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ABSTRACT 
Projecting confidence during conversation or presentation is a crit-
ical skill. To effectively display confidence, speakers must employ 
a blend of verbal and non-verbal signals. A predictive model that 
leverages rich multimodal cues to measure a speaker’s confidence 
must also mitigate biases that develop through data labelling prac-
tices, inherent imbalances in the demographic distribution, or 
biases introduced into the model during the training process. Fairly 
predicting the confidence of speakers across differing backgrounds 
enables more accurate and actionable feedback to a larger popula-
tion of speakers. This paper introduces a set of approaches for bias 
mitigation for multimodal, multi-class confidence prediction of 
adult speakers in a work-like setting. We evaluate the extent to 
which bias mitigation techniques improve the performance of a 
multimodal confidence classifier with a dataset of 233 2-minute 
videos. Experimental results suggest that by bounding the loss 
across perceived races, genders, accents, and ages, multimodal 
models can significantly outperform unmitigated baselines. The 
implications, including automated feedback of speaker confidence, 
are discussed. 

Keywords 
Bias Mitigation, Multimodal Learning Analytics, Confidence 
Measurement.  

1. INTRODUCTION
Confidence is an essential component of effective communication 
in the 21st century, belonging to a larger set of transferrable skills 
that are critical for success in the workplace [20]. Projecting ample 
confidence in communication involves a multitude of behaviors, 
including both non-verbal and verbal cues [9] [15]. For speakers 
who struggle with this skill, practicing can help prepare them for 
high-stakes scenarios, such as a job interview or a class presenta-
tion. Both students and educators require this skill for clear and 
effective communication, and fortunately, speakers may improve 
their projected confidence through targeted learning modules or 
practice environments. A system that allows speakers to practice 
their communication skills must be able to classify the speaker’s 

level of projected confidence accurately and fairly to ultimately 
give insights for improvement. However, studies have shown that 
prevailing technologies in this context struggle with the complexity 
of the confidence construct and with the collection, diversity, and 
fairness of training data [14], [17], [22] [24]. The resulting models 
may be biased against subpopulations of speakers that are un-
derrepresented in the training data, and the algorithms used to 
model confidence may magnify this bias without intentional miti-
gation efforts. 

To train computational models of speaker confidence, we must 
carefully consider the demographic makeup of the data for training. 
Cultural, gender, racial, and age differences may not only affect 
how a person may project confidence, but these differences can also 
affect how a listener or observer perceives the speaker’s confi-
dence. A fair, systematic annotation system to label speakers’ 
confidence levels is a necessary first step to overcome this issue, 
but it is not foolproof. Biases exist in annotations lacking in diver-
sity among labelers. Beyond labels, the data itself must be 
expressive enough to convey the intricacies and nuance of the 
speaker’s communication style. As such, multimodal data that in-
cludes both the verbal (e.g., speaking rate) and visual (e.g., eye 
contact or facial expressions) can aid in the computational repre-
sentation of confidence. Models that leverage the crafted labels and 
rich multimodal data must then map unseen videos of speakers to 
accurate confidence labels without discriminating unfairly against 
groups that were overlooked in the training process. For high-stakes 
application of a perceived confidence measurement system (e.g., 
video interview assessment) it is important that we perform bias 
mitigation of the underlying model to inspire trust and increase util-
ity across a wide range of different use cases.  

