reversing the problem sequence across all four 

conditions. For Logic Tutor, two problem sets were taken from 

prior remedial summer courses for first-year undergraduates. The 

problem sets covered simplifying logical expressions (seven 

problems) and transforming logical expressions to the negation 

normal form (four problems), respectively. Students worked on 

both problem sets while thinking aloud in a fixed sequence until the 

time ran out. This decision was based on both problem types having 

increasing difficulty levels, with the first problems set including 

additional problem-solving scaffolds via reason boxes. 

3.3 Data and Coding SRL Categories 
The dataset analyzed comprised individual student transactions 

encoded in log data (e.g., attempts, hint requests) from all three 

tutoring systems, along with think-aloud transcripts. Student 

actions within each ITS were logged into PSLC DataShop [34]. 

Whisper, an open-source transcription model for voice, generated 

think-aloud transcripts, which segmented utterances with start and 

end timestamps. Error and accuracy reports are discussed in [50]. 

In the current study, we merged multiple utterances falling between 

the same timestamped student transactions, which allows modeling 

the subsequent student action's correctness based on prior 

utterances' SRL codes, as done in [12]. Synchronization of log data 

and think-aloud transcriptions was ensured by coding a reference 

tutor transaction by a coder familiar with the software, which 

allows for synchronization with no more than a 1-second error 

margin. Log data and anonymized synchronized think-aloud 

transcripts are available at 

(https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5371

) for the Stoichiometry and ORCCA tutor, and at 

(https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5820

) for the Logic Tutor. 

Concatenated utterances were annotated following a coding 

scheme (see Table 1) aligning with the four-stage SRL model by 

Winne and Hadwin [60]: Processing Information, Planning, 

Enacting, and Realizing Errors. These categories, focusing on 

relevant behaviors within problem-solving learning environments, 

represent a subset of SRL behaviors within each model stage. 

Although coarser-grained than other SRL think-aloud studies, this 

approach allows observation of finer-grained cognitive operations 

within comparatively short utterances between problem-solving 

attempts. 

The coding categories reflect critical behaviors at different stages 

of problem-solving learning, allowing us to examine learners' 

cognitive activities during information processing, planning, 

enacting conceptual actions, and realizing errors. Coding at this 

level enables observation of cognitive operations that are usually 

inferred from multiple actions and verbalizations. Table 1 outlines 

the coding categories and related behaviors. 

Table 1. the four SRL categories, including indicative behaviors 

of each category and example utterances. 

SRL 

Category 

Behavior Example 

Utterance 

Processing 

Information 
• Assemble information  

The utterance 

demonstrates behaviors 

where students read or re-

read a question, hints, or 

feedback provided by the 

system 

 

• Comprehend information 

The utterance 

demonstrates behaviors 

where students repeat 

information provided by 

the system with a level of 

synthesis 

  

"Let’s figure out 

how many 

hydrogen items 

are in a millimole 

of water molecule 

H2O molecules. 

Our result should 

have three 

significant 

features. Figures. 

Avogadro number 

is 6.02 E23. 2 

atoms of 

H2O." 

Planning • Identify goals and form 

plans 

The utterance reflects 

behaviors where students 

verbalize a conceptual 

plan of how they will 

solve the problem  

"Our goal of the 

result is hydrogen 

atoms. The goal 

of the result is the 

number of 

hydrogen atoms, 

right?" 

Enacting • Verbalize previous action 

The utterance reflects 

students’ behaviors 

where they verbalize an 

action that has just been 

carried out explaining 

what they did 

 

• Announce the next action 

The utterance reflects 

student behaviors where 

they verbalize a concrete 

and specific action that 

they will do next 

"Two molecules 

of this. How many 

atoms in a... How 

many atoms in a 

minimum 

molecule of M 

mole? 61023 

divided by 2. 

3.0115." 

Realizing 

Errors 
• Realize something is 

wrong 

The utterance 

demonstrates instances 

where students realize 

there is a mistake in the 

"It’s incorrect. 

What’s happened? 

It is the thousand 

in the wrong spot. 

