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ABSTRACT 
In a number of settings risk prediction models are being used to 
predict distal future outcomes for individuals, including high 
school risk prediction.  We propose a new method, non-
overlapping-leave-future-out (NOLFO) validation, to be used in 
settings with long delays between feature and outcome observation 
and where there are overlapping cohorts. Using NOLFO validation 
prevents temporal information leakage between the training and 
test sets. We apply this method to high school risk prediction, using 
data from a large-scale platform, and find that models are able to 
maintain their accuracy over long periods of time when tested on 
fully unseen data in most cases. These findings imply that 
organizations may be able to reduce the frequency of model re-
training without sacrificing accuracy. In contexts such as long-term 
at-risk prediction with overlapping cohorts and long delays 
between feature and outcome observation, NOLFO is an important 
tool for ensuring that estimated model accuracy is representative of 
what can be expected in implementation. 
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1. INTRODUCTION
Risk prediction models are used across a number of settings to 
predict the future outcomes of individuals, such as student 
graduation and secondary enrollment [4, 33], prison recidivism 
[13], and health outcomes [32]. This paper examines the practice of 
model validation on time-series data where there is a long delay 
between predictive features and observed outcome and where 
cohorts overlap - meaning that training features for cohort i+1 are 
observed before outcomes are observed for cohort i. The delay 
between predictions and outcomes - often on the scale of years - for 
these models entails that validation is necessarily performed on old 
data, and the overlapping nature of the cohorts cause standard 
leave-future-out validation practices to result in potential temporal 
information leakage. Furthermore, in production settings, regular 
validation and refinement of a functioning model may be seen as 
risky to privacy and costly, and therefore is not prioritized. As a 
result, some of these models have now been in use for multiple 
years without ongoing validation of their accuracy (see discussion 
in [17]), although other models are annually re-fit and tested [27]. 

 Within this paper, we investigate these issues in the context of high 
school graduation prediction. We present a Non-Overlapping 
Leave-Future-Out (NOLFO) validation method that we propose 
should be used when developing prediction models in contexts with 
long delays between predictions and outcomes and overlapping 
cohorts.  

In this context, a number of questions arise for high school 
graduation prediction models. How stable are machine-learned 
graduation prediction models over time? Do prediction models 
need to be re-trained annually (or periodically), or can the same 
model be used for many years without updates? For education-
related models, do risk predictions remain stable even if the 
underlying context shifts gradually (e.g., from policy changes 
addressing attendance, which occur over a period of many years in 
different districts) or abruptly (e.g., from Covid-19 shutdowns)? 
Risk prediction models are being used at large scale in American 
education settings, with national vendors [8, 14] and US states [17, 
28] providing models to school districts. Increasingly, this type of
model is used in other countries as well [24, 31]. As the field of
machine-learned education graduation prediction models matures
and their use becomes increasingly widespread, these questions
have important implications for production use. Annual refitting of
models is expensive and model training is more privacy invasive
than model scoring, since it requires the long-term retention of
personally identifying information. If models do not need to be
retrained annually, less data intensive practices can be adopted to
better protect student privacy and reduce operational expenses.

In other contexts, model degradation over time (aka “detector rot” 
-- [23]) has been found to be a potentially serious problem. For 
example, in inferring gaming the system behavior in an online 
tutoring system, researchers found that simpler decision tree 
models maintained their performance better over time than more 
advanced models like XGBoost, even though the more advanced 
models performed better within the time period they were trained 
in [23]. Other research investigating detector rot in Bayesian 
Knowledge Tracing models found that they are generally stable 
across years, but their performance is subject to degradation in the 
face of systemic shifts in learner behavior [21]. However, no 
research to date has examined the scope of detector rot for K-12 
student dropout prediction models. Prior research has investigated 
concerns about model generalizability across contexts [9, 4], 
finding that some models can safely generalize between school 
districts; this work extends that type of analysis to generalizability 
across time periods. Finally, in other communities, researchers 
have also considered questions of optimal time-window sizes for 
the recency of events considered in prediction [35, 36].  