In this paper, we introduce a framework to predict speaker confi-
dence in 2-minute video presentations by leveraging multimodal 
data. Importantly, we establish a pipeline for integrating bias miti-
gation algorithms from the FairLearn [4] open-source library to 
overcome disparities in the confidence labels between subpopula-
tions of the speaker data. The subsequent analyses and models use 
data collected from a set of 233 videos that were annotated for con-
fidence using a thorough, systematic labelling process. We conduct 
a series of experiments to evaluate the use of bias mitigation tech-
niques for four perceived demographic splits of the speaker data: 
gender, race, accent, and age. In each perceived demographic split, 
we show that bias mitigation yields improved results over baselines 
that do not mitigate biases. We discuss insights from our investiga-
tions and present practical considerations involved in mitigating 
bias. 
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2. RELATED WORK 
2.1 Perceived Confidence 
Using vocal and linguistic cues, [15] explored how expressed con-
fidence and doubt in speech influence perceptions of 
trustworthiness and persuasiveness. The experiments they con-
ducted concluded that listeners’ ratings of speaker confidence 
correlated with the intended confidence level, affected by the state-
ment’s communicative function and specific introductory phrases. 
Additional acoustic analysis identified patterns in pitch, intensity, 
and speech rate that vary with perceived confidence levels, offering 
insights into how vocal and linguistic signals convey metacognitive 
states like certainty or uncertainty to listeners. In an ensuing study 
[19], the authors found that observers can discern a speaker’s con-
fidence level based on visual cues, particularly in situations where 
speech content confidence varies. By analyzing speakers’ facial ex-
pressions, eye movements, and head movements in videos without 
sound, observers were able to accurately gauge speakers’ confi-
dence levels during general knowledge question responses. These 
findings corroborate conclusions in an earlier study by Walker [23], 
who investigated the impact of verbal and nonverbal cues on per-
ceptions of confidence, using recordings of actresses with varying 
levels of confidence shown through both cues. The findings re-
vealed that nonverbal cues significantly outweighed verbal cues in 
influencing the audience's impressions, which is aligned with prior 
research suggesting nonverbal signals are more influential than ver-
bal signals in conveying emotions and feelings.  

2.2 Bias Mitigation and Fairness Metrics 
Gupta et al. introduce a way to detect and mitigate bias in an au-
thentic educational setting by using a deep learning-based stealth 
assessment framework designed for game-based learning environ-
ments [11]. The authors aimed to predict students' reflection depth 
and post-test science scores by analyzing written reflections and 
game interactions. It addresses the fairness of the resulting predic-
tive models by investigating and mitigating biases related to gender 
and prior gaming experience, using the ABROCA statistic for bias 
measurement. The research, conducted with 119 students in a mi-
crobiology game-based learning setting, confirms the models' 
effectiveness and the impact of debiasing techniques in achieving 
fair assessment outcomes. In another line of work related to fairness 
and biases in education, the authors identified causes, the groups 
most affected, and the stages in educational algorithm development 
and deployment where bias can arise [2]. The authors review exist-
ing empirical evidence on bias, particularly focusing on 
race/ethnicity, gender, nationality, and they extend to less-studied 
categories like socioeconomic status and disability, proposing a 
shift from identifying unknown biases to achieving equity. The pa-
per also outlines obstacles to overcoming algorithmic bias and 
suggests key areas for effort to mitigate these biases in Artificial 
Intelligence in Education (AIED) systems and educational technol-
ogies. Similarly, in terms of high-stakes educational assessment, 
[18] addresses the challenge of algorithmic fairness and bias, par-
ticularly in educational tools utilizing NLP and speech processing 
technologies, which may inadvertently perpetuate biases against 
certain groups. The authors explore various definitions of fairness 
and their application in educational contexts, using data to show 
how biases, such as those based on native language backgrounds, 
can affect scores in English proficiency assessments. The discus-
sion acknowledges the complexity of achieving total fairness, 
suggesting that different interpretations of fairness may necessitate 
distinct approaches. More generally, [16] examines how the adop-
tion of predictive models in education raises fairness concerns, 
echoing past issues of bias in educational access. The authors 

emphasize the need for policymakers and developers to address bi-
ases proactively to promote equitable educational outcomes. 
Additionally, [3]  discusses racial bias in predicting student suc-
cess. Specifically, this study explores algorithmic bias in higher 
education predictive models for course and degree completion, 
showing that such bias could reduce support for marginal Black 
students. The severity of bias varies, being notably higher for stu-
dents predicted to be most at risk. The findings highlight the 
importance of context in addressing algorithmic bias and suggest 
that enhancing data collection on Black students could mitigate 
bias, indicating a need for more nuanced data to improve prediction 
accuracy and equity.  