32 grams per 

mole. No, the 

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5371
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5371
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5820
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5820


 

answer or the process 

with or without external 

prompting (i.e., tutor 

feedback) 

  

thousand is 

correct, so what 

am I doing 

wrong? [...]" 

 

Two coders established acceptable inter-rater reliability after 

coding 162 concatenated utterances (Kprocessing= 0.78, Kplanning = 

0.90,Kenacting = 0.77, Kerrors = 1.00). They then individually coded 

the remaining utterances, double-coding any lacking agreement 

within the inter-rater iteration. The present study sampled a total of 

955 annotated utterances. We reported the distribution of the codes 

of each SRL category observed in each platform in Table 2. 

Table 2. the distribution of the SRL Codes in each platform 

  Stoichiometry ORCCA Logic  

Tutor 

Total number of 

students 

9 5 5 

Total number of 

labeled 

utterances 

469 162 324 

Processing 

Information 

13% 21% 26% 

Planning 11% 12% 17% 

Enacting 23% 19% 31% 

Realizing Errors 6% 4% 19% 

 

3.4 Sentence Embedding and Building 

Detectors 
With the goal of developing models that can reliably detect the 

presence or absence of the four SRL categories (Processing 

Information, Planning, Enacting, Realizing Errors), we trained 

machine learning models using features obtained from two state-

of-the-art sentence embeddings models, and compared their 

performance. Specifically, we used the Universal Sentence 

Encoder large v5 (USE; [13]) and the “text-embedding-3-small” 

model from OpenAI [45] to vectorize the utterances. 

These sentence embedding models operate by encoding sentences 

into a high-dimensional vector space, utilizing the relationships 

among words learned from previously encountered sentences. This 

approach enables the models to generate context-aware 

representations of words, taking into account both the ordering and 

identity of all other words in the text. Through the process of 

vectorization, these sentence embedding models utilize a series of 

neural networks to convert the text-based input into a numerical 

representation as output. 

The two models employed in the current study differ in the length 

of embeddings they produce: the length of the embedding vector is 

512 for the USE and 1536 for the “text-embedding-3-small”. In 

other words, through the process of vectorization, each clip 

(concatenated utterances) was converted to a vector that contains 

512 numerical values using the USE model and 1536 numerical 

values using the “text-embedding-3-small” model. The 

dimensionality of the vector is important for downstream prediction 

tasks as it encodes varying amounts of information. However, 

higher dimensions may not always be optimal, as it may potentially 

include irrelevant information for the downstream prediction task 

and could be memory-intensive [55]. Given the limited work on 

examining the impact of dimensionality on model performance in 

this particular scenario – predicting students’ SRL processes in 

think-aloud – we explored and compared two pre-trained 

embedding models with their default vector size. 

These numerical values derived from the embedding models were 

then used as features to train machine learning (ML) models that 

predict the presence or absence of the four SRL categories. These 

ML models were fitted using a neural network with one hidden 

layer, using the TensorFlow library in Python. (see Github 

repository for Python script - https://github.com/pcla-

code/EDM24_SRL-detectors-for-think-aloud.git) 

To evaluate the model performance, we employed 5-fold student-

level cross-validation. This validation method involved splitting all 

clips (concatenated utterances) into five folds, with each student's 

clips nested in one-fold. For training the model, four folds were 

used, while the fifth fold served as the test set for predictions. Each 

fold acted as the test set once. By splitting the data at the student 

level, we ensured that no two clips from the same student could be 

included in both the training and testing sets, thus preventing data 

leakage that would bias model results toward higher predictive 

accuracy. This approach enhances the model's ability to generalize 

to new students and is recommended as the standard practice to 

validate ML models in the field of educational data mining [6]. For 

each test set, we computed the area under the Receiver Operating 

Characteristic curve (AUC), and then averaged them across the five 

test sets, reporting an average AUC for each model. 

To compare the performance difference between the two 

embedding methods, we computed the overall AUC using the 

predictions compiled from the five test sets for each model. We 

used DeLong’s test to evaluate whether the difference in the overall 

AUCs between the two embedding methods is significant for each 

prediction task. 