As in other domains, the models used in practice for graduation 
prediction vary considerably in complexity. Perhaps the most 
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widely-used model, the ‘Chicago’ model [1] for student dropout 
prediction, uses research based thresholds to assess risk according 
to static and relatively transparent algorithms. By contrast, 
machine-learned models used by several vendors like Random 
Forests, in contrast, typically rely upon highly complex and opaque 
rules that have been found to boost predictive accuracy [4], at least 
at the time of training. As noted above, [23] found that more 
sophisticated models appear to degrade more over time, due to 
overfitting of the data. In high school graduation prediction, do 
these more complex algorithms maintain their accuracy over time, 
or are they capturing temporally sensitive relationships between 
variables that degrade? 

This model lag is potentially consequential if there are changes in 
the relationships between predictor variables and outcomes over 
time. There are both general drifts in features over time, for 
example the long term upwards trend in GPAs [26] and sudden 
changes such as the shutdowns and shifts (in graduation policy, 
among other changes) provoked by the COVID-19 pandemic. 
Absenteeism has increased substantially since the pandemic [12], 
standardized test scores have decreased in many districts [18], and 
there are reports of increased student behavioral issues [11, 30]. 
Models can be resilient to shifts in feature distributions if the 
relationship between the feature and potential outcomes persists. 
But are they resilient to these types of changes? It is unclear. 

1.1 Research Questions 
RQ1. Do single-year trained graduation prediction models have 
both high and consistent predictive accuracy across cohorts when 
tested with the required amount of lag between training and 
prediction?  

RQ2. Do three-year trained graduation prediction models degrade 
over an increasingly long period of time?  

RQ3. Do three-year trained graduation prediction models degrade 
differentially in different school districts?  

RQ4. Do three-year trained graduation prediction models degrade 
differentially, depending on which grade-level is used for training?  

 

2. TIME DELAYS IN MODEL 
VALIDATION 
The most common intervention point in U.S. schools for graduation 
is 9th grade [15]. The inherent time delay between observing a 9th 
grade student and observing their graduation outcome makes these 
models require many years of data. Figure 1 presents how data 
availability occurs over time. We have to go back four years before 
the present to find the first cohort of ninth graders that we can 
observe graduation outcomes for (excluding the small number of 
students who graduate early).  In other words, to make graduation 
predictions about 9th grade students in the 2023 school year, we 
must use 9th grade training data from no later than the 2019 school 
year. We can include more recent ninth grade student cohorts (e.g. 
from the 2020 through 2022 school years), but for those cohorts we 
would primarily observe only early dropout outcomes and not 
graduation outcomes. This figure also demonstrates the 
overlapping nature of the cohorts. We observe four cohorts of 9th 
grade features (in 2015, 2016, 2017 and 2018) before observing the 
2015  cohort’s graduation outcome in 2018. 

 

Figure 1. Data availability and cohort overlap for 9th grade 
graduation prediction 

As figure 1 shows, by the nature of predicting K-12 graduation, 
there will always be a delay between a model’s training data and 
the time period when it is put in use. We now consider implications 
for model validation. We care most about knowing the accuracy of 
predictions that are made for current ninth grade students, who have 
yet to graduate from high school. Without the ability to see the 
future, this data is inaccessible. Standard validation methods rely 
on either cross-validation or out-of-sample validation [7]. Cross 
validation based on a test-train split strategy that randomly holds 
out a subset of students assumes that data is independently and 
identically distributed (after accounting for within-student variance 
by splitting at that level) and does not account for the  possibility 
of feature drift or detector rot. It is likely to overstate model 
accuracy in the 9th grade graduation prediction context. Out-of-
sample validation, by contrast, uses data from one year to train and 
data from a separate, future, year to test model performance.  