As far as the workplace is concerned, [13] examines how descrip-
tive and prescriptive gender stereotypes in the workplace hinder 
women's career advancement by leading to biased judgments and 
decisions. The authors explain that descriptive stereotypes contrib-
ute to gender bias through negative expectations about women's fit 
for male-dominated roles, while prescriptive stereotypes create be-
havioral norms that penalize women for deviations or inferred 
violations, especially in success scenarios. The research explores 
the career impacts of such biases and the conditions that amplify or 
mitigate their effects. Often compounded with gender bias is race 
bias. Survey results by [8] show that as women and minorities 
climb the workplace ladder, they face more inequality compared to 
white men, with black women specifically suffering from direct 
discrimination. White men tend to gain power through similar net-
works, indicating different reasons for the power gap across groups, 
suggesting the need for varied solutions. Another notable work-
place bias relates to age. Finkelstein et al. [10] utilize the tripartite 
model of attitudes and Fiske's social bias framework to discuss re-
search, motives, and impacts of age bias, alongside practical 
strategies for reduction from various perspectives, concluding with 
future research directions. Even spoken accent can be a discrimi-
nant. A study conducted by Deprez-Sims and Morris [7] reveals 
how accents affect job applicant evaluations in the U.S., showing a 
preference for Midwestern accents over French, with Colombian 
accents judged neutrally, suggesting bias is mediated by perceived 
similarity, underscoring the importance of auditory cues in employ-
ment discrimination research. Our paper builds upon these 
frameworks by analyzing bias for the four demographic groups: 
gender, race, age, and accent. 

3. VIDEO DATASET 
This study investigates bias mitigation using a dataset of speakers 
who recorded videos of themselves in a virtual practice interview 
setting [5]. Participants recorded themselves for up to two minutes 
using their computer’s webcam and microphone within the 
browser-based application. Each speaker was asked to answer up to 
eight total prompts related to common interview questions. Partic-
ipants were recruited via Amazon Mechanical Turk throughout the 
United States. A total of 260 speakers recorded themselves for a 
total of 1891 videos (7.27 prompts answered per speaker). All par-
ticipants in this study provided written consent. 

3.1 Confidence Annotations 
To develop an automated model of speaker projected confidence, 
ground truth labels of projected confidence were first annotated. 
Partnering with Scale.ai, we selected a subset of the data to be la-
beled for confidence to capture ratings from unique speakers for a 
single prompt (Table 2). The subset consisted of 233 total 2-minute 
videos. The confidence rating, of either low, medium, or high con-
fidence was first developed in-house using a rubric validated by 
psychologists and subject matter experts (Table 1).



Table 1. The rubric used to annotate 233 2-minute videos for confidence. 

Confidence 
Level (Label) Eye Gaze Gestures and 

Body Movement Posture Vocal Variation Facial Expression Speaking Pace 

Low (0) 

Inconsistent 
eye gaze with 

frequent 
changes in fo-

cal point, 
such as down-

ward or 
upward gaze. 

Consistent distract-
ing movements, 
such as fidgeting 

or extraneous body 
movement. 

Consistently 
poor posture that 

is closed or 
“protective” 
and/or tense. 

Lack of variation 
in tone. 

Constant changes 
in facial expres-
sions that detract 

from what is being 
said. 

Hesitation be-
tween and 
within sen-
tences; self-
correction 

and/or false 
starts. 

Medium (1) 

Eye gaze to-
ward camera 
with some in-
consistencies 
and changes 

in focal point. 

Some inconsistent 
gesturing and body 
movement that are 

misaligned with 
what’s being said, 
distracting move-

ments such as 
fidgeting. 

Some incon-
sistent posture, 
such as slouch-
ing or tenseness 

at times. 

Some incon-
sistent variation 
in tone, but still 
comes across as 
somewhat com-

fortable. 

Some inconsistent 
facial expressions 
that are misaligned 
from what is being 

said. 

Some incon-
sistent pacing; 
some hesitation 

at times. 

High (2) 
Consistent 

eye gaze to-
ward camera. 

Intentional gestur-
ing and/or body 
movement that 

aligns with what is 
being said. 

Maintains con-
sistent, attentive, 
and upright pos-
ture that appears 

natural. 

Appropriate vari-
ation in tone that 
is relaxed or pro-

jected (as 
appropriate for a 

presentation). 

Facial expression 
appears comforta-

ble and natural. 

Consistent and 
steady pacing; 
does not focus 
on errors (cor-

rect and/or 
move on). 