3.5 Examine the Transferability of the Models 
We investigated the generalizability of our model across domain 

(stoichiometry chemistry to formal logic) and ITS interface types 

(open-ended to highly scaffolded). Building platform- and domain-

independent models has been a long-standing research goal in 

learning analytics and educational data mining, as generalizable 

models do not require new training data in new contexts. However, 

past work has also shown that domain transfer might depend on the 

similarity of tutoring system interfaces and architectures [49]. 

To investigate transfer, a natural split between the three ITS in this 

study can be made by domain (training on Stoichiometry Tutor and 

ORCCA, testing on Logic Tutor) and platform type (training on the 

open-ended ORCCA and Logic Tutor, testing on the highly-

scaffolded Stoichiometry Tutor). We evaluated model performance 

on these two test-sets analogous to our cross-validation procedure 

described above, reporting test set AUC. 

3.6 Error Analysis 
To better understand the performance and limitations of our 

employed models we performed an informal error analysis of 

misclassified examples at the two transfer tasks: subject and 

platform type transfer. The goal of the error analysis is to 

understand the nature of the errors made by the model when it is 

applied to a new domain or platform. This helps in identifying 

patterns or systematic mistakes, which can lead to insights on how 

to improve the model's architecture [20].  

https://github.com/pcla-code/EDM24_SRL-detectors-for-think-aloud.git
https://github.com/pcla-code/EDM24_SRL-detectors-for-think-aloud.git


 

The error analysis followed a multi-stage process. One research 

team member categorized all misclassified data points by (a) label 

and (b) error type (false positive vs. false negative). Then, the same 

coder categorized errors within these groups by an initial set of 

error types and themes. Afterward, a second research team member 

consolidated these themes identified in errors and revised their 

description through discussion with the first coder. This process 

minimized bias in individual coders. Given the informal nature of 

this analysis, we report the most interesting error themes and 

patterns that can point to further model improvements in future 

research. 

4. RESULTS 

4.1 Model Performance 
Table 3 reports the average and standard deviation of AUC scores 

by SRL category obtained from 5-fold student-level cross-

validation with two embedding methods. The AUC indicates the 

probability that the model can correctly classify a set of one positive 

and one negative example of each class. An AUC of 0.5 

corresponds to classification at random chance, while an AUC of 1 

represents perfect classification.  

As the results suggested, the models performed fairly well in 

predicting the four SRL categories, showing average AUCs ranging 

from 0.696 to 0.915. These findings suggest that the detectors were 

generally successful in capturing the four SRL categories, using 

either embedding method. We also note that Realizing Errors was 

more accurately detected than the other three SRL categories. This 

could possibly be due to the use of signifying words or phrases in 

student verbalizations that are indicative of this category, such as 

“wrong” or “it’s incorrect.” 

To evaluate whether the models using the two different embedding 

methods differ significantly in performance, DeLong’s test was 

conducted. For each SRL category, we first computed the overall 

AUC using the predictions compiled from the five test sets for each 

embedding method. DeLong’s test was then applied to examine if 

the difference in the overall AUCs is significant. As shown in Table 

3, we found that models built using the embeddings from text-

embedding-3-small significantly and consistently outperformed the 

models built using the embeddings from USE for all four SRL 

categories.  

Table 3. Average AUC and DeLong’s test results: comparing 

the model performance between the two embedding models 

  Avg. 

AUC

  

w/ 

USE  

Avg. AUC 

w/ text-

embedding

-3-small 

Z-

scor

e 

95% CI p 

Processing 
Informatio

n 

.793 
(.029) 

.828 (.038) -2.57 [-0.07, -
0.01] 

.010 

Planning  .716 

(.042) 

.785 (.023) -3.30 [-0.11, -

0.03] 

<0.00

1 

Enacting  .696 

(.061) 

.779 (.076) -4.18 [-0.11, -

0.04] 

<0.00

1 

Realizing 

Errors 

.865 

(.021) 

.915 (.031) -2.27 [-

0.08  0.01

] 

.02 

 

4.2 Transferability of the Models 

4.2.1 Transfer across subject areas 
To evaluate if models can transfer across subject areas, we trained 

models using data from Stoichiometry and ORCCA tutors (both 

cover stoichiometry chemistry) and tested the models on data 

collected from Logic Tutor. As shown in Table 4, we found, models 

using either set of embeddings (USE or text-embedding-3-short) 

were lacking the ability to predict three of the four SRL categories 

when transferred across subject areas. Specifically, when models 

were trained on the subject of chemistry, they did not transfer well 

predicting when students were Processing Information, Planning, 

and Enacting while working on formal logic questions, with AUC 

scores ranging from 0.558 to 0.654. However, models that predict 

Realizing Errors did transfer across subject areas. 