A Non-Overlapping-Leave-Future-Out (NOLFO) validation 
requires that the feature data used to test the model occurs after the 
outcome data used to train the model. Because of the four year 
delay between observing 9th grade features and 12th grade 
outcomes, the testing cohort’s features must be observed at least 
four years after the training cohort. In figure 2, we illustrate a 
simplified model for an out-of-sample testing strategy that shows 
training a model for the 2015 cohort of 9th grade students and 
testing on the NOLFO 2019 cohort of 9th grade students. In order 
to have a truly unseen test set with no overlap in years and no 
possibility of information leakage, we must dramatically reduce the 
amount of data available for model training. To predict outcomes 
for the 2019 cohort of 9th graders, we cannot use graduation 
outcomes from after 2018 and are thus limited to training on only 
the 2015 – and earlier – cohorts of ninth grade students. 

 

Figure 2. Non-Overlapping-Leave-Future-Out (NOLFO) 
validation 

By taking models trained earlier and applying them to subsequent 
cohorts –  in a ‘rolling-origin evaluation’ [38] – we can assess how 
well models can be expected to perform in later years. In figure 3, 
we show a model for a rolling origin evaluation with four training 
cohorts and four NOLFO validation cohorts. Note that in this form 
of validation, the four estimated AUC values (trained on 2012, 
2013, 2014, 2015 9th grade data and tested respectively on 2016, 
2017, 2018, 2019 graduation data) are in practice an estimate of the 
forecasted AUC of predictions made for 2023 9th graders based on 
a model trained with 2019 9th grade feature data.  

In practice, instead of training successive single year models, 
providers of risk prediction models aggregate together data from 
many training years. Such a model can still be tested with a full-



future-leave-out strategy so long as the testing data occurs after the 
last collected training outcome. 

 

Figure 3. Rolling origin NOLFO validation 

In evaluating high school risk prediction models, the published 
literature either does not reference an explicit time based leave-
future-out validation strategy (see e.g. [8, 22,34]) or uses leave-
future-out data from consecutive years but does not enforce a non-
overlapping requirement with testing data occurring strictly after 
training outcomes (see e.g. [37, 17]). To be fair, this is a harder 
challenge in high school graduation prediction than in other 
modeling tasks where a single year is sufficient time to observe the 
outcome of interest (e.g. [6]). To predict completely non-
overlapping graduation outcomes for 9th grade students, it requires 
8 years of data to confidently draw conclusions about a 4 year 
outcome of interest. These data requirements change depending on 
the grade level of the students we want to make predictions for; 
when predicting outcomes for 12th grade students there is only a 
single year of lag, while prediction models for 1st grade students 
have 12 years of lag thus requiring 24 years of data to do a full out 
of sample validation!  

In summary, there are three potential validation mechanisms for 
graduation prediction models, cross-validation, one-year-leave-
future-out validation, and non-overlapping-leave-future-out 
validation (see figure 4). In this paper we use NOLFO validation to 
determine the extent to which graduation prediction models suffer 
from detector rot, and whether annual retraining of models is 
strictly necessary. We present first a rolling NOLFO analysis of 
successive single-year-trained 9th grade models. We then present a 
series of analyses where we train a model in the initial time period 
and evaluate its performance over a long series of years. This 
analysis allows us to compare validity measures in the training year 
with cross validation, in the immediate years following training 
with proximal future hold out, and in increasingly distal non-
overlapping time periods. We run the NOLFO validation tests for 
9th grade models trained on a large corpus of data, 9th grade models 
trained on data from four representative school districts, and for 
grades 6 through 12. 

 

Figure 4. Comparison of validation approaches 

3. DATA 
3.1 Context 
The REDACTED platform is a widely used commercial platform 
for predicting student graduation and post-secondary enrollment 
risk. The system uses historical student education data to predict 
outcomes [9] and presents that information in an insights driven 

interface  that connects with an intervention management platform 
[14]. Predictor variables were selected using a theory-driven 
approach and cover general coursework, assessment scores, 
attendance, and behavior incidents [9]. Model accuracy was 
validated using a contemporaneous test-train split method at the 
student level [9, 10]. 

