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ABSTRACT
Peer tutoring can improve learning by prompting learners
to reflect. To assess whether peer interactions are con-
ducive to learning and provide peer tutoring support ac-
cordingly, what tutorial dialog types relate to student learn-
ing most? Advancements in collaborative learning analytics
allow for merging machine learning-based dialog act classifi-
cation with cognitive modeling of fine-grained learning pro-
cesses during problem-solving to illuminate this question.
We estimate how much peer-tutored students improve in a
collaborative tutoring system for linear equation-solving in
K-12 mathematics in relationship to the peer dialog types
they engage in. This work establishes a reliable BERT clas-
sifier with an accuracy of close to 80% to classify chat mes-
sages during peer tutoring into minimal, facilitative, and
constructive, serving as instructional factors. Based on data
from 394 students, peer tutor dialog was rare. Only 8% of
tutee problem-solving steps were followed by peer tutor chat
messages. Still, facilitative tutor dialog was associated with
an increased tutee learning rate. Meanwhile, tutor dialog
classified as constructive was associated with lower learn-
ing rates. Content analysis suggested that such dialog often
reinforced incorrect solutions, gave away answers, or was un-
related to the taught content. Hence, considering problem-
solving solution contexts could improve the assessment of
peer tutoring dialog. Peer tutors engaging in little dialog
could be attributed to the high cognitive demand of learn-
ing to tutor while still learning the content they tutor on.
Providing peer tutors with instructional support to engage
in constructive dialog may improve the tutee’s learning.
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1. INTRODUCTION
Collaborative learning analytics is an emerging subdiscipline
that leverages synergies with the long-standing research field
of computer-supported collaborative learning (CSCL) [69].
Adopting learning analytics into CSCL goes hand-in-hand
with using insights generated from collaborative learning
processes to inform the redesign and adaptivity of collab-
orative learning systems. This desire to improve the edu-
cational impact of collaborative learning has sparked multi-
ple successful lines of research. Among many, they include
analytics to support effective group regulation [42], collab-
oration skills [21], and prompting for participation [57]. As
the key application area of the present study, previous works
investigated how data-driven artificial intelligence (AI) sys-
tems can support learners in peer-tutoring by offering adap-
tive support and improving tutor strategies [62, 63, 47, 49].
A promising way to achieve the potential of AI systems is
by analyzing the chat behaviors within these peer tutoring
sessions. This analysis is crucial for uncovering the nuanced
ways in which collaborative learning occurs and evolves in
CSCL environments [69].

Previous studies utilize dialog acts representing the inten-
tions carried out through language to analyze chat behav-
iors. The analysis of dialog acts is crucial to understand-
ing collaborative learning, particularly when they offer or
elicit opportunities to learn [5]. Such opportunities arise
when dialog allows students to reflect, explain, and chal-
lenge their position, exemplified by the concept of “account-
able talk” from extensive classroom research by Resnick et
al. [52]. Therefore, understanding when peer tutoring is ef-
fective likely lies in analyses of characteristics of dialog acts
during peer tutoring conversations. Past research analyzing
peer-tutoring processes offers ample support for this idea,
documenting improvements in learning from positive encour-
agement [11] and sequences of positive feedback [61]. Simi-
larly, past work has analyzed dialog during peer tutoring and
delineated effective and ineffective collaboration dynamics
to develop support systems for peer tutors, which have been
shown to improve their learning significantly [63]. However,
these prior works on effective dialog acts and processes pri-
marily hand-coded dialog acts [11, 61, 63, 55] with the re-
sulting sample sizes being too small to model learning [14].
Yet, the systems that support adaptive problem-solving dur-
ing peer tutoring (e.g., intelligent tutoring systems; ITS) can
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record learning processes on a fine-grained level. Modeling
learning from these records in conjunction with dialog acts
could illuminate the types of dialog acts learners benefit from
most, the relative importance of dialog acts by tutors and
tutees, and where collaborating students need more system-
level support. In short, problem-solving log data could offer
a quantified lens into the conditions under which peer tutor-
ing is most effective and advance the scientific understand-
ing of when collaborative learning yields learning conditions
that are more favorable and effective than individualized
problem-solving [31].

The present study merges two methodologies required to
combine dialog acts with learner modeling: (a) annotations
of dialog acts at larger scales and (b) their connection with
fine-grained problem-solving log data annotated with under-
lying skill models. First, we discuss annotating dialog acts
at scale. With natural language processing (NLP) advance-
ments, automated classification of collaboration character-
istics from text is feasible [54, 17]. Emerging work has also
mined effective dialog acts from tutorial dialog represented
as codes [36]. For example, in Vail et al. [61], an utter-
ance “No, it’s wrong!” from a tutor can be annotated as the
dialog act Negative Feedback. Nascent work also demon-
strates that automatically generated annotations for dialog
acts are effective for understanding learning. Recent studies
in learning analytics employed NLP techniques to analyze
collaborative problem-solving, such as identifying collabora-
tive skills through student speech [51], detecting language
patterns in pair programming [60], and classifying interac-
tions in collaborative science tasks [21].

Second, we discuss combining dialog acts with cognitive
models of learning. One potential reason why instructional
factors in collaborative learning have not been linked to cog-
nitive modeling of learning is that most problem-solving en-
vironments do not produce problem-solving logs with steps
annotated with underlying skill models [42, 13, 21, 57]. How-
ever, outside of collaborative problem-solving, learner mod-
els have a long-standing research track record in improving
learning processes. Process log data of learning, specifically
in ITS, allow for modeling learning rates (i.e., improvement
rates on different skills relevant to a domain). Quantifying
rates of learning have been routinely done with log data in
ITS [15, 8, 31, 24] using an underlying skill model of cog-
nitive operations associated with specific problem-solving
steps. Learning is then measured by observing how likely
a student is to correctly perform a problem-solving step re-
quiring a given skill without needing system support (e.g.,
hints or feedback) [30]. The more often students encounter
different problem-solving steps involving a given skill, the
more likely they are to learn this skill. Instructional factors
analysis (IFA) is an analytic method that can compare rates
of acquisition as a function of learning opportunities related
to different modes of instruction from which students learn
when receiving feedback on their step attempts [14]. IFA
has been used to understand learning in an online logical
fallacy tutoring system comparing different types of expla-
nation [15], model learning from reading in MOOCs [58], and
quantify the effectiveness of collaborative problem-solving in
elementary school mathematics [47]. In peer tutoring, IFA
can be used to compare how much students improve when
using or being exposed to different dialog acts and strategies.