The rubric was refined from an original four-point scale that 
yielded extremely skewed distributions to the current three-point 
variation. The annotation process required several iterations to fine-
tune the rubric such that Scale annotators were able to inde-
pendently achieve consistent ratings that aligned with our team’s 
evaluation ratings. Each iteration was conducted with a very small 
subset of the videos that were labelled by our team for comparison. 
Once completed, Scale conducted an annotation process to label 
each video, with 10 annotations per video. Consequently, we re-
ceived a finalized annotation label per video accounting for 
reliability of the 10 annotators using a proprietary averaging tech-
nique by Scale. The distribution of annotations for this dataset of 
233 videos included 49 (21%) low confidence, 143 (61%) medium 
confidence, and 41 (18%) high confidence.  

Table 2. The prompt used for the 233 speakers. 

Prompt 
Please tell us about a work situation in which you were not the 

formal leader but tried to assume a leadership role. Please 
provide details about the background of the situation, the be-

haviors you carried out in response to that situation, and what 
the outcome was. 

 

3.2 Demographic Annotations 
In addition to the annotations for confidence, the videos were also 
labeled to acquire perceived demographic information about the 
speakers. For each unique speaker, five annotators from the internal 
team rated four relevant demographic areas to this study: gender 
(male or female), race (White, Black or African American, Asian 
or Asian American, Hispanic or Latino, or Other), age (18 through 
25, 26 through 35, 36 through 45, 46 through 55, 56 through 65, or 
66 and older), and accent (native accent or non-native English-
speaking accent). A final rating for each demographic characteristic 
was achieved by either averaging the five ratings or by taking the 
most common annotation, depending on the type of demographic 

(e.g., taking the average perceived age, taking the most annotated 
race). The demographic annotations for the subset of speakers who 
were annotated for confidence are shown in Table 3. Each of these 
characteristics is the annotators’ perception of the demographic 
subgroup. As such, the speaker may identify differently, but the 
original study in which these videos were collected did not include 
a demographic questionnaire to allow speakers to report these data. 
As they relate to bias and fairness, both perceived and actual demo-
graphic characteristics play a heavy role [6]. This study focuses on 
the perceived gender, race, age, and accent of the speakers, con-
sistent with perceived confidence construct we are measuring. 

Table 3. Demographic annotations for the 233 2-minute video 
dataset. 

Perceived Demographic Count (%) 

Gender Male 109 (47%) 
Female 124 (53%) 

Race White 159 (68%) 
Non-White 74 (32%) 

Age Under 35 138 (59%) 
Over 35 95 (41%) 

Accent Native 207 (89%) 
Non-Native 26 (11%) 

 
For the purposes and scope of this investigation, we aggregated the 
demographic data in several ways to account for the unequal distri-
butions of certain demographic characteristics in the dataset and to 
evaluate frequently occurring biases in other applications. First, due 
to skewed numbers of racial data (159 White, 51 Black or African 
American, 14 Asian or Asian American, 8 Hispanic or Latino, and 
1 Other), we chose to split the data into binary categories of White 
(n=159) and Non-White (n=74). Second, again due to distribution 
considerations for age groups (29 18 through 25, 109 26 through 
35, 54 36 through 45, 31 46 through 55, 10 56 through 65, and 0 66 



and older), we aggregated the age demographic into two binary cat-
egories, under 35 (n=138) and over 35 (n=95).  

3.3 Demographic Distributions 
A key factor in understanding and detecting inherent biases in this 
dataset is the distribution of labels (i.e., confidence) per demo-
graphic. If we detect disparities or skewed distributions of 
confidence labels across demographics, this could have significant, 
unintended effects downstream in prediction settings. For example, 
if a new speaker from an affected demographic interacts with a con-
fidence model that was trained from a dataset that included few 
examples of high confidence for that speaker’s demographic, this 
could result in incorrect predictions. Ideally, predictive models are 
exposed to a diverse set of data points. In our setting, we investigate 
the distribution of confidence labels for four demographic splits: 
(1) gender, (2) race, (3) age, and (4) accent. In Table 4, we illustrate 
the distributions of confidence labels for each of the four demo-
graphic splits mentioned. 