3.2 Data Sample 
In this analysis there are over 3.4 million student-year records from 
approximately 740,000 unique students in grades 6 through 12. 
This data was obtained from the 2005-06 to 2022-23 school years. 
The data comes from 76 school districts from all major regions of 
the United States, though not all districts are represented in all 
years. There is a maximum of 62 and a minimum of 16 districts 
represented in any given year. The average graduation rate over the 
study period in these school districts is 90.4% compared to the 
national average graduation rate of 87% in 2019-20 [25]. 

3.3 Algorithms Assessed  
In this paper we test a sample of different machine learning models 
for high school graduation prediction that have been proposed by 
researchers in recent work including: logistic regression [2, 37, 20], 
random forest model [9, 20], the “XGBoost” extreme gradient 
boosting algorithm [8], a Support Vector Machine [20, 34, 37] and 
a decision tree [20, 24]. We use the feature set developed for the 
model in [9]. In all cases, models were implemented using default 
hyper-parameter options. 

3.4 Analysis of Detector Rot 
As discussed above, we first present a rolling NOLFO analysis of 
successive single-year-trained 9th grade models. We then present a 
series of analyses where we train a model in the initial time period 
and evaluate its performance over a long series of years. The rolling 
analysis allows us to assess whether models trained on consecutive 
cohorts have consistent NOLFO performance. While the later 
analyses are more consistent with real-world production use of 
machine learning models. 

We run the NOLFO validation tests for 9th grade models trained 
on a large corpus of data (a nationwide sample of 76 school districts 
using the early warning system), 9th grade models trained on data 
from four representative school districts, and for grades 6 through 
12. Within these analyses, we select 9th grade as a grade of 
particular emphasis based on the much higher frequency of 
interventions given at this grade level than other grade levels [15]. 
For in-depth district-level analyses, we select four of the largest 
districts that had at least 9 years of data available to train and test 
models, and which were generally representative of the 
demographic and regional variance present within the full data set. 

We assess model accuracy using AUC ROC [5]. Although no one 
metric captures all aspects of a model’s quality [29] and in 
particular AUC ROC is not informative about uses of models 
involving single decision cut-points [19], AUC ROC is a highly 
appropriate metric for the use this model is put to in the real world, 
where teachers and school leaders are presented with students’ risk 
levels rather than a single binary recommendation [20]. 
Furthermore, AUC ROC is comparable between different data sets 
[5] and is more robust to class imbalance than other metrics [16]. 

4. RESULTS 
4.1 9th Grade Rolling-Origin Analysis 
We initially examine predictions for 9th grade students. We begin 
with a ‘rolling-origin validation' [36] that trains a model on a single 
cohort of 9th grade students and examines its accuracy for the four 



year later NOLFO 9th grade cohort (i.e. the first cohort that could 
have used that model). The purpose of this analysis is to ascertain 
whether single-year trained graduation prediction models have both 
high and consistent predictive accuracy across cohorts when tested 
with the required amount of lag between training and prediction. 
Results are presented in figure 5. We see that the XGBoost, Logistic 
Regression and Random Forest perform very similarly to each 
other, and have AUC values that vary between 0.8 and 0.9 over 
time. The SVM and single decision tree are substantially less 
accurate. 

While informative regarding the general issue of time delay 
between training and prediction, this rolling-origin test does not 
closely mirror how high school graduation models are implemented 
in practice. 

 

Figure 5. NOLFO rolling analysis 

4.2 9th Grade Model Degradation 
We now turn to an analysis that is closer to real-world use 
conditions. First, we train and validate another single year 9th grade 
model, this time using data from 2006 and a 70/30 test-train split. 
We then re-train that same model (e.g. same features and same 
hyperparameters) using all available data from 2006 and predict 
outcomes for 9th graders in the 2007 through 2020 cohorts and 
measure the AUC for each cohort. By doing this, we are now testing 
whether the 2006 model decays over a longer time period. The 
results are presented in figure 6.  