The present study leverages advancements in classifying di-
alog acts from human-to-human tutorial dialog to account
for differences in learning rates during problem-solving prac-
tice of linear equations in middle school peer tutoring. Prior
work creating classifiers for dialog acts from text has used
data sets from higher education (e.g., [17, 54]) or commer-
cial tutoring contexts [55, 36]. Therefore, it is an open ques-
tion whether peer tutoring chat messages from middle school
students, which are expected to be shorter and less rich in
linguistic features, can be reliably classified similarly. Au-
tomated classification of text artifacts from collaboration
in combination with learner modeling is powerful in under-
standing why and when different forms of peer tutoring are
most effective for learners. Yet, to the best of our knowledge,
such a marriage between the classification of text and cogni-
tive modeling has not been done. The present study consid-
ers different types of chat messages during peer tutoring as
instructional events. We distinguish between minimal, facil-
itative, and constructive chats and whether the peer-tutor
(“Tutor”) or tutored student (“Solver”) sends them. The
present study’s coding scheme was adapted from a scheme
by Mawasi et al. [44], who identified classes of peer assis-
tance behaviors in middle school mathematics. Following
prior taxonomies in the student population featured in this
study maximizes the probability of observing relevant vari-
ation in dialog acts of collaborating students and their rela-
tionship to learning rate differences of tutored students. We
investigate how much students improve per learning oppor-
tunity (in terms of learning rates) when engaging in peer
dialog compared to working alone. Such an intermediate
comparison between paired and unpaired problem-solving
establishes how much students learn between both condi-
tions before diving into learning rate differences across spe-
cific instructional factors. We then ask how different classes
of predicted chat messages in a collaborative tutoring sys-
tem for linear equation-solving explain these differences in
learning rates. Our three research questions are as follows:

RQ1: How accurately can students’ chat messages in a col-
laborative tutoring system be classified into minimal, facili-
tative, and constructive using a BERT classifier?

RQ2: How do students’ learning rates during problem-solving
compare when paired with a peer tutor versus working in-
dividually with tutoring software?

RQ3: How does the tutored student’s learning rate vary with
the types of chat messages that the students exchange (i.e.,
minimal, facilitative, or constructive)?

2. RELATED WORK
The present study connects emerging methods for leveraging
natural language in educational data mining with rich prior
research studying collaborative learning by problem-solving
in intelligent systems. Situated in the context of tutoring
systems for collaborative learning, we additionally highlight
past research on dialog acts in the context of peer tutoring
that is relevant to CSCL.

2.1 Collaborative tutoring systems
Engaging in AI-supported dialog systems can help middle
school students learn mathematics more effectively than work-
ing alone [63]. Student-to-student or peer tutoring involves



one learner solving problems while the peer tutor deepens
their knowledge by revising the material they tutor on [62].
Prior work has built applications integrating effective peer
tutoring principles, such as scaffolding writing for progress
reports in group-based class assignments [64]. These envi-
ronments can provide log data to study different forms of col-
laboration and their effectiveness via experiments [12]. The
combination of theory-driven applications and their rich log
data make peer tutoring suitable for studying dialog support
during problem-solving.

Yet, one key challenge in analyzing text from dialog-based
tutoring systems is establishing a coding scheme suited for
a specific domain and student population. Past approaches
for coding collaborative interactions ranged from focusing
on facilitation aspects to categorizing types of participant
interactions (for an overview, see [21]). The present study
adopts a coding scheme from Mawasi et al. [44], who coded
peer help-giving behaviors in middle school math classrooms
with three categories for student conversation: minimal, fa-
cilitative, and constructive contribution. Help-giving is an
integral part of many collaborative activities and is a criti-
cal element of the productive interactions identified by [26]
that contribute to learning from collaboration.

Dialog-based tutoring systems can also feature intelligent
agents that mimic human dialog. Latham et al. [34] de-
veloped an agent that uses dialog to adapt instruction to
learners by detecting patterns in their learning behavior.
Similarly, SimStudent is a teachable peer learner that allows
a student to learn by teaching via chat and by giving the
agent practice problems and test assessments [43]. Despite
these advances, a literature review on pedagogical conver-
sational agents [23] concludes that a proper generalization
of existing design knowledge has not been synthesized from
this line of research. Therefore, the present study derives
design implications for an intelligent collaborative tutoring
system by combining cognitive modeling of learning rates
with students’ use of chats during tutoring.

2.2 Dialog acts in tutoring
Identifying dialog acts (i.e., intentions carried out through
language) from peer tutoring helps investigate student learn-
ing and evaluate tutoring quality [2]. The current study
adopts a coding scheme from Mawasi et al. [44]. The three
categories (i.e., minimal, facilitative, constructive contribu-
tion) are considered dialog acts in the current study. Using
dialog acts to analyze tutoring dialog has been employed in
many previous works [55, 10, 36] for revealing the effective-
ness of dialog tutoring and investigating student learning
performance. These works developed a coding scheme to
annotate dialog acts by tutors and students manually. Prior
research delineated effective dialog acts by analyzing the di-
alog acts from tutoring dialogs. For example, Boyer et al.
[11] demonstrated that the dialog acts offering encourage-
ment helped improve student problem-solving performance.
Vail et al. [61] found that a sequential pattern of dialog
acts, consisting of positive feedback given by tutors after a
confirmation question from the student, was positively cor-
related with the learning gain of students. However, manu-
ally annotating dialog for many tutoring utterances is time-
consuming and cost-demanding [37]. To address this issue,
many empirical studies [55, 56, 36, 37, 38] annotated a cer-

tain amount of tutoring utterances and then employed su-
pervised machine learning models to automate the annotat-
ing process. For example, Rus et al. [55] employed a condi-
tional random field model to train on 500 Algebra tutorial
sessions. Lin et al. [36] employed a BERT model trained
on 45 tutoring sessions on mathematics topics. Inspired by
the promising results of automating the identification of dia-
log acts, the present study aims to employ machine learning
models to analyze the fine-grained differences (e.g., student
learning rate) in learning, which is under-explored in the
middle school peer tutoring context, as most past classifiers
were trained on data sets from higher education (e.g., [17,
54]) or commercial tutoring contexts [55, 36].

2.3 Educational data mining for dialog
Several studies have leveraged rich log data from systems
for collaborative problem-solving and intelligent tutoring to
support and understand learning [29, 47, 49]. A common
thread across both systems is that tutoring is realized through
adaptive natural language, which differs from traditional tu-
toring systems that use hints and error feedback tailored to
specific problem-solving steps. However, unlike the present
study, these studies have not married cognitive modeling
with rich linguistic data from interactions with these sys-
tems. Rather, a systematic literature review on ITS with
natural language dialog [50] shows that most past stud-
ies used pre-to-post learning gains as measures, comparing
learning via AB testing or controlled experiments, usually
comparing different designs of an ITS. For example, prior re-
search on EER-tutor [68] demonstrated how adaptive dialog
that considers prior student errors can significantly improve
learning gains. Similarly, research on Gaze Tutor [16] lever-
aged gaze data to detect and react to student disengagement
by adapting dialog to re-engage the student. Nascent work
by Abdelshiheed et al. [1] leveraged talk moves to predict
assessment scores alongside ITS performance metrics.