Table 4. Perceived demographic distributions for each confi-
dence label. 

Perceived  
Demographic 

Confidence Labels 
Low  
(%) 

Medium 
(%) 

High 
(%) 

Gender Male 29 (27%) 66 (61%) 14 (13%) 
Female 20 (16%) 77 (62%) 27 (22%) 

Race White 36 (23%) 93 (58%) 30 (19%) 
Non-White 13 (18%) 50 (68%) 11 (15%) 

Age Under 35 34 (25%) 81 (59%) 23 (17%) 
Over 35 15 (16%) 62 (65%) 18 (19%) 

Accent Native 45 (22%) 125 (60%) 37 (18%) 
Non-Native 4 (15%) 18 (69%) 4 (15%) 

 

In addition to the distributions of each individual demographic, we 
examine the distribution of the intersection of two frequently stud-
ied demographics: gender and race (Table 5). This intersection 
results in the following demographic combinations: white and male 
(n=75), white and female (n=84), non-white and male (n=34), and 
non-white and female (n=40).  

Table 5. Confidence label distributions for the intersection of 
perceived gender and race. 

Perceived  
Demographic 

Confidence Labels 
Low  
(%) 

Medium 
(%) 

High 
(%) 

White, Male 21 (28%) 44 (59%) 10 (13%) 
White, Female 15 (18%) 49 (58%) 20 (24%) 

Non-White, Male 8 (24%) 22 (65%) 4 (12%) 
Non-White, Female 5 (13%) 28 (70%) 7 (18%) 

 

3.4 Multimodal Feature Extraction 
Using the visual and speech components of the 233 2-minute vid-
eos, we established a multimodal feature extraction pipeline to 
derive salient features that would model speaker confidence. A total 
of nine features were extracted from the videos (three from the vis-
ual modality and six from the speech modality). 

For the visual modality, we extracted features related to the 
speaker’s eye gaze. Specifically, we extracted features that repre-
sented anomalies in the speaker’s eye movement. These anomalies 
were computed in three dimensions (horizontal or “left to right”, 
vertical or “up and down”, and optical or “to and from the 

webcam”), resulting in three separate anomaly features. The moti-
vation behind the anomalies was that a speaker will have fewer eye 
gaze anomalies in any direction when they are more confident. The 
computational process to derive the anomalies, along with the con-
firmation of the hypothesis, can be found in a prior study [9]. 

For the speech modality, we extracted features using our in-house 
speech processing system that performs both automatic speech 
recognition and statistical analysis of speech patterns. In total, we 
extracted six speech features using this system, including the 
speaker’s response length, the number of silences per token, the 
pause ratio, the number of hesitation markers, the filler ratio, and 
the speaking rate. A comprehensive definition of these features is 
provided in a prior study [9]. 

4. MULTIMODAL CONFIDENCE MOD-
ELS 

Leveraging the multimodal features from both the speech and vis-
ual modalities, we constructed models to classify speaker 
confidence on a scale of low, medium, or high. We compared two 
approaches: a model that did not utilize bias mitigation techniques 
and a model that incorporated bias mitigation techniques. For each 
approach, we implemented a model to compare the performance for 
each demographic split. Baseline models were constructed simi-
larly as bias-mitigated models, leaving out all FairLearn mitigation 
functionality.  

4.1 Bias-Mitigated Models and Metrics 
To mitigate bias in this dataset and to produce fair, unbiased pre-
dictive models that can accurately classify speakers’ confidence 
level, we leveraged the FairLearn open-source library. The Python 
toolkit offers solutions to analyze data based on sensitive attributes 
or demographic splits with a variety of metrics. It also serves as a 
wrapper for scikit-learn-style models, where the user can select an 
optimization algorithm, constraint, loss function, and provide other 
parameters to mitigate bias. In our experiments, we explored the 
use of these mitigation features to construct a pipeline for this da-
taset. Using the best performing configuration of optimization 
algorithm, constraint, and loss function, we enhanced our multi-
modal confidence model and evaluated the performance for each 
demographic. 