In figure 6, AUC is measured in three ways. First, the leftmost and 
hollow point represents the same year AUC from the 70% trained 
model and 30% holdout set. The next three solid points to the left 
of the dashed line represent AUC values from the full 2006 model 
in the overlapping years that come after the training year but before 
the training outcomes were observed. The solid points to the right 
of the dashed line indicate AUC values for NOLFO years: years 
that are unseen in training, and occur after the outcome data 
collection delay. These are the points of most relevance for 
analyzing detector rot. 

 

Figure 6. NOLFO validation of 9th grade prediction model 
trained with 2006 feature data 

We see that three models have similar initial AUC ROC values 
(0.85 for the Random Forest, and 0.86 for the Logistic and XGB 
models). Performance for these three models is somewhat noisy 
over time, trending between 0.87 and 0.80. In the final time period, 
14 years and a global pandemic after the models were initially 
trained, the Random Forest and XGB models still have an AUC 
values of 0.84 and 0.83, while the Logistic has degraded only 
mildly, to 0.78. This constancy of performance for the Random 
Forest and XGB model is in contrast to findings of substantial 
model rot for these algorithms in other contexts [23]. The SVM 
model performs less well and shows a similar amount of 
degradation. The single decision tree performs much more poorly 
with an AUC around 0.65, it too degrades somewhat. 

Next we test pooling data from three consecutive cohorts of 9th 
graders to train the models. In production settings, multiple years 
of data are used to train models instead of data from a single cohort. 
This analysis restricts the amount of non-overlapping years 
available for validation, but gives a more realistically trained model 
and reduces the risk of single-year overfitting in model training. 
Note that now the dashed line has now been pushed two more years 
further right, with 2012 being the first non-overlapping prediction 
year. We see in figure 7 that performance is somewhat more stable 
than with a single year of training data, and is within a similar range 
of 0.88 at training time degrading to a minimum near 0.80 for the 
Random Forest and XGB models. Logistic regression bottoms out 
slightly higher, at 0.82. The SVM and Decision Tree models follow 
similar patterns of lower (and much lower) performance as before. 



 

Figure 7. NOLFO validation of 9th grade prediction model 
trained with three cohorts of feature data from 2006, 2007 and 
2008 

4.3 Analysis of Four Districts 
In the prior analysis we pooled together data from 76 disparate US 
school districts. We now assess NOLFO validation for a selection 
of four school districts, discussed above. We run this analysis to 
test whether the stability found in a large, multi-district sample also 
applies in smaller contexts. Related work has found that classifier 
performance can vary substantially across school districts [20]. 
Three of the districts’ models have initial AUC values for the 
Random Forest, XGB and Logistic models between 0.8 and 0.9, 
while district four shows rapidly degrading AUC, even during the 
three training years. Results are presented in figure 8. 

 

 

Figure 8. NOLFO validation of 9th grade prediction model 
trained with three cohorts of feature data from 2006, 2007 and 
2008 in four districts  

4.4 Degradation by Grade Level 
Finally we expand our analysis beyond 9th grade graduation 
predictions to predictions made in 6th-12th grade. For 6th graders, 
there is a 7 year delay between the training data and non-
overlapping prediction data, while for 12th graders there is only a 

one year delay. Results are presented in figures 9 and 10. For the 
Random Forest, XGBoost and Logistic models we see relatively 
strong and consistent performance over time. The SVM and single 
decision tree perform much worse, and in middle school especially 
the SVM shows significant accuracy rot. 

 

Figure 9. NOLFO Validation of 6th, 7th and 8th grade 
prediction model trained with three cohorts of feature data 
from 2006, 2007 and 2008 

 

Figure 10. NOLFO Validation of 9th, 10th, 11th and 12th grade 
prediction model trained with three cohorts of feature data 
from 2006, 2007 and 2008 

5. DISCUSSION 
Taken together, these results show that in many circumstances high 
school graduation prediction models maintain their predictive 
accuracy over time and do not rot. This suggests that it can be 
feasible to continue using trained models for several years without 
updating. Our findings also suggest that although researchers 
generally have not performed NOLFO validation of model 
accuracy, single-year-leave-future-out or within-year cross 
validation can provide accuracy estimates that are reasonably close 
to those obtained by NOLFO validation.  