Past work leveraged modeling approaches to support collab-
orative problem-solving. For example, Earle-Randell et al.
[18] used Hidden Markov models to understand collaborative
states of elementary school children learning in a collabora-
tive block-based learning environment, finding that states of
confusion or impasses most commonly related to exiting a
state of productive talk. Multimodal learning analytics can
also make collaborative learning more effective by detecting
when team members have differing or insufficient opinions
regarding task progress [41]. Yet, none of the surveyed lit-
erature has combined these emerging modeling approaches
with students’ moment-by-moment performance differences.
The present study bridges this gap by combining traditional
approaches to learner modeling in ITS [14, 31] with different
types of tutoring strategies expressed in chat messages.

3. METHOD
Our methodology involves a multi-stage process whereby we
create a classifier of peer-tutoring chat messages encoded as
log data in an intelligent tutoring system for linear equation-
solving. Generalizing that classifier then allows for fine-grain
cognitive modeling of learning in relationship to the use and
exposure to different types of chat messages sent by the Tu-
tor and Solver. These chat types then serve as instructional
factors in growth models of learning.



3.1 Study context
3.1.1 Sample
The study sample included data from two classroom studies
in 2021 and 2023 in math classrooms in three public sub-
urban middle schools in a mid-sized city in the east of the
USA. A total of 394 students ranging from grades 6-8 and
10 teachers participated in the studies, totaling 22 classroom
sessions. The ten teachers consist of seven female and three
male teachers. The data collection aimed to evaluate the fea-
sibility and desirability of dynamically combining individual
and collaborative learning in math classrooms.

The research team recruited the schools through prior con-
nections with local teachers, with study approval obtained
from the administration of participating schools. The re-
search followed an approved IRB protocol that fell under
the exempt category of established educational settings and
normal educational practices, hence requiring no consent.
Teachers helped distribute letters to all caregivers ahead of
the study, informing them about the data collection and giv-
ing them the opportunity to request their child’s anonymized
data to be removed from the research data set. In line with
the approved IRB protocol, de-identified data is available
upon request for research purposes through DataShop [30]
by pooling three data sets mapping to the three study sites.1

3.1.2 Intelligent tutoring system for peer tutoring
APTA is a collaborative tutoring system for middle school
equation-solving [63]. Students are paired in problem-solvers
(“Solvers”) and Tutors. The tutoring software provides im-
mediate feedback and on-demand hints to assist the student
in the Tutor role – it rarely interacts with the student in
the Solver role. The Tutor is required to provide correctness
feedback through the system interface (marking each step
as correct or not) and can provide hints or explanatory mes-
sages via chat. The system intervenes when the Tutor gives
incorrect correctness feedback, and a problem can only be
finished once the Tutor has graded all steps. The student
taking the Tutor role can request hints from the system for
the Solver at any given step. Further, the system provides
Tutors and Solvers with adaptive conversational support to
support help-seeking and tutoring [63] This conversational
support appears as messages sent by the computer in the
chat panel of the Solver or Tutor (see Figure 1). The Solver
and the Tutor do not necessarily sit close to each other.
They can communicate fully online via a chat message box,
the messages of which are analyzed in the present study. In
the current design, students can only see their partners’ alias
usernames (e.g., “redlion”) rather than real names. APTA
has a track record of effectively supporting student learning
[62, 63], but we note that the present study used a revised
version of APTA, called APTA 2.0 [19]. A screenshot of
APTA’s interface is in Figure 1.

During individualized problem-solving, students worked with
the Lynnette ITS for equation-solving [40]. Similar to APTA,
Lynnette has an underlying knowledge component model
that credits different skills corresponding to problem-solving
step attempts of the Solver, which is used for cognitive mod-

1https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId={5153,5549,5604}

eling of learning (see Section 3.4). Specifically, the correct-
ness of each problem-solving step attempt is related to one
or more skills in Lynnette’s skill model (e.g., “distribute-
division”). Solvers can enter equations into Lynnette that
compound multiple steps (e.g., directly entering the solu-
tion) and are credited for all steps bundled in a compound
step, including all the skills associated with the bundled
steps. For the present study, we used Lynnette’s default
skill model, whose empirical evaluation, including an open-
source data set, is published in [40].

3.1.3 Procedures
Throughout all classroom sessions, lasting typically 50 min-
utes, students practiced linear equations while their teacher
walked around the room to support students when needed.
Researchers were present during the study to resolve tech-
nical issues. At the beginning of classroom sessions, all stu-
dents started out practicing individually until the teacher
started pairing students. Specifically, the teacher monitored
and paired students during the class session through a desk-
top computer or a tablet. Students were paired up manually
or by giving teachers the option to follow a dashboard’s sug-
gestions, which either paired students randomly or based on
system-level knowledge estimates. Contrasting these poli-
cies was informed by prior research on tools for dynamically
pairing students in APTA, including simulation studies and
co-design sessions with teachers investigating human-AI col-
laboration for effective pairings and transitions between in-
dividual and collaborative learning [71, 35, 70]. During pair-
ings, students had access to a chat interface through which
they could exchange short text messages, which were logged.
Teachers had access to a dashboard with estimated student
skill estimates and the number of problems finished. When
student pairs finished an assignment or were unpaired by the
teacher, they returned to individual work. Thus, students
only spent a portion of the time working collaboratively.
Further information on the interplay of APTA, Lynnette,
and Pair-Up, the interface used for supporting teachers in
dynamically pairing students in this study, is described in
Yang et al. [70].

3.2 Datasets
3.2.1 Tutor log data of student learning
We collected a pooled log data set of N = 185,641 trans-
actions in the tutoring software (e.g., problem-solving step
attempts, hint requests, and chat messages). All transac-
tions were recorded via timestamped logs to DataShop [30].
The data set included N = 34,879 first attempts at problem-
solving steps. A first attempt is the student’s initial try at
answering an equation-solving step in the tutor interface.
As is common practice in modeling learning, we only sam-
ple first attempts because they represent students’ initial re-
sponse to solving linear equation-solving steps without Tu-
tor support, with hints coded as incorrect attempts [32].
The data included 337 collaborative pairing episodes, which
lasted an average of M = 25.38 mins (SD = 11.71). Each
pairing had an average of M = 9.33 exchanged chat mes-
sages between Solver and Tutor (SD = 12.28). Our sample
also included 3,058 chat messages by Solvers and Tutors fol-
lowing first attempts. There was an average of M = 6.02
messages in between first attempts (SD = 22.70). Messages
before any first attempt in the system filtered out (2.7%).



Figure 1: Interface of the collaborative tutoring system APTA from the Solver’s (Upper) and Tutor’s perspective (Lower).