Table 4. AUC tested on Logic Tutor with models trained on 

Stoichiometry and ORCCA Tutor: examine model transfer 

across subject areas 

SRL category USE text-

embedding-3-

short 

Processing Information 0.654 0.593 

Planning  0.558 0.619 

Enacting  0.561 0.605 

Realizing Errors 0.784 0.896 

 

To better understand the model’s transferability across domains 

(from stoichiometry chemistry to formal logic), which could inform 

future model refinements, we manually inspect classification 

examples across all four SRL categories. We highlight three 

notable patterns, based on discussions among two research team 

members. 

Firstly, by examining the errors in the Processing and Planning 

categories, we noticed that the model prediction often coincided 

with domain-specific vocabularies. Processing encodes 

verbalizations where students read instructions or hints provided by 

the system, through which students obtain and comprehend 

information. However, the language used in instruction (e.g., the 

wording of a question or hints) is domain-specific, which 

potentially causes issues in transferring the prediction to a different 

domain. For example, in a misclassified example, a student said, 

“This is the same in both expressions./I see that./That means we 

have associativity”. In this case, we observe that the student was 

processing what they noticed, making a comparison between two 

expressions and comprehending the problem; however, given the 

use of domain-specific vocabularies (e.g., “expressions”, 

“associativity”) that is specific to Logic Tutor, the model lacked the 

ability to understand that the student was processing information, 

which resulted in a misclassification. A similar pattern was 

observed in the Planning category. 

Secondly, when detecting Enacting behavior, the model was more 

likely to be accurate if the utterances included general actions 

words, such as “put”, “try”, “going to”, and “enter”. For example, 

a correctly classified example included “OK, so I'm just going to 

enter what this says, the answer should be Q, P”. However, when 

the utterances did not include an action word and the student used 

language that is specific to formal logic, the model tended to have 



 

difficulty inferring the Enacting category, and classifying it 

inaccurately. For instance, a student said, “not q and p/ okay further 

solve p or parenthesis not q and p with absorption”. In this example, 

the student was describing what they just entered in the formula in 

Logic Tutor, in which they entered the negation symbol (!) and the 

“and” symbol (&) along with the two parameters p and q. As we 

see, the words “not” and “and '' in the utterance here imply logical 

operators rather than how they are typically used in daily language. 

Because of the use of vocabulary that has special meaning in this 

context that involves formal logic, the model failed to understand 

the scenario in which the student was describing an entry, 

representing an Enacting behavior. 

Finally, we noticed that Realizing Errors models transfer fairly well 

across domains, which may be due to the use of high-signal words, 

such as “no”, “wrong”, and “oh”, which are domain-agnostic. 

However, false negative errors were still prevalent in predictions. 

Potential issues in the misclassification could stem from the dual 

meaning of “negation” and “negative” in formal logic (which is, 

again, domain-specific language distinct to Logic Tutor). For 

example: "So this would be negation of q and the junction of 

negative p./And this seems to be incorrect” which the model 

incorrectly classified as not Realizing Error (false negative). In 

other words, given that “not” and “negation” have domain-

relevance in logic rather than being common in error-making, the 

model likely misclassified this category during transfer. 

4.2.2 Transfer across platform design 
To assess whether models can transfer across platform designs, we 

trained models using data collected from ORCCA and Logic Tutor 

(both of which use an interface design with dynamic scaffolding 

and open-ended response formula entry fields) and tested the 

models on Stoichiometry Tutor, which features a highly-scaffolded 

interface. In Table 5, we report the AUC of these models predicting 

the utterances in the test set. The results suggest that these models 

are successful at transferring across designs, as indicated by AUC 

scores ranging from 0.713 to 0.882. 