A primary reason we chose to use the FairLearn library was the 
ability to conduct multi-class optimization across sensitive attrib-
utes (i.e., demographic splits) with two algorithms: grid search and 
exponentiated gradient optimization [1]. Both algorithms support 
the bounded group loss constraint, which forces an upper bound on 
the loss per user-specified group. To satisfy the constraint, a classi-
fier, ℎ, must meet the criteria below, for each subpopulation, 𝑎, of 
a demographic, 𝐴. 

𝔼&𝑙𝑜𝑠𝑠*𝑌, ℎ(𝑋)/0𝐴 = 𝑎] 	≤ 𝜁								∀𝑎 

In our case, the groups are the subpopulations of the training data, 
which are the demographic splits of gender, race, accent, and age. 
The upper bound value is customizable based on the prediction type 
(i.e., regression vs. classification), but the loss function dictates the 
usefulness. In this paper, we use the mean absolute loss of each 
subpopulation for the optimization function. As such, the mitiga-
tion will target all subpopulations to have a mean loss below the 
provided upper bound threshold. For predicting speaker confi-
dence, we have labeled the possible perceived confidence values as 
low, medium, or high, but they are encoded as 0, 1, and 2, respec-
tively. This allows for the optimization to be conducted similarly 
as it would for a regression problem. For example, a mean loss of 



1.0 would mean that the model is rating speakers as an entire cate-
gory different, on average. This ranking-based classification setting 
allows for flexibility in the optimization, but other classification 
formulations would not yield sensible results with a similar upper 
bound usage. In our experiments, we compare the use of the two 
optimization algorithms (grid search and exponentiated gradient) 
and the upper bound thresholds for each subpopulation, and we fix 
the usage of the bounded group loss constraint and absolute loss. 
Other mitigation approaches were considered, but these selected al-
gorithms fit the problem statement the best. 

To measure the performance of the predictive models, we chose to 
use standard classification metrics, F1 score and accuracy. There is 
a large collection of metrics that enable the measurement of fairness 
in a predictive model, but there are few that handle the computation 
of multiple output target classes. While FairLearn does currently 
support multi-class optimization algorithms (e.g., exponentiated 
gradient), it does not currently support fairness-specific metrics for 
multi-class outputs, at the time of this writing. Fairness metrics 
commonly used for binary classification include demographic par-
ity, equalized odds, and equal opportunity, which all aim to capture 
aspects of the expected value of an input data point, given its sen-
sitive attribute (i.e., demographic value) [1] [12]. The development 
of these metrics for multi-class outputs is still an ongoing research 
topic. However, F1 score and accuracy can be leveraged to demon-
strate how mitigation techniques improve predictive performance 
for protected subgroups without sacrificing performance for non-
protected subgroups. Should this occur, no subpopulations would 
incur a performance degradation due to bias. 

5. EXPERIMENTAL RESULTS 
To compare unmitigated and mitigated multimodal models of 
speaker confidence, we first developed a baseline model using the 
XGBoost classifier. We chose this base classifier for its versatility 
and robustness in tabular supervised settings. It is extremely flexi-
ble and configurable, and the research community has leveraged it 
frequently for its modeling capabilities. For classifying perceived 
speaker confidence, we fix the hyperparameters for fair comparison 
between the unmitigated and mitigated configurations. Specifi-
cally, we fix the max depth of the candidate trees to be 2, the alpha 
(i.e., L1 regularization of weights) to 5, and the subsampling of 
training data to 0.9. Each of these hyperparameters were selected 
based on prior internal efforts, and they serve to help prevent over-
fitting of the resulting model. 

In our experimentation, we found the grid search optimization al-
gorithm to be inferior to exponentiated gradient in most 
comparisons. As such, we only report the results using exponenti-
ated gradient algorithm. Using the bounded group loss constraint, 
we do report the results for two different values of the upper bound 
of the constraint: 0.25 and 0.5.  