3.2.2 Ground-truth labels of chat classifications
We developed a coding scheme for annotating dialog acts
from student chat messages based on a content analysis of
chat-based dialog during joint learning exercises. We fol-
low methods by Wang et al. [66], who scrutinized chat data
from peer-to-peer learning in a similar manner. We then
adapted a coding scheme by Mawasi et al. [44], who identi-
fied peer assistance behaviors in middle school mathematics.
Their framework had three primary labels for student dis-
course: minimal contribution, facilitative contribution, and
constructive contribution. Based on prior work, dialog acts
are expected to help learners most when they offer or elicit
opportunities to learn [5], such as by prompting students
to reflect, explain, and challenge their position [52]. In line
with this reasoning, constructive contributions, which in-
volve reasoning and explanation of content knowledge, are
expected to be more helpful for learners than facilitative
contributions, which offer less room for the tutored students
to elaborate as they tend to focus more on asking for or
giving out the answer. Minimal participation with little or
no relevance to the content knowledge is likely least helpful
for learners. The resulting coding scheme is exemplified in
Table 1. Two coders separately coded N=1,000 randomly
sampled chat messages based on the coding scheme. After
three rounds of coding, the two coders achieved a satisfac-
tory Cohen’s κ of 0.70 [67] based on 101 observations and
then proceeded to code all remaining chat messages.

3.3 Classification of chat messages
To learn a BERT model that can predict hand-coded chat
message labels, we used transformer models that, unlike
commercial large-language models like ChatGPT, are de-
ployable and fine-tunable on regular personal computers.
We used the open-source bert-base-uncased standard BERT
model from the Python Transformers package. We fine-
tuned BERT to predict the hand-coded label of a given chat
message based on the text of the chat message and up to
two chat messages preceding and following it (i.e., using up
to five chat messages total). This decision was guided by
prior work on classifying student-tutor dialog [37]. We pre-
processed text to lowercase and removed punctuation.

From a sample of ground-truth 1,000 chat messages, we re-
moved duplicates, 18 cases that could not be categorized,
and 7 cases that had multiple labels across sentences, reduc-
ing the sample to N = 890 ground-truth chat message la-
bels. We kept 20% of observations for a true holdout test set

to evaluate model performance after cross-validation-based
model selection. We used the remaining 80% of the data
for model fine-tuning by evaluating the model after train-
ing epoch with batch size four. The number of epochs was
determined such that model training was halted when no
further improvements in accuracy on the training data were
observed. The model was then evaluated on the holdout
test set. For fine-tuning, we used a batch size of 16 with a
learning rate of 5 ∗ 10−5. The final model was applied to all
remaining chat messages in our sample. Reproducible code
for model training and data analyses is publicly available.2

3.4 Instructional factors analysis modeling
Instructional factors analysis (IFA) is a variation of addi-
tive factors modeling (AFM), a logistic regression model of
students’ gradual improvement over successive practice op-
portunities in the correctness of their attempts at solving
problems step-by-step [32]. AFM assumes that the proba-
bility of getting steps right depends on the skills associated
with the given problem-solving step. Therefore, AFM re-
quires a series of problem-solving steps with an assessment
of whether each is correct or incorrect and an underlying
skill model annotating problem-solving steps with required
cognitive operations. Then, AFM modeling estimates how
much students improve in getting steps associated with cer-
tain skills right as a function of how many opportunities
they had to apply a given skill to a new problem step in-
stance (and receive feedback on their attempt, from which
they can learn). These learning opportunities are observed
steps in a practice problem (e.g., the next transformation of
an equation) on which students receive as-needed feedback
or instruction. Specifically, AFM models estimate learning
rates: estimated improvements per opportunity in the prob-
ability of getting such steps correct. AFM further includes
skill intercepts to estimate the initial difficulty of skills at the
first opportunity and student intercepts to represent prior
proficiency. We employed iAFM, a variation of AFM that
additionally includes a student-level intercept for estimat-
ing prior proficiency using linear mixed modeling, which we
also employ for IFA modeling [39]. In APTA, students can
enter advanced steps into the system without performing all
intermediate steps to solve the equation, which count as sep-
arate first attempts at skills related to all intermediate and
performed steps in the log data.

2https://github.com/conradborchers/peerchats-edm



Table 1: coding scheme for chat messages based on sentence-level content analysis, including example messages for each category.

Category Definition Example messages

Minimal
Contribution

Behavior that involves little to no domain content knowledge,
e.g., greeting, confirming partner’s identity, chatting or
conversation related to usability and features of the tutoring systems

“Who are you?”
“OK”
“I think it wants us to chat”

Facilitative
Contribution

Behaviors that involve domain content knowledge, and
facilitate the collaboration by moving the conversation
forward, but are of limited help on building transferable
skills for the domain knowledge

“This is wrong”
“Type 2*x+2*-3+6=14”
“You need a =”
“Put that”

Constructive
Contribution

A statement involving reasoning and explanation of content
knowledge. For example, answering a question with an explanation,
correcting others with explanation, or asking a specific clarification
question to help partner build transferable skills

“Would you want me to explain?”
“Tell me what you get when you divide by 4”
“This is probably wrong?”
“So the x has to be negative”

The purpose of IFA modeling is to investigate whether differ-
ent types of steps (for the same skill) yield different learning
rates; more specifically, distinguish “instructional factors”
that capture the presence or absence of instruction present
in each step to model their influence on learning rates. To
this end, IFA estimates separate learning rate parameters
per type of instruction, counting opportunities to learn sep-
arately per instructional event type. IFA modeling describes
learner data more accurately than AFM and Performance
Factor Models (PFM) when multiple instructional interven-
tions are present [14]. The larger the learning rate, the more
effective the given instruction is considered to be [15]. An
example data table is in Table 2.

Table 2: Example IFA data, with rows indicating learning
opportunities for a unique skill and columns indicating cumu-
lative opportunities related to a unique instructional factor.
IFA estimates how much students improve after encountering
a problem-solving step attempt with certain instruction.

Stud. Skill Opp. IF1 Opp. IF2 Opp. IF3 Correct
Stu1 Sk1 1 0 0 0
Stu1 Sk1 1 1 0 0
Stu1 Sk1 1 2 0 1
Stu1 Sk2 0 0 1 0

The present study uses IFA to (a) compare learning rates of
opportunities while learning with a peer tutor compared to
working alone (RQ2) and (b) study how learning rates dur-
ing collaborative learning (peer tutoring) might depend on
the presence of the different kinds of chat messages (RQ3).
For both purposes, we specify two model formulae of the
iAFM model (with a general learning rate) and the IFA
(with instructional factor-specific learning rates). The stan-
dard iAFM model is in Equation 1. The model infers the
correctness of the first attempts at a problem-solving step
(Ycorrect) based on an individualized mixed-model student
intercept representing students’ initial proficiency (τstud.),
an intercept per skill representing initial skill difficulty (βskill),
and an opportunity count slope (βopportunity).

Ycorrect = τstud. + βskill + βopportunity + ϵ (1)

The general IFA model formula is in Equation 2 and only
different from Equation 1 in that it estimates separate learn-
ing rate slopes per opportunity related to a given number of
instructional factors βIFA1 + βIFA2 + ...+ βIFAn .