Table 5. AUC tested on Stoichiometry Tutor with models 

trained on ORCCA and Logic Tutor: examine model transfer 

across platform design 

SRL category USE text-embedding-3-short 

Processing Information 0.816 0.846 

Planning  0.814 0.882 

Enacting  0.713 0.808 

Realizing Errors 0.81 0.849 

 
To further examine these models’ transferability across platform 

designs, we manually inspect misclassified examples across all four 

SRL categories. Through this process, we note two error patterns 

that might be caused by the differences in platform design. 

Firstly, we noticed that multiple utterances were incorrectly tagged 

with the Planning category, but were actually an act of Processing, 

as participants read or summarized instructions in Stoichiometry 

Tutor. Specifically, error-specific feedback in Stoichiometry Tutor 

guides students’ problem-solving and planning through hints, 

which often start with language like “Isn’t our goal to [...]”. The use 

of goal-oriented language in system information might have 

confused the model, making it believe that a student was forming 

goals, while in reality it was the student reading off of 

hint/feedback, which constitutes Processing Information.  

Additionally, we noticed that the model tended to misclassify 

Enacting behavior in Stoichiometry Tutor, and that is possibly due 

to a step where students use a drop-down menu to self-explain, a 

step that is unique to Stoichiometry Tutor among the three ITSs. In 

this step, students label the rationale behind their problem-solving 

steps. For example, they may select "unit conversion" in the drop-

down menu to explain their process of converting grams to 

kilograms. Consequently, when a student verbalizes "Unit 

conversion from grams to kilograms" immediately after selecting 

"unit conversion" in the drop-down menu, the model misclassifies 

this utterance as Planning rather than Enacting. This 

misclassification occurs potentially because the model was not 

trained on data that captures this specific step of the question or 

behavioral log data that reflects the student's action. 

5. DISCUSSION 

5.1 Main Findings and Contributions 
Think-aloud protocols (TAPs) are an important approach for 

investigating SRL during problem-solving and have been widely 

used in prior research [9, 26, 28, 37]. Previous studies not only 

demonstrate TAPs as a valid approach to measure SRL but also 

underlines its importance in capturing SRL in a more 

comprehensive way, complementing behavioral log data in SRL 

measurement [19]. However, TAPs require researchers to manually 

code students' verbalizations, which presents challenges in 

scalability. Thus, the present study demonstrated the feasibility of 

using large language models and machine learning to automatically 

identify SRL behaviors in machine-generated student think-aloud 

transcripts, which can speed research employing TAPs. 

Specifically, we collected students’ think-aloud while working 

within three intelligent tutoring systems. We vectorized students’ 

utterances using two different sentence embedding models 

(Universal Sentence Encoders and OpenAI’s text-embedding-3-

short), and then used the embeddings as features to train machine 

learning models that predict four SRL categories (i.e., Processing 

Information, Planning, Enacting, and Realizing Errors). The 

transferability of these models was evaluated across subject areas 

and platform designs. Our main findings and contributions are as 

follows. 

First, by evaluating the models using 5-fold student-level cross-

validation, we demonstrated that embeddings from either Universal 

Sentence Encoders or OpenAI’s text-embedding-3-short were 

reliable at detecting the four SRL categories, with average AUC 

scores ranging from 0.696 to 0.915. These results demonstrate a 

promising potential of leveraging these models to measure 

students’ SRL in think-aloud protocols without human supervision. 

Additionally, when comparing the two embedding models, we 

found that models utilizing embeddings from OpenAI’s text-

embedding-3-short performed significantly better than Universal 

Sentence Encoders. This advantage in performance may be 

partially attributed to the fact that text-embedding-3-short 

generates a larger vector, potentially extracting and retaining more 

relevant information for the prediction task, thus resulting in a 

better performance [55].  