We conducted five sets of experiments where we compared mitiga-
tion to no use of mitigation. Each set of experiments focused on one 
demographic subpopulation: gender (Table 6), race (Table 7), age 
(Table 8), accent (Table 9),  and gender intersected with race (Table 
10). For model selection, we conducted a variation of stratified 
cross-validation where the test sets may repeat data points. This ap-
proach was selected because we wanted to maintain sufficient data 
points from underrepresented demographic categories in each train 
and test fold. When the demographic splits included subpopulations 
that were not well-represented (e.g., only 26 speakers with a per-
ceived non-native accent), standard stratified cross-validation 
would result in folds either having no examples of these subpopu-
lations or too few for meaningful distinction. Our sampling 

approach was accomplished by sampling a pre-set percentage of 
each demographic subpopulation to construct the train and test sets 
for each fold. We chose to use 30% as the sampling rate. This 
means that for a single sampling iteration (i.e., each fold), 30% of 
each demographic was selected for the test set, and the remaining 
70% would be used for training. We repeated this process 10 times 
and aggregated performance metrics by averaging the results, much 
like standard cross-validation. To avoid sampling the same data 
points repeatedly, we used a fixed random seed for all experiments, 
and for each iteration of the sampling, the random seed was incre-
mented by one to yield a different sample of data. The overall 
distribution of each subpopulation was maintained, keeping the ra-
tio between the groups intact. In each of the subsequent tables, the 
results for each column represent a single XGBoost model trained 
either without mitigation (Unmitigated), mitigation with an upper 
bound on the loss of 0.25, or mitigation with an upper bound on the 
loss of 0.5. The results are an average of the 10 iterations of sam-
pling, and the best performing model for each metric and 
subpopulation is bolded. 

Table 6. Bias mitigation for gender. 

 Unmitigated Mitigated 
(0.25) 

Mitigated 
(0.5) 

Overall F1 0.619 0.637 0.615 
Male F1 0.661 0.664 0.661 

Female F1 0.572 0.606 0.566 
Overall Acc. 0.664 0.676 0.664 
Male Acc. 0.695 0.695 0.695 

Female Acc. 0.638 0.658 0.638 
 

Table 7. Bias mitigation for race. 

 Unmitigated Mitigated 
(0.25) 

Mitigated 
(0.5) 

Overall F1 0.565 0.614 0.571 
White F1 0.541 0.598 0.553 

Non-White F1 0.615 0.645 0.608 
Overall Acc. 0.627 0.650 0.632 
White Acc. 0.607 0.633 0.620 

Non-White Acc. 0.671 0.688 0.657 
 

Table 8. Bias mitigation for age. 

 Unmitigated Mitigated 
(0.25) 

Mitigated 
(0.5) 

Overall F1 0.622 0.620 0.631 
Under 35 F1 0.619 0.624 0.637 
Over 35 F1 0.623 0.611 0.621 

Overall Acc. 0.667 0.667 0.678 
Under 35 Acc. 0.667 0.670 0.685 
Over 35 Acc. 0.668 0.663 0.668 

 

Table 9. Bias mitigation for accent. 

 Unmitigated Mitigated 
(0.25) 

Mitigated 
(0.5) 

Overall F1 0.597 0.619 0.608 
Native F1 0.601 0.622 0.604 

Non-Native F1 0.556 0.583 0.564 
Overall Acc. 0.655 0.665 0.655 
Native Acc. 0.658 0.666 0.656 

Non-Native Acc. 0.629 0.657 0.643 
 



 

Table 10. Bias mitigation for the intersection of gender and race. 

 Unmitigated Mitigated (0.25) Mitigated (0.5) 
Overall F1 0.568 0.604 0.575 

White, Male F1 0.591 0.596 0.598 
Non-White, Male F1 0.693 0.685 0.685 

White, Female F1 0.504 0.558 0.523 
Non-White, Female F1 0.548 0.631 0.546 

Overall Acc. 0.635 0.652 0.636 
White, Male Acc. 0.636 0.641 0.645 

Non-White, Male Acc. 0.750 0.730 0.740 
White, Female Acc. 0.600 0.632 0.604 

Non-White, Female Acc. 0.608 0.650 0.600 

6. DISCUSSION 
The mitigation approaches applied to each demographic split 
yielded improved results when compared to the unmitigated varia-
tion. For perceived gender, accent, and race, mitigation when using 
0.25 as an upper bound outperforms or performs the same as when 
not using mitigation. For age, the mitigation with an upper bound 
of 0.5 outperformed the baseline overall and for speakers who were 
perceived to be under 35. For speakers perceived to be over 35, 
mitigation did not appear to improve performance. It should be 
noted that for age, there did not appear to be a difference between 
the performance of the two possible subpopulations. When apply-
ing mitigation to the intersection of perceived gender and race, we 
found that both upper bound values produced improvements over 
the unmitigated baseline. 