Ycorrect = τstud.+βskill+βIFA1+βIFA2+...+βIFAn+ϵ (2)

To answer RQ2, we compare an iAFM model featuring a
standard opportunity count by skill (assuming no additional
instructional factors) to an IFA model that distinguishes be-
tween paired and unpaired opportunities via a likelihood-
ratio test. If that test is significant, students learn at sig-
nificantly different rates based on whether they are paired
or work alone. To answer RQ3, we similarly compare the
same iAFM model as in RQ2 to a model that distinguishes
opportunities by whether they were associated with no chat
(including opportunities where students worked alone as op-
posed to collaboratively) or chats by the Tutor or the Solver
with each being broken out by minimal vs. facilitative vs.
constructive chats. Learning opportunities require a unique
classification into minimal vs. facilitative vs. constructive.
However, students could exchange multiple chat messages
in between learning opportunities, for example, during re-
peated attempts. Therefore, we considered a learning op-
portunity to be related to the highest category of any chat
in the dialog after each learning opportunity. For example,
if a dialog included at least one constructive message by the
Tutor and one facilitative message by the Solver, then the
opportunity was assigned the instructional factors “Tutor
Constructive” and “Solver Facilitative”.

In all cases, we interpret the coefficients of the chosen model
to compare learning across instructional factors. Learning
rates correspond to the coefficients of the main effects of the
opportunity counts in the model (e.g., number of opportu-
nities related to a specific instructional factor; Table 2). We
report learning rates expressed in odds ratios (OR), the fac-
tor by which two odds ( p

1−p
) of getting a first attempt in the

tutoring software right is smaller or larger per opportunity.
An OR of 1 results in a learning rate of 0, as ORs are cen-
tered around 1. For example, students improve per learning
opportunity if the OR is significantly larger than 1, while
an OR of 1 relates to constant performance. Notably, ORs
can not be interpreted as frequencies; for example, correct
attempts occur twice or half as often.

4. RESULTS
4.1 RQ1: Classification accuracy of student

chat messages
Our first research question asks whether it is feasible to
classify chat messages from the collaborative tutoring sys-
tem into minimal, facilitative, and constructive transactions.
Within our ground-truth data set of coded chat messages,
43.1% of messages were coded as minimal, while 43.7% were



facilitative and 13.1% constructive. Hence, students pre-
dominantly engaged in minimal conversational acts, such as
establishing rapport or verifying their partner’s identity, and
in facilitative contribution, such as providing direct answers
to their counterparts without additional guidance. During
cross-validation, we did not observe further improvement
in cross-validation accuracy at epoch four. Therefore, we
stopped model training after four epochs and evaluated our
classifier on the holdout test set (Table 3).

Table 3: Performance of final BERT classifier on the holdout
test set.
Label Precision Recall F1 Support
Minimal 0.88 0.83 0.86 89
Facilitative 0.67 0.80 0.73 66
Constructive 0.80 0.52 0.63 23

The BERT classifier exhibited satisfactory performance across
all three labels, with F1 scores ranging from 0.86 (minimal)
to 0.63 (constructive), which aligns with acceptable classi-
fication performance as suggested by similar studies (e.g.,
tutoring dialog act classification [55, 36, 56]). Constructive
chat messages had a precision of 0.80 on the holdout test
set, suggesting that the classifier is conservative in assigning
that label. Overall, the final selected BERT classifier exhib-
ited an accuracy of 0.78 (which is well above a majority-class
classifier with 43.1% accuracy), a multi-class AUC of 0.91,
a Cohen’s κ of 0.63, and a macro average F1 score of 0.74.

4.2 RQ2: Student learning rates when paired
to a peer tutor vs. working alone

For RQ2, we compare an iAFM model featuring a stan-
dard opportunity count by skill to an IFA model that dis-
tinguishes between paired and unpaired opportunities via
a likelihood-ratio test (see Equations 1 and 2). If that
test is significant, students learn at significantly different
rates based on whether they are paired or work alone. A
likelihood-ratio test indicated that breaking opportunities
into paired and unpaired opportunities did not significantly
improve model fit (χ2(1) = 1.52, p = .218). Therefore,
we do not find evidence for an overall difference in learn-
ing rates across paired and non-paired problem-solving. In
both conditions, students significantly improved per oppor-
tunity with estimated learning rates of OR = 1.04, CI95% =
[1.02, 1.05], p < .001 for paired and OR = 1.03, CI95% =
[1.02, 1.04], p < .001 for unpaired opportunities. These re-
sults suggest that students’ odds (i.e., pcorrect

pincorrect
) of getting

a first attempt in the tutoring software correct increased by
around 3-4% per opportunity.

4.3 RQ3: Student learning differences by chat
message type

Descriptively, Solvers sent considerably more chat messages
than tutors. Out of 1,518 learning opportunities with chat
messages, 1,416 included a message by the Solver (93.28%)
and 123 by the Tutor (8.10%). Within the 1,416 chat-based
opportunities with Solver messages, 302 (21.33%) conversa-
tions were classified as minimal, 566 (39.97%) facilitative,
and 425 (30.01%) constructive. Within the 99 chat-based
opportunities with Tutor messages, 18 (14.63%) were mini-
mal, 39 (31.71%) facilitative, and 42 (34.25%) constructive.

Overall, during students’ collaborative learning episodes, only
11.41% of opportunities (i.e., first attempts at skills) were
associated with chat messages by either Tutor or Solver,
which breaks down to 0.92% for messages from the Tutor
and 10.64% for messages from the Solver.

RQ3 compares an iAFM model featuring a standard op-
portunity count to an IFA model distinguishing between
whether learning opportunities were associated with no chat
(including opportunities during problem-solving alone) or
chats by the Tutor or the Solver, with each being broken
out by minimal vs. facilitative vs. constructive chats (see
Equations 1 and 2). These models were still fit to all data,
inclusive of students working alonse as opposed to pairs. The
presence and types of chat messages as instructional factors
significantly improved the IFA model fit (χ2(6) = 56.37, p <
.001). Estimated model parameters of learning rates per
instructional factor are in Table 4.

Table 4: Estimated learning rates by chat types with odds
ratios (OR) of getting a problem-solving attempt right, ex-
cluding skill intercepts for brevity (N = 34,879).