However, particularly when dealing with smaller data sets, like 
those representing a single school district, we do see cases where 
models rot rapidly and predictive accuracy declines. It is 
unfortunately the case that contexts that do not have sufficient data 



to perform NOLFO validation are those contexts where it is most 
likely to be needed. In these cases, more stringent validation which 
is fully non-overlapping may be warranted. 

We should also note that the feature set used was developed and 
tested to optimize performance of a Random Forest model and may 
have been less optimal for other algorithms. Models were also 
tested with default hyper-parameters. We therefore should not 
over-interpret the poor performance of the SVM model; it is 
possible that with adjustments to features and hyper-parameter 
tuning the SVM model performance could be substantially 
increased and potentially stabilized over time. Nonetheless, in 
grades 6 and 7 we saw substantial rot in the SVM model AUC, and 
in 12th grade we saw an unusual increase in AUC for the SVM. We 
would therefore recommend further careful testing of how SVM 
models perform over time, if they are selected for use in the high 
school graduation prediction context. 

The testing period coincided with the COVID-19 pandemic, which 
substantially disrupted K-12 education. It is surprising that we do 
not see a clear decrease in model accuracy during the pandemic. 
We offer two potential explanations. First, we measure model 
accuracy here using the AUC ROC criteria. This is a measure of the 
relative order of students and is not a measure of model calibration. 
If the real probability of graduating decreased uniformly for all 
students in the 2020-21 school year because of the pandemic but 
relative risk was unchanged, the AUC ROC metric would report the 
same value. Second, many features used in the prediction models 
are normalized by year. It is possible that the normalized variables 
allow the models to continue to perform well at relatively ranking 
students over time despite shifts in the absolute value of the 
variables. Further research should examine whether normed vs 
nominal scaled values are more robust to detector rot.  

One key limitation to this paper is that we do not test for model 
fairness and do not measure model performance for different 
subgroups of students. Although NOLFO performance was good in 
general, this result may be masking changes in quality for specific 
groups of learners. Therefore, future research should apply NOLFO 
validation to fairness analyses and investigate accuracy over time 
for student subgroups. There may be particular concern if, unlike 
this paper’s approach, a model includes demographic identifiers in 
the training data (a practice that has received recent debate in our 
community -- see discussion in [3]). In that case, the predictive role 
of demographic identifiers may be susceptible to semantic shift 
over time in a way that particularly impacts model performance for 
a specific group but not others. For example, if a school district 
implements group-wide support for members of a historically 
underrepresented group or fixes previously racist disciplinary 
practices, that may change the predictiveness of a demographic 
variable over time. 

As an additional limitation, we do not explicitly test for feature drift 
in this analysis. Further research should examine the relationship 
between NOLFO validation measures and measures of the change 
in predictor variables over time. NOLFO validation can show that 
historically models have continued to perform well over long time 
periods, and assumes that the performance over historically lagged 
time periods is indicative of accuracy in future periods. Measures 
of predictor feature changes may provide an early signal of when 
future prediction validity is likely to break down.  
 
Our tests of NOLFO accuracy have focused on AUC-ROC as that 
measure is best suited to assessing accuracy in our high school 
graduation risk context. Future work should consider assessing 

NOLFO implications for other accuracy measures, particularly 
contexts with binary thresholding.  

Aside from those possible limitations and areas of future 
investigation, these findings of model stability suggest that 
organizations providing risk prediction models may be able to use 
a trained model for several years without updating and see 
consistent accuracy in future years. Such an approach would allow 
organizations not to store sensitive, identifiable student data.  

We suggest that, wherever possible, organizations creating applied 
risk prediction models be attentive to the temporal structure of their 
data and consider whether their held-out test sets are truly unseen. 
In contexts with long delays between feature and outcome 
observations and where there is overlap between consecutive 
cohorts, NOLFO is an important tool for ensuring that estimated 
model accuracy is representative of what can be expected in 
implementation. 
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