A surprising result from this set of experiments was the ability of 
mitigation to improve predictive performance of the model overall 
on each demographic split. An intuitive expectation for mitigation 
practices would be that the performance of the model on subpopu-
lations is brought closer for each group, but overall model 
performance could potentially suffer as a result. In this paper, we 
demonstrate both an improvement in the performance for all indi-
vidual subpopulations across each demographic split and an 
improvement of the model performance overall. As this is a classi-
fication prediction, reporting F1 score and accuracy are relevant, 
especially due to the unequal distribution of labels (Table 4). Both 
metrics demonstrated the models’ improvement. While not as spe-
cific as designated metrics for fairness and bias (e.g., demographic 
parity), the choice of F1 score and accuracy for this analysis has 
shown that the performance improvements for protected or un-
derrepresented subpopulations did not come with a sacrifice of non-
protected group model performance.  

A particularly illuminating result was the individual improvements 
for the combined demographics of gender and race. With the inter-
section of perceived demographics used, there were fewer data 
points per subpopulation, forcing the model to rely on fewer exam-
ples in training. Speakers who were perceived to be non-white 
males were predicted with high accuracy (0.750) and F1 (0.693), 
and by mitigating the model, the performance for this group 
dropped slightly to 0.730 and 0.685, respectively. However, the 
performance for several subpopulations that had lower accuracy 
and F1 increased significantly (white females and non-white fe-
males). Notably, the mitigated model performance for non-white 
females improved the accuracy from 0.608 to 0.650 and the F1 
score from 0.548 to 0.631. This improvement in performance, 

while still not quite to the level of model performance of male sub-
populations, is substantial. Each percentage point improvement has 
real implications. A speaker who receives an incorrect prediction 
for a construct that lowers their self-efficacy (e.g., being predicted 
as low confidence when the speaker does not have low confidence) 
could have the unfortunate effect of lowering the speaker’s confi-
dence in future scenarios. For subpopulations that may be more 
susceptible to machine learning errors, every opportunity for im-
proving model performance should be taken [21]. 

There are still cases where the model performance of individual 
subpopulations for a given demographic category is unequal (i.e., 
room to improve). The starkest differences that remain include the 
difference in performance when mitigating based on gender, where 
the F1 score for males is 0.664 and 0.606 for females, using the 
mitigated model. This difference is an improvement compared to 
the unmitigated model, but it can be further improved through other 
bias mitigation techniques. For example, other techniques include 
preprocessing algorithms that attempt to remove the correlation be-
tween sensitive features and non-sensitive features. Other 
approaches include postprocessing algorithms where additional 
thresholds are utilized to reach desired fairness metrics.  

7. CONCLUSION 
Classifying speaker projected confidence has significant potential 
for supporting speakers who are learning how to communicate ef-
fectively. Creating a system that provides fast, personalized 
insights to a speaker based on their visual and spoken cues enables 
speakers to become more confident and practiced. Such a system 
must overcome several challenges, however. First, projected confi-
dence is an inherently multi-faceted construct, and requires the 
system to leverage synergies between multiple modalities of the 
speaker’s expression of confidence. Second, this construct is highly 
subjective, and it requires a carefully crafted rubric and annotation 
process to derive meaningful and accurate labels of the data used to 
train a model. Third, and a large focus of this paper, the data may 
not always be distributed in such a way that leads to an unbiased 
model. Moreover, the mapping between demographics and confi-
dence labels may itself be biased, which leads to a biased model 
without intervention. In this paper, we began to address these chal-
lenges by conducting a thorough annotation process of multimodal 
speaker data through Scale.ai. Mitigated classification models were 
trained using this data, resulting in improved model performance 
overall and for individual demographic groups. Specifically, we 
evaluated this framework for perceived gender, race, age, accent, 
and the intersection of gender and race. For future applications, we 



aim to not only produce unbiased results to speakers, but we aspire 
to explain the predictive outputs to speakers for transparency and 
insightful recommendations for improvement. 
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