Instructional Factor OR CI95% p

No Message (N = 33,517) 1.02 [1.02, 1.03] < .001
Tutor Minimal (N = 18) 1.92 [0.61, 6.09] .268
Tutor Facilitative (N = 39) 1.97 [1.15, 3.38] .014
Tutor Constructive (N = 42) 0.38 [0.24, 0.59] < .001
Solver Minimal (N = 302) 1.40 [1.14, 1.72] .001
Solver Facilitative (N = 566) 1.26 [1.10, 1.43] .001
Solver Constructive (N = 425) 1.07 [0.93, 1.23] .335

Solvers significantly improved per opportunity when conver-
sations related to an opportunity included facilitative Tutor
messages (OR = 1.07, CI95% = [1.15, 3.38], p = .014), min-
imal Solver messages (OR = 1.40, CI95% = [1.14, 1.72], p =
.001) or facilitative Solver messages (OR = 1.26, CI95% =
[1.10, 1.43], p = .001). Based on inspections of confidence
intervals (CI), students also improved more per opportu-
nities related to these conversations compared to opportu-
nities with now messages, from which students still learned
(OR = 1.02, CI95% = [1.02, 1.03], p < .001). Notably, stu-
dents had significantly lower learning rate related to con-
versations inclusive of constructive Tutor messages (OR =
0.38, CI95% = [0.24, 0.59], p < .001), which warrants fur-
ther inspection. All other learning rates of the considered
instructional factors were not significantly different from a
constant performance (i.e., such that there was no significant
learning or decrease in performance).

4.4 Exploratory analysis
4.4.1 Solver Engagement
The results related to RQ3 indicate that students improved
more per opportunity during problem-solving (while in the
Solver role, helped by a peer Tutor) when sending minimal
and facilitative. However, in the Tutor case, students only
improved when conversations included facilitative chats. On
the surface, it is not intuitive why Solvers should improve
more per opportunity if their conversation is minimal. How-
ever, the reason might lie in what student-level differences
relate to minimal Solver chats. Specifically, we hypothe-
sized that a general engagement factor would relate to both



Solvers sending more minimal and facilitative chats, while
that would not be the case for Tutors, which would have a
specific tutoring style, tending to be either minimal or fa-
cilitative. We motivated that hypothesis based on a vast
literature on the importance of affect and engagement for
tutored and online learning [28, 65]. If that ad-hoc hypoth-
esis is true, then Solvers should experience both minimal and
facilitative opportunities but tend to experience either min-
imal or facilitative opportunities depending on the Tutor
they were paired up with. We computed the total oppor-
tunity count for each chat message type to investigate the
distribution of different kinds of Solver learning opportuni-
ties (Figure 2).

Figure 2 indicates that Solvers either experienced oppor-
tunities related to minimal or facilitative Tutor messages,
neither, but rarely both. Solvers, on the other hand, when
generating as opposed to receiving messages, tended to mix
both types of messages more often. Yet, a large group of
Solvers did not experience any chat-related opportunities,
that is, none related to Solver messages (40.10%), tutor mes-
sages (89.09%), or even none at all (38.07%).

The positive relationship between Solvers’ minimal and facil-
itative chat messages after first attempts and their learning
rate (see Section 4.3) could possibly reflect a common cause
(e.g., a high level of engagement with the collaborative tutor-
ing system would lead to both more minimal chat messages
and a higher learning rate) rather than a causal relation driv-
ing learning (where minimal chat message would be causing
a higher learning rate, at odds to the definition of minimal
chat messages stated above). We use the overall number
of learning opportunities (i.e., first attempts at steps) per
Solver to indicate overall engagement. When students have
comparable amounts of time to engage with the tutoring
system during classroom learning, opportunity counts are a
better engagement measure of on-task learning than time-
based measures of idle time in tutoring systems [53, 33, 31].
In line with the idea that Solver chats and learning rates
are both related to engagement, the number of Solver mes-
sages and learning opportunities was significantly positively
correlated (Spearman’s ρ = 0.13, p = .010).

4.4.2 Properties of Constructive Tutor Dialog
Counterintuitively, constructive Tutor dialog was estimated
to lower Solver learning rates. To further elucidate why, we
qualitatively investigated conversations between Tutors and
Solvers, including constructive messages from Tutors. We
highlight informal themes in conversations between Solvers
and Tutors via content analysis [45].

We identified three themes for why conversations classified
as Tutor constructive related to opportunities did not help
Solvers learn but potentially were counterproductive for their
learning. First, we identified incorrect constructive messages
by the Tutor, which could confuse students and reinforce
misconceptions. An example was:

solver: [Minimal] who are you

tutor: [Minimal] I’m <NAME>

solver: [Correct Input]
4(x)
4

= 8
4
; x = 2

tutor: [Constructive but Incorrect] It would be 4 divide by 4
not x divide by 4

Second, constructive messages by the Tutor sometimes gave
away the answer, which takes away the Solver’s opportunity
to learn from feedback, which is expected to relate to flat
learning rates [22]. This issue was also exemplified by the
fact that Solvers took fewer attempts at the problem-solving
step to complete the step when the Tutor dialog included a
constructive message (M = 2.31) compared to a facilitative
message (M = 3.09). This was different for the constructive
Solver dialog (M = 3.10) compared to the facilitative SOlver
Dialog (M = 2.51). An example dialog after a learning
opportunity with an incorrect attempt was:

tutor: [Faciliative] You need some help

tutor: [Constructive] It’s x=5 not negative

Third, some constructive Tutor messages related to techni-
cal issues with the required ITS input syntax on the side of
the Solver (e.g., missing a required equal sign). Such con-
structive dialog is unrelated to learning the skills required
to solve the problem; hence, it is also not expected to help
solvers improve. We share two examples:

tutor: [Constructive] You have to put the whole equation

tutor: [Constructive] You are missing a equal sign

4.5 Follow-up IFA model for error talk
Why was there little constructive dialog? Prior work on
peer tutoring dialog motivates the hypothesis that produc-
tive talk may be more likely after errors [48]. Therefore, we
explored another IFA model, which breaks out opportunity
counts by whether a chat message occurred after a correct
or incorrect first attempt in the system (Table 5).

Table 5: Estimated learning rates by chat types with odds
ratios (OR) of getting a problem-solving attempt right, ex-
cluding skill intercepts for brevity (N = 34,879).

Instructional Factor OR CI95% p

No Message 1.03 [1.02, 1.03] < .001
Message Tutor Post-Correct 0.88 [0.63, 1.22] .442
Message Tutor Post-Error 0.49 [0.09, 2.54] .394
Message Solver Post-Correct 1.28 [1.17, 1.39] < .001
Message Solver Post-Error 0.94 [0.79, 1.12] .484

In this analysis, opportunities involving Tutor chat messages
were not associated with significant Solver learning (p’s >
0.394; Table 5). However, opportunities related to mes-
sages sent by the Solver related to correct attempts (OR =
1.28, CI95% = [1.17, 1.39], p < .001) but not incorrect at-
tempts (OR = 0.94, CI95% = [0.74, 1.12], p = .484) were
associated with Solver improvement in the tutoring system.
This finding does not align with the hypothesis that more
helpful dialog is more likely after errors.