Second, by training models using data from two of the three 

platforms and testing them on the third platform, we examined the 

transferability of these models across subject areas, which prior 

work on detectors in educational data mining identified as 



 

challenging [7]. Specifically, we found that these models lack the 

ability to transfer across domains (i.e., from stoichiometry 

chemistry to formal logic), showing subpar performance in 

predicting all SRL categories other than Realizing Errors. Upon 

examining the misclassified cases across the four SRL categories, 

we noticed three error patterns, mainly relating to the use of 

domain-specific language. Specifically, we noticed that these 

models rely heavily on domain-specific vocabularies when 

predicting the Processing Information and Planning categories. 

When students use vocabulary that is specific to formal logic which 

is unlikely to occur in the domain of chemistry (e.g., “associative” 

or “DeMorgan rule”), the models tend to make false negative 

errors. Additionally, when detecting Enacting, the model tends to 

confuse the meaning of logical operators (e.g., "not" or "and") 

transcribed to natural language instead of their conventional 

symbols (i.e., “~” and “&”) with their meaning in everyday 

language. Thus, when students verbalize their formula entry in 

Logic Tutor (e.g., students entered ~q&p in the formula and 

verbalized “not q and p”), the model fails to recognize it as 

Enacting. Similarly, because of the dual meaning of “negation” and 

“negative” in formal logic (which is, again, domain-specific 

language specific to Logic Tutor), the Realizing Error model which 

was not trained on the subject of formal logic failed to transfer, 

potentially failing to understand that “not” and “negation” have 

domain relevance in formal logic questions.  Given these 

observations, in the next section, we discuss a potential 

improvement of including domain-specific language in model 

training. 

Third, using the same approach (training models on data from two 

platforms with similar design and testing the models on the third 

platform), we show that these models can transfer across platforms, 

demonstrating a successful transferability from open-ended, 

formula-based platforms to a highly structured platform with 

fraction-based input. Similar to [49], despite showing a success of 

transfer of these ML models across platforms, we noticed that the 

success of transfer depends on how close or different the design 

features are among platforms. By examining the misclassified 

utterances closely, we found two error patterns that relate to the 

differences in platform design that may contribute to the 

misclassification. Specifically, we found that the feedback/error 

message in Stoichiometry Tutor contains language that is different 

from the error messages used in the other two platforms (ORCCA 

and Logic Tutor). Specifically, the error message in Stoichiometry 

Tutor contains language (e.g., “Isn’t our goal to…”) that insinuates 

that a student is making a plan and setting goals while, in actuality, 

the student is reading the error message. Because of this, the models 

were likely to classify these instances as Planning rather than 

Processing. Additionally, we found the step where students use a 

drop-down in Stoichiometry Tutor to self-explain (a step that is 

used in Stoichiometry Tutor but not in the other two systems) may 

be the reason why the model misclassified Enacting for Planning. 

In these cases, students verbalize their selection (an indication of 

enactment in the context of selecting options in drop-downs); 

however, without the context of the interface and not knowing a 

student's prior and subsequent actions, the model can easily confuse 

between the two scenarios when the student said “unit 

conversion”:  [I choose “unit conversion” as a reason in the drop-

down menu]  vs. [I'm going to do a “unit conversion”], where the 

former is Enacting while the latter is Planning. This 

misclassification occurs potentially because the model was not 

trained on data that captures this specific step of the question or 

behavioral log data that reflects the student's action. We discuss the 

incorporation of behavioral logs as a potential solution to improve 

models’ transferability in the next section. 

5.2 Limitations and Future Work 
We acknowledge several limitations of the current work regarding 

the use of data and the choice of models. These limitations should 

be addressed and further evaluated in future work.  

First, students' utterances (i.e., transcriptions of what students said 

while thinking aloud) were the main source of data to train models 

and predict SRL behaviors. However, this approach may 

potentially overlook contextual information in the learning 

environment, which is not reflected in students' verbalizations.  Our 

error analysis suggests that missing contextual information  (e.g., 

problem statements, hints, and feedback messages) containing 

domain and platform-specific language limits model 

transfer  across subject areas and platforms. This result aligns with 

recent research that identifies limitations in classifying tutorial 

dialogue independent of its problem-solving context [11]. Future 

work could evaluate model transfer of SRL prediction tasks when 

incorporating instructional context.  Additionally, model transfer 

could be improved by considering learning relations between 

vocabulary of domains and platforms to one another. Past 

approaches include learning a linear mapping from representations 

(e.g., embeddings) of one domain to another, which has been 

successfully used in preserving relationships between modalities in 

machine learning research [41]. Finally, this work could enable 

investigation into whether certain domains transfer more 

effectively to one another than others. For example, ITS in STEM 

domains might transfer better to one another than STEM domains 

due to vocabulary learning and non-STEM problem-solving 

contexts [32]. 