0

5

10

15

20

25

0 5 10 15

Solver Minimal Chat Opportunities

S
ol

ve
r 

Fa
ci

lit
at

iv
e 

C
ha

t O
pp

or
tu

ni
tie

s

50

100

150

200
Frequency

Facilitative vs. Minimal Solver Opportunities

0.0

2.5

5.0

7.5

0 2 4 6

Tutor Minimal Chat Opportunities

Tu
to

r 
Fa

ci
lit

at
iv

e 
C

ha
t O

pp
or

tu
ni

tie
s

50

100

150

Frequency

Facilitative vs. Minimal Tutor Opportunities

Figure 2: Distribution of total opportunity counts related to different chat message types (Solver message type on the left and
Tutor message type on the right) by Solvers.

5. DISCUSSION
5.1 Summary of findings
Advances in NLP allow for the automated detection of dia-
log acts during peer tutoring. Yet, little work has integrated
such detectors into learner modeling. The present study in-
vestigated the effectiveness of peer tutoring by comparing
how much tutored students improve per practice opportu-
nity in a collaborative tutoring system for middle school
mathematics. The study further established the feasibil-
ity of classifying student chat messages using open-source
transformer models (RQ1), whereby the classifier achieved
an overall accuracy of nearly 80%, which is acceptable for
automating dialog act classification as suggested by [36, 37].

RQ2 compared students’ learning rates when paired com-
pared to tutored problem solving alone. Students had no
general advantage (or disadvantage) when working with a
peer tutor. We did not detect a difference in learning rates
across conditions. This finding does not align with prior es-
timations of learning rates in collaborative problem-solving,
where learning rates were higher for procedural fraction prob-
lems [47]. One potential explanation for this finding is that
only 11.41% of students’ initial problem-solving attempts
were followed by chat messages, and 10.64% of those oppor-
tunities included messages from Solvers only, not Tutors.
More generally, the fact that the Solver did not show sig-
nificantly greater learning from being peer-tutored is in line
with prior findings in intelligent peer-tutoring systems that
found that peer-tutors learn more than tutees when engag-
ing in peer tutoring [63].

Yet, in the infrequent instances when messages were ex-
changed, students still generally learned differently depend-
ing on the type of message (RQ3). Our analysis suggests
how working collaboratively may benefit learning, namely
when Tutors and Solvers engage in facilitative dialog and
when Solvers engage in minimal dialog, as we explore next.

5.2 Tutor facilitation and higher learning rates
While pairing did not generally increase student learning
rate per opportunity (RQ2), we found that students exhib-
ited larger learning rates when dialog included facilitative
Tutor messages. Why did students learn more per oppor-
tunity when the Tutor employed facilitative but not min-
imal and constructive messages? Past work suggests that
effective peer tutors offer or elicit opportunities to learn [5,

52]. Specifically, facilitative chat messages aim to move
the collaboration forward, prompting the student to en-
gage in problem-solving. This prompting could have led the
students to reflect on their learning more often, effectively
learning more per opportunity [6]. In contrast, minimal mes-
sages might not have given Solvers enough space to reflect
on their learning, potentially taking the focus of the con-
versation off-topic. As an alternative explanation, Tutors
employing facilitative chat messages could have given stu-
dents a stronger sense of presence and caution to work on
the problem rather than being off task, leading to higher
learning rates as off-task behavior relates to close-to-flat
learning rate [22]. Past work employing virtual agents to
prevent students from gaming the system has shown simi-
lar results where off-task was greatly reduced through the
mere presence of this virtual agent [7]. In line with this ex-
planation, Solvers either experienced facilitation or minimal
dialog through Tutors, such that the effectiveness of facilita-
tive chat messages might not be a function of students’ in-
the-moment reflection on their learning through facilitative
chat messages but rather through the presence of facilitative
tutors. Field observations and think-aloud protocols bring-
ing richer data on students’ experience using the system in
future work could distinguish between these explanations.

5.3 Solver learning related to engagement
Why were minimal Solver messages related to higher Solver
learning rates? Our exploratory analysis suggests that en-
gagement with the tutoring system, expected to relate to
learning positively [22], could explain higher frequencies of
Solver chat message opportunities and learning rates. In-
deed, the number of chat messages and opportunities dur-
ing problem-solving significantly positively correlated across
Solvers. The hypothesis that engagement matters more than
message types aligns with past MOOC research inferring
learning gains from discussion posts [66]. The fact that only
minimal and facilitative but not constructive chat messages
significantly related to Solver’s learning rates might be at-
tributed to students using more constructive chat messages
already coming in with more prior knowledge and having
less to learn. However, future work is required to test this
hypothesis. Alternatively, it could be that a higher level
of chat engagement might reflect higher verbal skill, which
prior work found to be associated with math learning [4]. A
third alternative explanation is that the steps with construc-
tive dialog are the ones where learning is harder, making



dialog engagement more likely. This selection effect would
make errors more likely and learning rates lower, outweigh-
ing the beneficial effect of the dialog (if there is any). Simi-
lar selection effects have been investigated in the ITS liter-
ature on the negative correlation between help use (in the
ITS) and pre-to-post learning gains [3]. Additional support
for this interpretation comes from our follow-up analysis of
whether students learned more per opportunity when mes-
sages were sent after correct vs. incorrect problem-solving
step attempts. While prior work motivates the hypothesis
productive talk is more common around errors, which would
be expected to higher learning rates [48], our findings indi-
cate that students learned more per opportunity after Solver
messages after correct, not incorrect attempts. This finding,
too, could be explained by a confound where students im-
prove less as talk about errors relates to skills that students
are more likely to make mistakes on.

5.4 Limitations in constructive tutor messages
Why was constructive chat dialog sent by the Tutor signif-
icantly related to lower learning rates by the Solver? Tu-
tors were rarely engaged in constructive dialog (i.e., only
after 2.77% of Solver learning opportunities), allowing us
to qualitatively inspect the properties of Tutor dialog clas-
sified as constructive but related to lower learning rates.
Indeed, what the employed BERT model classified as con-
structive messages might not always have been construc-
tive for the Solver. Specifically, our inspection revealed that
Tutors sometimes gave constructive but contextually incor-
rect advice to Solver, which might have caused confusion
or even reinforced misconceptions that would explain lower
learning rates (i.e., lower accuracy on subsequent attempts).
This finding implies that future work should (a) incorporate
information from ITS log data (i.e., whether a Tutor chat
recommendation would lead to a correct attempt) into the
prediction of the BERT model and (b) include training data
examples of contextually incorrect constructive messages by
Tutors into its sample. Indeed, prior work found similar in-
tegrations of log data into natural language for inference of
self-regulated to be effective [20]. Similarly, nascent work
found that the exclusion of problem-solving context in tu-
toring systems likely limits the accuracy of classifiers of self-
regulation process stages based on natural language [72].
Considering ITS log data might help remediate other issues
we observed with constructive Tutor dialog, log data could
help detect when Tutors gave away the answer during dialog
classified as constructive by the current classifier. Another
possibility for improvement is to change our current defi-
nition of constructive dialog related to opportunities. In
the present study, a dialog was classified as constructive if
at least one message was constructive, which might be a
threshold too liberal.

When subtracting the instances of factually incorrect help
and ITS issues-related constructive dialog by Tutors, the
already rare constructive chats become even rarer, limiting
reliable estimations of constructive tutoring on learning with
the present study’s sample. If we assume that constructive
chat messages are the gold standard for Tutoring, our results
suggest that tutors in our sample did not provide much ef-
fective tutoring. One potential explanation for why students
did not engage in constructive tutoring (or much tutoring at
all) is that learning the content they are teaching while at the

same time engaging in metacognitive learning of the task of
tutoring is too high in cognitive load to happen concurrently,
suggested by research on writing-to-learn [46]. When learn-
ing to tutor is already one learning objective of a tutoring
system, engaging in dialog, specifically constructive dialog,
is too cognitively demanding, and students may even resort
to distracting chat messages, as described in Section 4.4.2.
We discuss the implications of this interpretation next.

5.5 Implications
One key finding from this study is that Solvers generally
improved when Tutors engaged in facilitative chats. At the
same time, Tutors rarely engaged in chats, covering only
8.10% of Solvers’ learning opportunities. This lack of chat
engagement on the side of the Tutors could also likely ex-
plain why students did not improve more per learning oppor-
tunity overall when paired than when working alone (RQ2).
Therefore, one potential revision to the current design of
the collaborative tutoring system is to encourage Tutors to
engage in more chat, especially facilitative chat. For ex-
ample, the system could be redesigned to increase trust in
the (anonymous) chat partner, as prior work showed associa-
tions between trust and engagement in learning management
systems [25]. An alternative solution could be to redesign
the ITS to help Tutors grade the steps of the Solver more au-
tomatically once Tutors have demonstrated mastery of the
relevant steps to free up more resources to tutor through
chat. Another element that may help Tutors become more
effective is to align the Tutor’s incentive with the learning
objectives of the Solver, which prior research delineates as
one success factor in effective peer tutoring [27]. An example
of fostering incentive alignment would be having the Tutor’s
grades depend on the learner success of the Solver. However,
such policies might be rather stringent in the middle school
classroom, if not norm-breaking. A more toned-down ver-
sion of incentive alignment that could be explored in future
work would be to reward Tutors more by tutoring effectively,
such as using skill bars as formative assessments where Tu-
tors watch their progress in learning how to tutor Solvers
effectively. A third potential design change is to deploy our
classification model for chat messages in real-time to detect
when Tutors send excessive amounts of minimal chat mes-
sages and prompt Tutors to use facilitative or constructive
messages, potentially giving them example messages to send.

Further, Tutors gave little tutoring through messaging over-
all. This could be because the system is concurrently teach-
ing the Tutors how to tutor, while the Solvers primarily
receive feedback on their problem-solving attempts similar
to working alone [63]. The rarity of constructive dialog on
the side of the Tutor might relate to the excessive cognitive
load of Tutors learning how to tutor and mastering the tu-
tored math content simultaneously. Therefore, one potential
design implication of the present study is that Tutors may
require more upfront training on how to tutor with clearly
designed learning objectives and assessments while tutor-
ing content knowledge that they have already mastered, as
opposed to content they are still learning. Specifically, stu-
dents in classrooms who are quick to master relevant skills
during individualized problem-solving could be adaptively
paired with students who have not mastered their skills. In
this study, most students were paired based on pairing of
advanced students with less advanced students based on the



teacher’s judgment of dashboard recommendations [35, 70],
which leaves room to investigate the benefits of mastery-
based pairings in future work. Upfront training of the Tutors
has been shown to improve tutoring practice, which is ex-
pected to improve the learning of tutees [59]. Training could
include a tutor effectiveness score via live analytics and sim-
plified grading of Solver steps to free up cognitive resources
(and feedback based on classifications of chat messages).

5.6 Limitations and future work
We see three limitations to this study that may guide future
work. First, our current classification algorithm, although
following best practices from prior work on dialog act clas-
sification [36], was trained on an unbalanced data set. This
might cause the classifier to prioritize learning the patterns
from the majority class, leading to a relatively low recall
rate of constructive messages [38]. Downstream applications
might benefit more from balancing precision and recall for
constructive messages. For example, a critical consideration
in training peer tutors is detecting constructive messages to
give feedback. In future work, applications might benefit
from more liberal thresholds to avoid students being frus-
trated when generating a constructive message. Future work
could also experiment with in-depth cross-validations of hy-
perparameters for BERT model fine-tuning, which we did
not perform due to time constraints during model training.

A second limitation is that our present sample is limited to
mathematics. As past work, compared to the present study,
observed at least some benefits in learning rates from collab-
orative problem-solving in tutoring systems for procedural
fraction problems [47], more work is needed to replicate our
present methodology of estimating learning rates by chat
message type to other subject domains. Future work could
also investigate if our trained model for classifying peer tu-
tor messages is sufficiently accurate to other subject domains
or if adjustments to our current coding scheme need to be
made, which was adapted from a coding scheme of peer as-
sistance behaviors in middle school mathematics [44].

A third limitation is that given low chat activity, specifically
for Tutors, our modeling might not detect potential relation-
ships between messages and learning rates due to low statis-
tical power. Future work could consider extensions of IFA
modeling to increase power by relaxing the assumption that
each learning opportunity needs to be associated with one
instructional factor (e.g., type of learning opportunity) only.
Next to assigning each dialog multiple instructional factors
if multiple types of chats are present in the dialog related to
a learning opportunity, future work could consider modeling
performance on each attempt, including re-attempts at the
problem-solving step, to understand student learning [9].

6. SUMMARY AND CONCLUSIONS
The present study contributes novel evidence of how differ-
ent chat messages in intelligent collaborative learning sys-
tems relate to tutored students’ learning rates. We estab-
lish a reliable classifier with an accuracy of close to 80%
to classify student chat messages during peer tutoring into
minimal, facilitative, and constructive messages. Low chat
engagement of Tutors accounted for only 8% of the learning
opportunities associated with chat messages during pairings.
However, when Tutors messaged, facilitative dialog was as-

sociated with higher Solver learning rates. Further, we found
a relationship between Solver engagement and their learning
rate. Finally, Tutor dialog classified as constructive was even
rarer (3%) and related to lower Solver learning rates, po-
tentially due to reinforcing incorrect solutions, giving away
answers, or being unrelated to the taught content. An ex-
cessive cognitive load of learning to tutor while simultane-
ously learning math content is the most viable reason Tutors
could not engage with Solvers more productively using chats.
In closing, our findings also tell a cautionary tale, recom-
mending future efforts to integrate problem-solving context
into chat prediction, such as detecting contextually incorrect
peer tutor messages. We encourage research to replicate our
methodology of combining message classification with learn-
ing rate modeling to understand collaborative learning.
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