Second, upon analyzing the misclassified cases, we observed a 

potential advantage in integrating behavioral logs into model 

training. These logs, used in human coding, assisted coders in 

contextualizing their assessment of a verbalization within the 

context of sequential actions; however, they were not utilized in 

model training. While the models demonstrated satisfactory 

performance without behavioral logs, enriching the dataset to 

include such logs may enhance transferability, particularly as these 

behaviors can be specific to the platform being used.  

Third, we recognize a potential limitation with the use of auto-

transcribing tools, in which the meaning of domain-specific words 

and language may not be correctly captured based on the context. 

For example, the transcription of “not” when students were 

verbalizing the negation symbol (~).  Therefore, it may be 

appropriate for future projects along this line to manually review 

and revise transcripts and examine how it affects models’ 

performance and their ability to transfer. 

Fourth, the current study experimented with two state-of-the-art 

embedding models and one ML algorithm to predict SRL in think-

aloud. Although we demonstrate the success of these models using 

the current approach, future study may take other factors, such as 

cost, time, model efficiency into consideration, when considering 

the scalability of these models. For example, although neural 

networks have been considered as the default and preferred 

algorithm for prediction tasks that process natural language [22], a 

recent study demonstrates a success of using random forest, a more 

computationally effective model, to examine students’ reading 

comprehension in think-aloud [61]. For providing SRL 

measurement at scale, efficiency or cost-effectiveness analysis 

might be a necessary next step in this line of research. 



 

The future of work along these lines is likely to be impacted by the 

emerging use of ChatGPT for scalable coding of qualitative data 

(e.g., [30, 62]). In these studies, prompts are given to ChatGPT to 

instruct coding, along with definitions and examples. Compared to 

the current method, coding with ChatGPT can be faster, as it does 

not directly involve vectorizing text and training a machine 

learning model. Although [30] found that ChatGPT with prompt 

engineering can be less accurate than classical NLP models for 

some problems, it is worth investigating the possibility of coding 

think-aloud protocols using ChatGPT. There is a possibility that 

directly applying ChatGPT for classification might perform better 

than our approach in specific classification tasks where we 

observed comparatively low accuracy (e.g., domain transfer). 

Future research should explore the question of when the current 

method (sentence embedding and machine learning) is preferred 

over prompt-based large language models. 

6. CONCLUSION 
The present study scaled up the measurement of SRL in students’ 

think-aloud through automated transcription and LLM-based 

prediction. Researchers can leverage our methodology to expedite 

research based on think-aloud protocols, including analyzing SRL 

behaviors across contexts at scale. We established reliable models 

to detect four SRL categories, identifying the key behaviors in each 

stage of the Winne and Hadwin four-stage model. These models 

successfully transfer across tutoring systems of the same domain 

with different interfaces. However, our results also suggest that 

model transfer to new learning environments can likely be 

improved by incorporating linguistic information found in interface 

instructions, including problem statements, dropdown items, and 

as-needed instructions in the form of error feedback and hints. Such 

language could be combined with student verbalizations into a joint 

embedding. Similarly, learning a domain-general SRL model based 

solely on student verbalizations is challenging, as a model trained 

on a chemistry domain context did not generalize to a tutoring 

system for formal logic. More work is needed to address domain-

specific vocabulary in prediction, a common source of error in our 

models, including learning linear transformations of embedding 

spaces from different domains. Overall, this study motivates further 

inquiry into automated analysis of SRL from natural language and 

contributes to the emerging field of advanced natural language 

models in educational data mining and intelligent tutoring systems. 
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